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SUMMARY

An unbiased estimation of the b-value and of its variability is essential to verify

empirically its physical contribution to the earthquake generation process, and

the capability to improve earthquake forecasting and seismic hazard. Notwith-

standing the vast literature on the b-value estimation, we notice that some poten-

tial sources of bias that may lead to non-physical b-value variations are too often

ignored in seismological common practice. The aim of this paper is to discuss

some of them in detail, when the b-value is estimated through the popular Aki’s

formula. Specifically, we describe how a finite dataset can lead to biased eval-

uations of the b-value and its uncertainty, which are caused by the correlation

between the b-value and the maximum magnitude of the dataset; we quantify

analytically the bias on the b-value caused by the magnitude binning; we show

how departures from the exponential distribution of the magnitude, caused by

a truncated Gutenberg-Richter law and by catalogue incompleteness, can affect

the b-value estimation and the search for statistically significant variations; we

derive explicitly the statistical distribution of the magnitude affected by ran-
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dom symmetrical error, showing that the magnitude error does not induce any

further significant bias, at least for reasonable amplitude of the measurement er-

ror. Finally, we provide some recipes to minimise the impact of these potential

sources of bias.

Key words: b-value estimation, statistical seismology, statistical methods

1 INTRODUCTION

The magnitude-frequency distribution (MFD hereafter) of seismic events is typically described by the Gutenberg-Richter

(G-R) exponential law [(Gutenberg & Richter(1944))]:

E[LogN(M)] = a− b(M −Mmin), (1)

where E[·] is the expectation operator, N(M) is the number of events with magnitude ≥ M , Mmin is the minimum

magnitude (i.e., all magnitudes M ≥Mmin are reported in the earthquake catalogue) and a, b are two positive parameters.

Owing to the unavoidable binning of magnitudes, N(M) may also indicate the number of events with magnitude M . The

parameter b (hereafter b-value) controls the slope of the MFD in a semi-log plot: the smaller this parameter, the higher the

proportion of larger shocks with respect to smaller shocks. Sometimes the GR law is written using the natural logarithm

ln, i.e., the b-value is replaced by the parameter β = b ln 10. Mathematically, the presence of the expectation operator on

the left hand side of the GR law implies that the magnitude is a random variable (RV) with exponential distribution, i.e.,

M ∼ E(β). We use the notation X ∼ D(α, . . . ) to indicate that the random variable X is distributed according to the

probability distribution D(α, . . . ) with parameters α, . . . .

Though some authors [e.g. (Kagan(1999); Bird & Kagan(2004); Kamer & Hiemer(2015))] claim that the b-value

is essentially constant and close to 1, many authors have reported spatial and temporal variations of this parameter, at

which have been attributed a physical meaning and the capability to increase the skill in forecasting large earthquakes [e.g.

(Scholz(1968); Smith(1980); Main et al.(1989); Imoto(1991); Schorlemmer et al.(2004); Schorlemmer et al.(2005); El-Isa

& Eaton(2014)) and references therein]. Such a variability has been reported for limited space and/or time windows, while

a constant in time b-value hypothesis holds well for wide areas [e.g. (Kagan et al.(2010))], as also testified by the pervasive

use in the best performing earthquake forecasting models [(Schorlemmer et al.(2018))].
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So far, the interpretation of the b-value variability in terms of physical processes has been mainly inferred from lab-

oratory experiments, where significant changes in the b-value have been observed. Several processes have been proposed

to explain these changes in the b-value: i) Changes in the stress conditions: the b-value is negatively correlated with differ-

ential stress. This has been observed for the b parameter of the frequency-magnitude relation of microfracturing events for

rocks deformed during laboratory experiments [(Scholz(1968); Main et al.(1989); Main et al.(1992); Amitrano(2003))], as

well as for the b-value of earthquakes [(Mori & Abercrombie(1997); Gerstenberger et al.(2001); Schorlemmer et al.(2005);

Scholz(2015); Meng et al.(2018); Rodríguez-Pérez & Zuñiga(2018))]; ii) Changes in the rock heterogeneity: the b-value

is positively correlated with the material heterogeneity. This result has been reported for both laboratory experiments

[(Mogi(1962); Main et al.(1992))] and earthquakes analysis [(Mori & Abercrombie(1997); Gerstenberger et al.(2001))];

iii) Dilation and diffusion: the b-value is affected by fluid diffusion [(Henderson et al.(1994))]. Empirical evidence at the

natural scale is less clear and more ambiguous at least in crustal tectonic regions [(Knopoff et al.(1982); Shi & Bolt(1982);

Tinti & Mulargia(1985); Smith(1998); Frohlich & Davis(1993); Wiemer & Wyss(2002); Helmstetter & Sornette(2002);

Parsons(2007); El-Isa & Eaton(2014); Raub et al.(2017))].

