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ABSTRACT

Complex patterns are commonly retrieved in spatially-extended systems formed by coupled nonlinear dynamical units. In particular, Turing
patterns have been extensively studied investigating mathematical models pertaining to di�erent �elds, such as chemistry, physics, biology,
mechanics, and electronics. In this paper, we focus on the emergence of Turing patterns in memristive cellular nonlinear networks by means of
spatial pinning control. The circuit architecture is made by coupled units formed by only two elements, namely, a capacitor and a memristor.
The analytical conditions for which Turing patterns can be derived in the proposed architecture are discussed in order to suitably design
the circuit parameters. In particular, we derive the conditions on the density of the controlled nodes for which a Turing pattern is globally
generated. Finally, it is worth to note that the proposed architecture can be considered as the simplest ideal electronic circuit able to undergo
Turing instability and give rise to pattern formation.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5115131

Since the seminal work onmorphogenesis in biological organisms
proposed by Alan Turing,1many e�orts have been devoted to fully
understand the mechanisms leading to pattern formation in areas
such as biology and chemistry. Pattern formation in spatially-
extended systems has also been investigated in �elds far from
biology, namely,mechanics,2 electronics,3,4 and thermodynamics.5

These studies are based on the use of models belonging to a class
of nonlinear di�erential equations, known as reaction-di�usion
models, adopted to mimic the dynamics of spatially-extended
systems in which a competitive inhibition-activation e�ect occurs.
The necessary conditions for which Turing patterns may occur
have extensively been discussed in several works.3,4 These condi-
tions guarantee the occurrence of the so-called Turing instability,
i.e., the scenario in which the reactive cell admits a stable equi-
librium point, which is made unstable by a di�usion-driven pro-
cess. However, satisfying such conditionsmay be prevented by cell
structure and parameters and/or the given coupling structure. In
this paper, we introduce a novel strategy based on pinning control6

to attain the condition for Turing instability, showing that the
strategy is e�ective even acting at local scales.

I. INTRODUCTION

A fundamental issue in understanding the formation of spa-
tial patterns in active media is the analysis and characterization of
the di�usion processes which are at the basis of the morphogenesis.1

The active medium is spatially discretized in cells, which are the
basic units of the reaction-di�usion model. The dynamics of these
cells is usually described as a second-order system, where the state
variables represent the concentrations of two morphogenes1 in the
given cell. Di�usion takes place in the presence of a gradient in
the morphogene concentrations. In particular, self-di�usion occurs
if one morphogene induces a �ux of the same morphogene; oth-
erwise, when di�erent chemical species are actually di�using, a
cross-di�usion process occurs. Although cross-di�usion is usually
neglected, in many natural systems it is shown to play a central role.7

The paradigmof cellular nonlinear networks (CNNs) haswidely
been explored in the past to study spatiotemporal phenomena,
including Turing patterns and autowaves formation.3 Each cell of a
CNN, in fact, embeds the dynamical behavior of a reactive element,
and the coupling structure can implement self- and cross-di�usion
processes. Recently, evidence of Turing pattern formation has been
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presented in a CNN with cross-di�usion.8 The cells of that structure
incorporate memristors, thus leading to a so-calledmemristive CNN
(MCNN).

The memristor is a two-terminal electronic device displaying
a functional relationship between the time integral of the current
through it and that of the voltage across its terminals. It has theo-
rized in 197122 and, recently, thanks to the experimental evidence
of its existence,9 has been intensively investigated as a fundamen-
tal element for dynamical nonlinear systems. Di�erent models of
the memristive devices have been formulated, either based on the
physics of the device or on the representation of the functional rela-
tionship between �ux and charge. Furthermore, the nonlinearity has
been modeled by means of piecewise linear10 or more sophisticated
functions.11,12 This device has gained interest in electronic and neu-
roscience community,9–13 since its characteristic of being a nonlinear
and memory element make it suitable in the search of simple chaotic
circuits.14 Moreover, it has been shown that MCNNs are suitable to
generate spatiotemporal phenomena such as autowaves.15

A reaction-di�usion system exhibits Turing patterns in the pres-
ence of a di�usion-driven instability, when the equilibrium solu-
tion of the isolated cell is stable to small perturbations but unstable
when di�usion is present. In the case of the MCNN presented in
Ref. 8, the di�usion process needed to satisfy the Turing condi-
tions must include both self-di�usions and cross-di�usions. Here,
we introduce a novel strategy based on the application of the pin-
ning control approach with the aim of obtaining Turing patterns
in systems whose parameters without control do not satisfy Turing
conditions.

Pinning control6 represents a well known technique which, by
acting on a selected subset of nodes in a complex network, aims at
achieving a global objective, i.e., the control of the global behavior
of the system. In this paper, we adopt such strategy with the aim of
applying a local permanent negative feedback loop to a fraction of
cells, thus locally satisfying Turing conditions. The strategy should
be e�ective also when pinning a small fraction of cells in theMCNN,
thus providing the possibility to control Turing pattern emergence in
a MCNN where the majority of the cells does not satisfy Turing con-
ditions. It will be shown that the di�usion coe�cients of the MCNN
play a crucial role in the fraction of cells that must be pinned to attain
Turing patterns; the higher are the strengths, the lower is the number
of pinned nodes.

The paper is organized as follows: in Sec. II, the MCNN based
on a novel simpli�ed cell is introduced; in Sec. III, the conditions for
the emergence of Turing patterns in the proposedMCNN system are
determined; in Sec. IV, numerical results are presented showing the
di�erent types of Turing patterns that can be observed in theMCNN;
in Sec. V, the conclusions are reported.

II. THE MEMRISTIVE CELLULAR NONLINEAR

NETWORK

The MCNN discussed in the following represents an active
medium discretized in a lattice of N × N basic cells. The basic cell
is the simple electronic circuit shown in Fig. 1, it is composed of
the parallel of two basic components: a capacitor (linear and passive)
and a memristor system,14 whose model is de�ned by the following

FIG. 1. Schematic representation of the memristor-capacitor circuit.

equations:

iM = M(φ)vM = β(φ2 − 1)vM ,

φ̇ = fM(φ, vM) = vM − αφ − vMφ,
(1)

where vM and iM are the voltage and the current, respectively, asso-
ciated with the memristor system; φ is the internal state, i.e., the

�ux fM(φ, vM) is the internal state function; andM(φ) =
dq(φ)

dφ
is the

memductance of the memristive system, relating memristor current
and voltage. Furthermore, α and β are memristor parameters, de�n-
ing the internal state dynamics, according to the form proposed in
Ref. 14.

Applying the standard Kirchho�’s laws to the circuit in Fig. 1,
and recalling the memristor constitutive relationship in Eq. (1), the
following equations are derived:

Cv̇ = −β(φ2 − 1)v,

φ̇ = v − αφ − vφ,
(2)

where v is the voltage across both the capacitor C and the memris-
tor M and φ is the �ux associated with the memristor. Introducing
the variables x = v, y = φ, and the parameter γ = 1

C
, Eq. (2) can be

rewritten as

ẋ = −γβ(y2 − 1)x,

ẏ = x − αy − xy.
(3)

The N × N MCNN is obtained by considering the circuit
equations (3) as the model governing each cell of the grid and
connecting them according to a di�usive coupling, which locally
connects them with their four nearest neighbors as

ẋi,j = f (xi,j, yi,j) + D11∇
2xi,j,

ẏi,j = g(xi,j, yi,j) + D22∇
2yi,j,

(4)

where i and j represent the indices of the row and the column andD11

and D22 are the self-di�usion coe�cients. f (x, y) = −γβ(y2 − 1)x
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and g(x, y) = x − αy − xy, and ∇2 is the two-dimensional discrete
Laplacian operator,

∇2xi,j = xi+1,j + xi−1,j + xi,j−1 + xi,j+1 − 4xi,j,

∇2yi,j = yi+1,j + yi−1,j + yi,j−1 + yi,j+1 − 4yi,j.
(5)

In addition, in the following the partial derivatives of the func-

tions f (x, y) and g(x, y) will be denoted by fx =
∂f

∂x
, fy =

∂f

∂y
, gx =

∂g

∂x
,

and gy =
∂g

∂y
.

In the view of an implementation of the proposed MCNN, it
should be noted that the coupling scheme can be realized introduc-
ing linear resistors as concerns voltage di�usion, while �ux di�usion
strongly depends on the speci�c realization of the memristor. In
some VLSI implementations, in fact, memristor �uxes can be cou-
pled by fabricating the device in nearby regions of the integrated
circuit.16,17 Considering, instead, a practical implementation based
on o�-the-shelf discrete components, Eq. (4) can be realized, for
example, following a state variable approach,18 in which each state
variable is associatedwith a voltage across a capacitor. In this case, the
di�usion process can be implemented by means of linear resistors.