It goes without saying that an unbiased estimation of the b-value and of its variability is essential to test empirically its

physical meaning in the earthquake generation process, and its capability to improve earthquake forecasting. Although this

issue has been widely explored in the past [e.g. (Knopoff et al.(1982); Bender(1983); Wiemer & Wyss(2002); Helmstetter

et al.(2003); Marzocchi & Sandri(2003); Woessner & Wiemer(2005); Parsons(2007))], and, at a first glance, there are no

conceptual difficulties in estimating the parameter of the exponential distribution, we argue that some factors, which are

very often neglected in seismology [(Michael & Wiemer(2010))], may induce bias in the b-value estimation and lead to

apparent variations that do not have any real physical meaning. In this work, we present some new hints, which may assist

scientists to reduce the possibility to be fooled by apparent b-value variations, when the b-value is estimated through the

popular Aki’s formulation ((Aki(1965))). Specifically, we analyse under which conditions the magnitude error can affect

the b-value estimation; we investigate how the limited number of data can lead to biases and apparent statistically significant

variations of the b-value; we quantify the bias introduced by the size of the magnitude binning when the most commonly

used maximum likelihood estimation for the b-value is adopted, and show the effects on the expected seismicity rate for

large magnitudes; we describe quantitatively the impact of departures from the GR law on the b-value estimation and its

variability: the case of the truncated GR law, and of the catalogue incompleteness.
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2 ESTIMATING THE b-VALUE AND ITS UNCERTAINTY

Although the b-value is still sometimes estimated through the least-square regression method [e.g. (Lopez-Pineda(2005);

WGCEP(2003); Singh et al.(2011); El-Isa & Eaton(2014); Woessner et al.(2015))], this method has been proved to pro-

duce biased estimation of the b-value and of its uncertainty [(Castellaro et al.(2006); Sandri & Marzocchi(2007); Naylor

et al.(2010))]. A more statistically grounded method is the maximum likelihood estimation (MLE) [(Aki(1965); Utsu(1965);

Shi & Bolt(1982); Bender(1983); Marzocchi & Sandri(2003))], which is the most common approach for the b-value estima-

tion [e.g. (Page(1968); Knopoff et al.(1982); Main et al.(1989); Wiemer et al.(1998); Kagan(1999); Wiemer & Wyss(2002);

Schorlemmer et al.(2004); Schorlemmer et al.(2005); Ogata & Katsura(2006); Parsons(2007))]. When the magnitude can

be considered a continuous RV (the binning problem will be discussed later) the MLE estimate of the parameter β is

the reciprocal of the mean differential magnitude (i.e., the mean magnitude minus the minimum magnitude) [(Aki(1965);

Utsu(1965))]. Specifically,

β̂ =
1

(M −Mmin)
, (2)

where M is the sample mean magnitude of the events with M ≥ Mmin, and the hat sign indicates the estimator of either

β or b-value. From equation 2, we can see that the mean magnitude M is a sufficient statistics for the calculation of the

b-value. It is known that the MLE estimation given by 2 is biased and the unbiased estimation is (Ogata & Yamashina(1986))

β̂corr = β̂
N − 1

N
. (3)

For most practical applications, the bias can be considered negligible with few tens of data. This is the reason for which

equation 2 is the most commonly used formula to estimate the b-value.

As regards the b-value uncertainty, (Utsu(1966)) defines the confidence interval of the parameter β as:

(
χ2

1−α
2
,2N

2N
β̂ ,

χ2
α
2
,2N

2N
β̂

)
, (4)

where χ2
α,n is the 100(α) percentile of the chi-squared distribution with n degrees of freedom, that is, the value such that

P(X ≥ χ2
α,n) = α (X ∼ χ2

n). This expression can be derived explicitly from the β̂ distribution:

β̂ ∼ 2Nβ

χ2
2N

(5)
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For a sufficiently high number of events (tens of data), the normal approximation to the χ2
α,n distribution can be used

[(Aki(1965))]. The Gaussian confidence interval is then defined as:

(
z1−α

2√
N

β̂,
zα

2√
N
β̂

)
, (6)

where zα is the value such that P(Z ≥ zα) = α (Z ∼ N (0, 1) standard normal distribution). The b-value standard error

is therefore b̂/
√
N .

In both (Aki(1965)) and (Utsu(1966)) formulations of the b-value uncertainty, the b-value is assumed to be the constant

parameter of the exponential distribution; from a physical point of view is like to assume that the MFD is really exponential.

This assumption may be relaxed accounting for a loosely defined "natural variability" of the b-value that may be due to

several factors, such as, for example, the inhomogeneity of the seismic catalogue caused by different procedures to estimate

the earthquake magnitude, and by non-detected variability of the catalog completeness in space and time. In these cases,

(Shi & Bolt(1982)) proposed a formula for the standard error of b̂ that reads:

σSB (̂b) = 2.30b̂2

√∑N
i=1(Mi −M)2

N(N − 1)
. (7)

More recently, (Schorlemmer et al.(2003)) and (Amorese et al.(2010)) have proposed the bootstrap method as alternative

and more reliable approach for quantifying the uncertainty (or natural variability) on the b-value estimate. By iteratively

sampling (with replacement) from the empirical MFD, one can build the bootstrap distribution for statistical inference

about the β parameter. This procedure returns more realistic error estimates by properly reproducing the MFD variability.

Noteworthy, while (Aki(1965)), (Utsu(1966)) and (Shi & Bolt(1982)) formulas assume that the magnitude of completeness

Mmin has been correctly evaluated, the bootstrap error incorporates the uncertainties on the Mmin estimate as well. The

generality of the bootstrap techniques has been demonstrated by (Amorese et al.(2010)), which show that the bootstrap

method returns error estimates that are consistent with the root mean square error, assumed to represent the true b-value

variability; conversely, in both (Schorlemmer et al.(2003)) and (Amorese et al.(2010)), the standard error returned by the

(Shi & Bolt(1982)) formula is proved to underestimate the true b-value variability.

We underline that the proper approach to estimate the b-value uncertainty critically relies on the assumption about the

magnitude distribution. If we assume that the magnitude is exponentially distributed with a constant (unknown) b-value,

equation 6 provide unbiased estimation of the b-value uncertainty. If we assume that there is a natural variability of the b-

value, a bootstrap approach is more accurate to estimate the variability on the b-value; but in this case it would be important
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to specify what is the natural variability and what causes it. For instance, if this variability is caused by possible catalogue

incompleteness, this may be cured or at least reduced. In section 3 we show that this variability cannot be caused by a

reasonable magnitude error.

3 THE EFFECT OF THE MAGNITUDE ERROR ON THE b-VALUE ESTIMATION

The magnitude, as any kind of measurement, can be affected by errors which may modify the exponential distribution

and its parameters. Here we consider the case in which the random error on the magnitude is distributed as the Gaussian

noise of zero mean and standard deviation σN , which seems a good representation of the real magnitude uncertainty [e.g.

(Lolli & Gasperini (2012))]. The adjusted magnitude M? is then obtained as the sum of exponential M ∼ E(β) and

Gaussian η ∼ N (0, σN ) random variables, that is, the adjusted magnitude M? is an exponentially modified Gaussian

(EMG) random variable, M? = M + η; for the sake of convenience we set M?
min = 0. From this definition we may infer

that E(M?) = E(M) + E(η); since E(η) = 0 by definition, and since the mean magnitude is a sufficient statistics for

estimating the b-value, we can conclude that adding a random symmetrical error with zero average does not introduce any

bias in the b-value estimation.

We now explore under which conditions the EMG distribution differs from the theoretical exponential distribution.

The probability density function (PDF) of M? is simply obtained by mathematical convolution and change of variable

[(Marzocchi & Sandri(2003))]

p(M?) =

∫ ∞
0

βe−βx
1

σN
√

2π
e
− (M?−x)2

2σ2N dx (8)

=

∫ ∞
0

β

σN
√

2π
e
−

(M?−βσ2N−x)
2

2σ2N e
(βσN )2

2
−M?βdx (9)

=
β

2
e
β
2

(βσ2
N−2M?)erfc

(
βσ2
N −M?