III. TURING CONDITIONS

In order to check whether a reaction-di�usion system may
exhibit Turing patterns, that is, di�usion-driven instability, the stabil-
ity of the equilibrium point of the isolated cell has to be investigated
so that to verify that, if it is stable, it is driven to instability when the
di�usion process takes place.4This principle is translated intomathe-
matical conditions by �rst considering the cell as isolated, linearizing
the dynamics around its equilibrium and studying the stability of its
equilibrium point through the analysis of the Jacobian matrix. A �rst
set of conditions is, thus, obtained by imposing that the isolated cell
admits a stable equilibrium point. Then, the e�ect of the di�usion is
considered through a technique based on the evaluation of the spatial
eigenvalues, which allows to consider the e�ect of the coupling, deriv-
ing the conditions on the parameters such that the equilibrium point
becomes unstable.19 In this section, this approach is applied to the
MCNN in Eq. (4) in order to derive the conditions in the parameter
space leading to Turing patterns.

The isolated cell described by Eq. (3) admits two equilib-
rium points, one located at the origin Q0 = (0, 0) and the other in
Q1 = (− α

2
,−1). With the aim of studying the stability of a generic

equilibrium point of system (3), let us indicate it as (x̄,ȳ)and compute
the Jacobian matrix

A =

[

fx fy
gx gy

]

=

[

−γβ(ȳ2 − 1)x̄ −2γβ ȳx̄

1 − ȳ −α − x̄

]

(x̄,ȳ)

, (6)

where without lack of generality we took γ = 1. Indicating with

tr(A) = (fx + gy)|(x,y) = β(1 − y2) − α − x,
(7)

det(A) = (fxgy − fygx)|(x,y) = β(y − 1)[(α − x)(y + 1) − 2xy],

the characteristic polynomial of matrix A takes the following form

λ2 − tr(A)λ + det(A) = 0. (8)

The equilibrium point (x, y) is, hence, stable if and only if
tr(A) < 0 and det(A) > 0. As a consequence, the �rst two conditions
for Turing patterns when (x, y)=Q0 are

tr(A) = β − α < 0(C0.1),

det(A) = −αβ > 0 (C0.2).
(9)

Similarly, the �rst two conditions for Turing patterns when
(x, y) = Q1 are

tr(A) = −
α

2
< 0 (C1.1),

det(A) = αβ > 0 (C1.2).

(10)

Let us consider now the MCNN state equations (4). In order
to obtain the conditions on the coupled system, Eqs. (4) are lin-
earized around the generic equilibrium point (x, y) of the isolated
cell3 obtaining

˙̃xi,j = fxx̃i,j + fyỹi,j + D11∇
2x̃i,j,

˙̃yi,j = gxx̃i,j + gyỹi,j + D22∇
2ỹi,j,

(11)

where x̃ and ỹ represent the deviations from the equilibrium point.
The properties of (11) are analyzed by the spatial eigenfunction-
based decoupling approach. This approach has been introduced and
formalized in Ref. 3 and allows to reduce the analysis of pattern
formation in spatiotemporal systems to the analysis of an uncou-
pled system of two �rst-order linear di�erential equations directly
related to the spatial eigenvectors. Therefore, a systemof 2N2 coupled
di�erential equations as N2 decoupled systems of two di�erential
equations. Themain idea behind this approach is to �nd a solution of
the MCNN as a weighted sum of N2 orthonormal space-dependent
eigenfunctions φN2(m, n, i, j) associated with the discrete Laplacian
operator,

∇2φN2(m, n, i, j) = φN2(m, n, i + 1, j) + φN2(m, n, i − 1, j)

+ φN2(m, n, i, j + 1) + φN2(m, n, i, j − 1)

− 4φN2(m, n, i, j) = −k2mnφN2(m, n, i, j), (12)

where k2mn are the corresponding spatial eigenvalues and the form of
φN2(m, n, i, j) depends on the boundary conditions.3

If one of thesemodes k2mn leads to an unstable equilibriumpoint,
di�usion-driven instability is induced. To check the occurrence of
this condition, the stability of the equilibrium point of the cell in the
presence of di�usion is studied with respect to the spatial eigenvalues
that will be generically named as a generic variable k2, thus neglect-
ing which speci�c mode becomes unstable. Hence, in the following
equations, the index mn will be dropped. Therefore, the stability of
the generic equilibrium point when di�usion is present depends on
the following Jacobian matrix:

J = A − k2D =

[

−β(y2 − 1) − k2D11 −2βyx

1 − y −α − x − k2D22

]