σN
√

2

)
, (10)

where erfc(x) = 2√
π

∫∞
x
e−t

2

dt is the complementary error function. The EMG distribution can be considered as a shifted

exponential function weighted by a function of the normal distribution. More precisely, the product βσN controls the EMG

convergence to the normal or to the exponential function: if βσN is small, EMG and the exponential GR can be considered

equivalent. Therefore, if the magnitude is not affected by a systematic error, and if their standard deviation is small, the

MFD can be safely approximated by the exponential E(β) distribution. The similarity between EMG and GR can be verified

quantitatively by analysing the ratio R = p(M?)
pGR(M?)

between their relative PDFs, where pGR(M?) = βe−βM
?

. Since the
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addition of the random Gaussian noise may bring some magnitudes below the minimum magnitude (assumed to be zero

here for convenience), but the opposite cannot happen, the dataset of the adjusted magnitudes will be unavoidably different

from the initial one. To avoid this technical problem, we do not consider the magnitude range [0, 3σN ] by opportunely

normalising the PDFs in R, obtaining then

R =
e
β2σ2N

2

2
erfc

(
βσ2
N −M?

σN
√

2

) ∫∞
3σN

βe−βM
?

dM?∫∞
3σN

p(M?)dM?

=
e
−βσN

(
3− βσN

2

)

2−
[
1 + erf

(
3√
2

)]
+ e

βσN
(
βσN

2
−3

) [
1 + erf

(
3−βσN√

2

)]erfc(βσ2
N −M?

σN
√

2

)
. (11)

The plot of this ratio is shown in Figure 1 for β = 2.3 and σN = 0.1, 0.3: it is very close to 1, belonging to the range

1±0.003 ∀M? if σN = 0.1 and forM? > 1 if σN = 0.3. This result clearly shows that magnitude error of reasonable size

does not modify appreciably the exponential distribution that derives from the GR law. When excluding a wider magnitude

range, e.g. [0, 5σN ],R is still close to 1 for much larger values of σN ; in other words, for large σN , the EMG approximates

to the Gaussian distribution, but the extreme right tail (M? > 5σN ) is still exponentially distributed.

To complement these reasonings, we also provide results from a simple numerical simulation. Specifically, we simulate

1000 datasets, each with 100 magnitude values randomly drawn from a GR law. Then, we add Gaussian noise (∼ N(0, σN ))

to the magnitude values. We test two values for the standard deviation of the noise: σN = 0.1 and σN = 0.3. Our goal

is to inspect whether the hypothesis of exponentially-distributed magnitude is rejected at a higher rate when considering

noisy magnitudes. We find that the goodness-of-fit Lilliefors test (α = 0.05), which is a modification of the one-sample

Kolmogorov-Smirnov test where the parameter is estimated by the data [(Lilliefors(1969))], is rejected 5.1% and 4.6% of

times, for σN = 0.1 and σN = 0.3, respectively. Such rejection rates are in agreement with the chosen significance level.

Therefore, our findings show that the magnitude error does not induce a bias in the b-value estimation for realistic values of

σN [(Tinti & Mulargia(1985); Tinti & Mulargia(1987); Marzocchi & Sandri(2003))].

4 ESTIMATING THE b-VALUE AND ITS VARIABILITY WITH A LIMITED DATASET: THE

CORRELATION BETWEEN LARGEST MAGNITUDE AND THE b-VALUE

An interesting and often overlooked feature of the b-value estimation is that the b-value estimated from data is correlated

with the largest magnitude of the dataset. This may come as a surprise for some PSHA practitioners which are used to say

that MLE estimation takes into account only of the small magnitudes and not of the largest [e.g., (Woessner et al.(2015))].
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8 W. Marzocchi, I. Spassiani, A. Stallone , M. Taroni

As a matter of fact, the mean of highly skewed distributions, such as the exponential distribution, is sensitive to outliers.

Recalling that β is estimated by inverting the quantity M −Mmin, it follows that the b-value can be strongly influenced by

outliers as well: in particular, the b-value decreases as the largest magnitude in the sample increases.

To investigate if this correlation exists and the effects on the apparent statistical significance of the b-value variabil-

ity, here we analyse the b-value of the seismicity before a mainshock, which is often advocated as a possible indicator of

stress changes before the mainshock. First, we simulate a synthetic earthquake catalogue according to the ETAS model

[(Ogata(1988); Ogata(1998))] with a constant b-value = 1 for all earthquakes (see Appendix A). We choose the ETAS

model because it represents the best forecasting model according to prospective tests [e.g. (Taroni et al.(2018))]. The syn-

thetic catalogue includes 3,704,838 events and covers a period of 10,000 years. The magnitude ranges between 3 and 7.9.

Second, we identify all the large earthquakes (M ≥ 6.5) in the dataset, which sum up to 1,140 events. The threshold value

of 6.5 represents an arbitrary choice often adopted in the literature for the mainshock definition [e.g. (Reasenberg(1999);

Zöller & Hainzl(2002); Helmstetter & Sornette(2002); Ogata & Katsura(2014))]; for the sake of convenience, in the follow-

ing we use the terms mainshocks for such events, and aftershocks (foreshocks) for the seismicity that follows (anticipates)

the mainshocks, even though such a distinction is completely arbitrary for the ETAS model. Third, we estimate the b-value

of the earthquakes that occurred in the time window which immediately precedes each mainshock. Since we are interested

in investigating the foreshocks predictive skill, we consider only the case in which the events in the window have a mag-

nitude lower than the mainshock, i.e., they correspond to the foreshocks of Type I described in (Helmstetter et al.(2003))

and (Helmstetter & Sornette(2002)). Additionally, the foreshocks are selected within a radius of 30 km from the main-

shock, which is a common setting for the maximum accepted distance [e.g. (Schorlemmer et al.(2004)), (Parsons(2007)),

(Papadopoulos et al.(2010)), (Wyss & Lee(1973))]. We adopt the most common choice for the window definition, namely a

window of variable length, but fixed number of events. To inspect how the choice of the number of events per window can

affect the results, we run our analysis for different values of the sample size, N = 50, 200, 500, 2000. The first two options

(N = 50, 200) represent popular values in the literature [e.g., (Parsons(2007)), (Westerhaus et al.(2002)), (Schorlemmer

et al.(2004)), (Shi & Bolt(1982)); (Nuannin(2006)), (Wyss & Lee(1973))].

For each mainshock, we estimate the b-value before its occurrence by implementing equation 2. To verify whether the

b-value is significantly correlated to the maximum foreshock magnitude, we use the Kendall-tau test [(Kendall(1948))], a

non-parametric test which returns a measure of rank correlation between two variables. In Figure 2, for each sample size, we

plot the estimated b-values against the magnitude of the largest foreshock occurred in the sequence they have been evaluated
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How to be fooled searching for significant variations of the b-value 9

for. Results from the Kendall-tau test are also shown. The correlation between the b-value and the maximum foreshock

magnitude is significantly negative for all the explored sample sizes. It goes without saying that the same correlation holds

for samples randomly chosen from an exponential distribution; the reason is that for an ETAS model with b-value = 1, the

magnitudes observed in any time interval are a random sample from the same exponential distribution.

Our findings suggest that the number of events typically selected for the b-value estimation (N = 50, . . . , 500)

exposes the b-value estimation to a significant dependence on the magnitude of the largest foreshock; this dependence is

strongly reduced only for more than 1000 events (be aware though that the correlation is still not zero for N = 2000). In

practice this means that even though the b-value is the same for all earthquakes, we expect to observe a lower b-value when

at least one strong foreshock is observed, in particular for dataset of few hundreds earthquakes or less.

Now we investigate the effects of this correlation on the search for significant variations of the b-value before a

mainshock. We stack all the foreshocks sequences with at least 100 earthquakes at a distance smaller than 30 km from the

mainshock in a fixed 1-year time window before each mainshock. The length of the time window is not relevant here, but

we chose a sufficiently long time window to have enough data to calculate the b-value. We use the Wilcoxon signed rank

test [(Wilcoxon(1945))] to assess whether the median of the distribution of the estimated b-value for all stacked seismic

sequences is significantly smaller than 1. Our analysis returns a clear systematic deviation of the median b-value from the

theoretical value at the significance level of 0.01. Since the synthetic catalogue is built with b-value = 1, this departure stems

from the specific nature of the ETAS model for which the stronger the foreshock the larger the likelihood of a mainshock

in a specific time window. Figure 3 shows the histogram of the estimated b-values, with highlighted the mean, the median

and the theoretical value of 1.