, (13)

where k2 is the spatial eigenvalue and D =

[

D11 0
0 D22

]

is the dif-

fusion coe�cients matrix. It is worth to note that, in the de�nition
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FIG. 2. Turing patterns generated by a 100 × 100 MCNN as in Eq. (4) in layer
x, where η assumes three different values: (a) η = 1.8, spots, (b) η = 1.9, mix-
ture of stripes and spots, (c) η = 2, stripes. The other parameters are fixed as
α = 1.6, β = 0.06, D11 = 0.5, and D22 = 10. Without loss of generality, initial
conditions are taken randomly from a normal distribution with zero mean and
unitary variance, zero-flux boundary conditions are considered.

of the di�usion process, we take into consideration the presence of
self-di�usion coe�cients only.

The conditions for Turing instability require that the Jacobian
matrix J admits at least an unstable eigenvalue. This implies that
tr(J) > 0 or det(J) < 0. In our case, the trace and the determinant
of J are

tr(J) = −k2(D11 + D22) + tr(A),

det (J) = −(D22fx + D11fy)k
2 + det(D)k4 + det(A).

(14)

By considering Q0, the following equations are obtained:

tr(J) = −k2(D11 + D22) − α + β ,

det (J) = (D11D22)k
4 − (−αD11 + βD22)k

2 − αβ .
(15)

As concerns tr(J), according to condition C0.1 in Eq. (9) the
trace of A is negative and−k2(D11 + D22) is negative too. This yields
that their sum, i.e., tr(J), is also negative. Therefore, Turing insta-
bility can occur only if det(J) < 0 for some value of k2. Since det
(D) = D11D22 > 0 (in order to have a passive di�usion coupling)
and C0.2 in Eq. (9) implies that −αβ > 0, we get that α > 0 and
β < 0. Thus, the �rst required condition is −αD11 + βD22 > 0 that
can never bemet since di�usion coe�cients are always positive quan-
tities. As a consequence, Turing pattern conditions cannot be satis�ed
for Q0.

Let us now consider Q1, the following equations hold:

tr(J) = −k2(D11 + D22) −
α

2
,

det (J) = (D11D22)k
4 −

(

−
α

2
D11

)

k2 + 2αβ .

(16)

Even in this case, as concerns tr(J), according to condition C1.1
in Eq. (10) the trace of A is negative and −k2(D11 + D22) is negative
too. This yields that their sum, i.e., tr(J), is also negative. Therefore,
Turing instability can occur only if det(J) < 0 for some value of k2.
To this aim, since det (D) = D11D22 > 0 (in order to have a passive
di�usion coupling) and αβ > 0 in virtue of C1.2 in Eq. (10), a �rst
condition is − α

2
D11 > 0 that can never be met. Therefore, in this

scenario, Turing patterns cannot emerge for all con�guration of the
system parameters, unless cross-di�usions terms are considered. In
this case, in fact, Turing conditions for equilibrium point Q0 can be
satis�ed.

In order to avoid the presence of cross-di�usions and sim-
plify the coupling needed to attain Turing patterns, we propose an
approach that exploits the so-called spatial pinning control20,21 in
order to allow global Turing pattern emergence. In particular, we
introduce a feedback control that is applied to a given cell with some
probability p̄ and remains active for the whole duration of the numer-
ical simulation. In this case, the equations of the single cell will change
as follows:

ẋij = −γβ(y2ij − 1)xij + uij,

ẏij = xij − αyij − xijyij,
(17)

where uij = −ξijηyij is the local linear negative feedback control law,
with η indicating the control strength and ξij is de�ned as follows:

ξij =

{

1 with probability p̄,

0 with probability 1 − p̄.
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FIG. 3. Turing patterns generated by a 100 × 100 MCNN as in Eq. (4) in layer
y: (a) and(b) effect of the probability p̄ on the pattern shape. Parameters are (a)
η = 2.2 and p̄ = 1, (b) η = 2.2 and p̄ = 0.9, and (c) η = 3.5 and p̄ = 0.75.
Other parameters as indicated in the text.

The corresponding MCNN equations are

ẋi,j = −γβ(y2i,j − 1)xi,j + ui,j + D11∇
2xi,j,

ẏi,j = xi,j − αyi,j − xi,jyi,j + D22∇
2yi,j.

(18)

FIG. 4. Effect of η and p̄ on pattern emergence. Other parameters are fixed as
α = 1.6, β = 0.6, D11 = 0.5, and D22 = 10.