To complement the information returned by the rank test, we analyse the same synthetic catalogue and count the

fraction of times for which we estimate the b-value significantly lower than 1. To do that, we implement the one-sample

left-tailed t-test for each group of data [(Boslaugh(2012))]. The t-statistic is:

tstat =
b̂− b
σ̂

, (12)

where b̂ is the b-value estimated for a given catalogue at a given completeness magnitude Mmin (M ≥ Mmin); b is the

true b-value used by the model (i.e., b = 1); σ̂ is the b-value error estimated from the sample according to equation 6.

The degrees of freedom are N − 1. When adopting a significance level α = 0.05, we find that the b-value is significantly

smaller than 1 in 23% of the number of windows, instead of 5%. In other words, we find a b-value significantly lower than
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1 about one out of four times. The main finding here is that when considering the distribution of the b-value (calculated

with a few hundreds of data) of a set of foreshock sequences, an apparent statistically significant small b-value can be found

more frequently than expected by chance.

5 THE BIAS INTRODUCED BY THE BINNING OF MAGNITUDES

In all seismological applications the errors in the magnitude estimation require the use of binned values, e.g., the mag-

nitudes are grouped in selected ∆M intervals, with usually ∆M = 0.1 (more recent instrumental catalogues may have

∆M = 0.01). In other words, magnitude is not anymore a continuous RV, but it has discrete values. (Bender(1983))

and (Tinti & Mulargia(1987)) provide a detailed analysis about how to estimate the b-value accounting for the binning.

Nonetheless, equation 2 is still the most common procedure to estimate the b-value, likely due to its simplicity; the only

modification is that Mmin = Mc −∆M/2 and Mc is the completeness binned magnitude of the catalogue [(Marzocchi &

Sandri(2003))], namely the smallest magnitude above which only a negligible number of earthquakes are lost. The still large

use of equation 2 motivates us to explore more in depth the bias induced by the binning. The presence of this bias is not a

novelty. (Utsu(1966)) shows that the magnitude binning induces a significant bias when b ∆M > 0.25; (Bender(1983)) in

her figure 5g-h shows graphically that the equation 2 is affected by a significant negative bias when ∆M = 0.6. Here we

contribute adding an analytical formulation to estimate the unbiased b-value starting from estimation obtained by equation

2.

Since the mean magnitude is a sufficient statistic for estimating the b-value (see equation 2), we only need to inspect

the extent to which the magnitude binning could influence the mean magnitude. It is easy to demonstrate that the bin-

ning does not have any influence on the b-value estimation if the central value of the bin coincides with the mean of the

magnitudes inside the bin. This is always true for symmetrical distributions, but not for highly skewed distributions such

as the exponential one, which is actually the distribution adopted for earthquake magnitudes. The difference between the

(exponential) mean and the central value (uniform mean) of the bin needs therefore to be inspected, as it may cause a bias

due to the binning procedure.

To compute this difference, we group the continuous magnitudes generated by an exponential distribution in [Mi −

∆M/2;Mi + ∆M/2) bins of size ∆M . The centre of each bin is Mi by construction; the exponential mean (M
(exp)
i ) is

instead derived as:
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How to be fooled searching for significant variations of the b-value 11

M
(exp)
i =

1

F (Mi,∆M)

∫ Mi+∆M/2

Mi−∆M/2

mφ(m)dm, (13)

where φ(m) = βe−β(m−Mmin) is the PDF of the exponential GR distribution, and F (Mi,∆M) = Φ(Mi + ∆M/2) −

Φ(Mi −∆M/2) is the normalising function given by the difference between the CDF calculated in the integral extremes.

Easy computations give that

M
(exp)
i = Mi +

1

β
− ∆M

2
· 1 + e−β∆M

1− e−β∆M
, (14)

which leads to the difference between the exponential and uniform mean points in each bin of size ∆M equals to:

δ = Mi −M
(exp)
i = − 1

β
+

∆M

2
· 1 + e−β∆M

1− e−β∆M
. (15)

This equation has been obtained also by (Bender(1983)) using a different procedure (see her equation A5).

Notice that the bias tends to zero for ∆M → 0, and it is the same for all magnitude bins, no matter what the central

value is; this is a direct consequence of the memoryless property of the exponential distribution. Combining equations 2

and 15 we get the difference between the β-value estimated using the correct exponential mean and β̂ obtained by equation

2:

1

β̂
− 1

β
= δ. (16)

Then, combining equations 16 and 15 we can obtain the correct estimation of the b-value from the b̂-value estimated by

equation 2 and ∆M :

b = ln

[
1 + b̂ ln(10)∆M/2

1− b̂ ln(10)∆M/2

]
1

ln(10)∆M
. (17)

In Figure 4 we show the plot of the ratio b/b̂ (17 and 2) as a function of ∆M for different b-values. The solutions of this

equation are comparable to the numerical solutions provided by (Utsu(1966)) for a few selected combinations of b∆M .

For the sake of example, if ∆M = 0.6 and the true β = 2.3, β̂ estimated by equation 2 is about 13% less. We

investigate this bias numerically, plotting in Figure 5 the frequencies of the b-values estimated for 1000 simulated datasets

of 100 magnitudes each, for ∆M = 0.1 and ∆M = 0.6. The histogram shows that a high value of ∆M induces a lower

estimation of the b-value. These results agree with the one obtained in (Bender(1983)), where the binning procedure is
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12 W. Marzocchi, I. Spassiani, A. Stallone , M. Taroni

stated to be relevant for seismic hazard when ∆M = 0.6. In particular, in our last example, if we do not correct the b̂-value

and use the same seismicity rate for M ≥ 4, the seismicity rate for M ≥ 6 and M ≥ 7 is about 1.8 and 2.5 times larger

than the correct seismicity rate. It goes without saying that this has usually a significant impact, increasing artificially the

seismic hazard.

In conclusion, our findings show that for instrumental catalogues with ∆M = 0.1 or smaller the use of equation 2

does not lead to any appreciable bias. Otherwise, if a larger ∆M is used, the correction given by equation 17 has to be

applied.

6 BIAS INTRODUCED BY DEPARTURES FROM THE EXPONENTIAL DISTRIBUTION: THE CASE OF

THE TRUNCATED GUTENBERG-RICHTER LAW, AND THE CATALOGUE INCOMPLETENESS

6.1 Are the data consistent with the Gutenberg-Richter law?

The b-value estimation and its uncertainty through equations 2 and 6 makes sense only if M ∼ E(b), i.e., the magnitude is

exponentially distributed; otherwise, the scientific relevance of estimating the b-value becomes questionable. Although this

claim may sound trivial, we notice that classical goodness-of-fit tests are rarely done in seismological literature to verify

if this assumption is supported by the data [(Clauset et al.(2009)); (Kamer & Hiemer(2015))]. As a general principle, any

b-value estimation has to be made only when the data do not show clear evidence against the exponential distribution;

a popular test of this hypothesis is given by the Lilliefors test, which has been described before. Departures from the

exponential distribution can be due to different technical or physical causes. Here we consider two common reasons: the

magnitude is distributed according to a different statistical distribution, such as a truncated GR law; the magnitude does not

follow the exponential distribution because the earthquake catalogue is incomplete.

6.2 The bias introduced by truncation

The truncated GR law consists in a modification of the classical GR in which an upper hard magnitude cutoff Mup is

introduced to account for the limited capability to accumulate seismic energy in one specific region or fault. The PDF of

the truncated GR distribution is

φtrunc(M) =
βe−β(M−Mmin)

1− e−β(Mup−Mmin)
, Mmin ≤M ≤Mup. (18)
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How to be fooled searching for significant variations of the b-value 13

For a given range of Mup −Mmin, the Trunc-GR law becomes approximately equal to the GR relationship:

φtrunc(M)

φGR(M)
→ 1 ⇔

∣∣∣∣ 1

1− e−β(Mup−Mmin)
− 1

∣∣∣∣ < ε ⇔ Mup >
1

β
ln

(
1 + ε

ε

)
+Mmin, (19)

for an arbitrary small constant ε. For example, if we set ε = 0.001, we get that the two laws are approximately the same

for Mup > 3 +Mmin, as already mentioned in (Marzocchi & Sandri(2003)).