The control action can be considered as a �ux-controlled cur-
rent source injecting in the cell a current proportional to the �ux of
the memristor.

We start applying the feedback control to each cell of the
MCNN, namely, p̄ = 1, i.e., ξij = 1 for each node (i, j) of the MCNN.
Thus, the Turing conditions of the cell described by Eq. (17) and
those of the MCNN described by Eq. (18) when ξij = 1 are retrieved
following the same steps previously described obtaining the following
conditions:

α − β > 0, (C1)

− αβ − η > 0, (C2)

− αD11 + βD22 > 0, (C3)

(−αD11 − βD22)
2 − 4 det(D)(−αβ − η) > 0, (C4)

det(D) = D11D22 > 0, (C5)

which are derived when the equilibrium point of the isolated cell in
Eq. (17) is Q0 = (0, 0).

Thanks to the action of the control law, Turing conditions can
now be met by properly selecting the control strength η, since con-
dition (C4) can now be satis�ed, thus leading to the generation of
Turing patterns. This analysis thus indicates that controlling each cell
of the network is e�ective for the goal of Turing Pattern formation; in
Sec. IV, after presenting computational results con�rming these the-
oretical considerations, we numerically investigate whether the same
goal can be reached by applying control to a smaller fraction of the
network nodes.

IV. NUMERICAL RESULTS

Numerical simulations of the MCNN in Eq. (4) have been per-
formed considering N = 100. Without loss of generality, the initial
conditions for the variables xi,j and yi,j have been drawn from a nor-
mal distribution with zero mean and standard deviation equal to
1, and zero-�ux boundary conditions are imposed. The �rst case
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considered is when each cell of the MCNN is pinned, thus p̄ = 1.
We discuss now the numerical results obtained from the integration
of the MCNN for a speci�c set of parameters satisfying conditions
(C1)–(C5), namely, α = 1.6, β = 0.6, D11 = 0.5, D22 = 10 while
varying η. Our results revealed that the strength of the feedback con-
trol action a�ects the �nal state of theMCNN, allowing a selection of
the type of the emerging pattern.

Some examples are shown in Fig. 2 where spots [Fig. 2(a)],
mixed [Fig. 2(b)], and stripes [Fig. 2(c)] like patterns are obtained
by increasing η (η = 1.8, η = 1.9, and η = 2.1, respectively). Notice
that only layer x is shown in Fig. 2.

In order to further investigate the capabilities of the pinning
control action, we consider now the possibility of controlling a frac-
tion of nodes in the MCNN, by decreasing the pinning probability p̄
and of characterizing the e�ect of p̄ on the pattern selection. In par-
ticular, as shown in Fig. 3, the kind of pattern changes from stripes
to mixed when a smaller fraction of nodes are controlled, becom-
ing more and more mixed and irregular while decreasing p̄. Further
decreasing p̄ prevents the formation of patterns.

In order to characterize the e�ect of varying the control param-
eters p̄ and η, we performed a statistic analysis on the emergence of
Turing patterns over 100 realizations. In Fig. 4, the percentage of real-
izations leading to Turing pattern in the parameter space η − p̄ is
shown, according to the reported colorbar.

V. CONCLUSIONS

In this paper, the emergence of Turing patterns in a MCNN has
been studied exploiting a novel spatial pinning control technique.
The conditions to design the parameters of the memristive circuit,
used as basic cell, have been analytically derived in accordance to
the speci�c control law. Numerical simulations allowed to observe
di�erent types of patterns, including spots, stripes and mixed, by
opportunely setting the parameter of the control law and the fraction
of pinned nodes.

In the control scheme proposed in our paper, we took into con-
sideration the inclusion of feedback term applied to the reactive part
of the system. The control action is maintained during the whole
dynamical process; thus, it does not act as a �nite-amplitude pertur-
bation. The mathematical e�ect of the control action is in fact the
variation of one of the Jacobian elements. Moreover, the inclusion of
the control action does not alter the stability of the isolated equilib-
rium point. Patterns obtained with the control action are, therefore,
the result of the di�usion-driven instability solely and, hence, the
arising spatial patterns are consistent with the TP scenario.

Despite the fact that the implementation of electronic circuits
able to reproduce complex spatiotemporal patterns is a well estab-
lished result, we investigated the possibility to drive a MCNN made
by the simplest ideal circuital con�guration toward the emergence of
Turing patterns introducing a general technique to control the global

behavior of the system by controlling locally a fraction of the nodes
in the MCNN.
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