As regards the bias introduced in the b-value estimation, (Bender(1983)) notices that a truncation of the GR law may

induce a bias in her procedure to estimate the b-value. Here we explore the same kind of bias when estimating the b-value

through equation 2. We first perform a MLE analysis to find the correct β estimator for the Trunc-GR law. The log-

likelihood for the parameter β in 18 is then given by N lnβ −Nβ(M −Mmin)−N ln
(

1− e−β(Mup−Mmin)
)

, where

N is the number of events. Deriving this function, we obtain that the estimated β is the solution of the equation

1

β
−M +Mup −

Mup −Mmin

1− e−β(Mup−Mmin)
= 0. (20)

Although the latter formulation differs from equation 2, very often in practical applications the parameter β of Trunc-GR

magnitudes is estimated by using 2 that has been derived from the classical GR case. To investigate the bias introduced

by such a procedure, we perform 100 simulations of N = 100, 200, 300, 400 magnitudes and we compute the mean

difference biasTrunc-GR = E[β − β̂ ] between the MLE solution β of equation 20 and β̂ of equation 2. Since equation 20 is

of transcendental type, we use a numerical approach (notice that the remaining small bias is due to the binning problem

discussed before). Figure 6 shows that the biasTrunc-GR is not significantly different from zero when Mup −Mmin ≥ 3;

conversely, the estimation of β (b-value) using equation 2 may be significantly affected when Mup −Mmin = 2 or less.

This means that, for example, equation 2 can overestimate significantly β (b-value) when considering normal earthquakes in

the global catalogue, because the completeness magnitude is about 5.5 and the maximum or corner magnitude is about 7.5

(Bird & Kagan(2004)). Notice that this bias is opposite to the one obtained by (Bender(1983)) for her procedure to estimate

the b-value. In Figure 7 we show the bias percentage as a function of Mup −Mmin. In the same figure we show the same

quantity for the tapered Gutenberg-Richter distribution; the results have the same trend of the truncated distribution, but

with a slightly smaller effect.

Finally, since the truncated GR is actually the GR law with only an upper bound for the magnitudes, we expect that

the bias introduced by binning Trunc-GR distributed random magnitudes is the same as for the classical GR case. This is

mathematically confirmed by explicitly computing the integral M
(exp)

= 1
F (Mi,∆M)

∫Mi+∆M/2

Mi−∆M/2
mφTrunc(m)dm, where
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14 W. Marzocchi, I. Spassiani, A. Stallone , M. Taroni

F (Mi,∆M) = Φtrunc(Mi−∆M/2)−Φtrunc(Mi+∆M/2), which reduces exactly to that of the classical (non-truncated)

GR.

6.3 Bias on the of the b-value introduced by incomplete earthquake catalogues

The magnitude may deviate from the exponential GR law at lower magnitudes, due to several factors (network detection

capability, seismic stations density, low signal-to-noise ratio, post-processing, incomplete recording after larger events

etc.). The usual approach is to determine the completeness magnitude Mc, using different procedures [see (Woessner

& Wiemer(2005)) and references therein, and also (Schorlemmer & Woessner(2008))]. Although some methods do not

require explicitly the estimation of Mc [e.g. (Ogata & Katsura(1993); Kijko & Smit(2017))], it is still possible to identify a

magnitude Mc [see (Woessner & Wiemer(2005))]. No matter how one estimates such Mc, it is always possible that some

earthquakes with M ≥ Mc will be missing; in practice, the term ’negligible’ in the above definition means that these

missing earthquakes do not induce any significant bias in the estimation of the GR parameters. Since missing earthquakes

are not a random sample from the GR law (having preferentially small magnitudes), the most obvious procedure to check if

the earthquake catalogue is practically complete is through testing whether the magnitudeM ≥Mc follows the exponential

distribution ((Clauset et al.(2009))); if so, it is implicitly assumed that the missing earthquakes do not affect the analyses.

The importance of a correct assessment ofMc in the b-value estimation is far to be a novelty and has been addressed in

the past by several authors which show that underestimating Mc implies an underestimation of the b-value [e.g., (Knopoff

et al.(1982); Woessner & Wiemer(2005); Mignan & Woessner(2012)) and references therein, (Godano et al.(2014))]. Here

we want to contribute with new insights by showing how subtle this bias could be, showing that passing a goodness-of-fit

test for M ≥Mc is a necessary, but not sufficient condition to retrieve an unbiased estimation of the b-value.

To explore in detail the effects of incompleteness, we carry out two simple simulations in which we demonstrate how

earthquake catalogues with magnitudes apparently exponentially distributed may contain significant bias in the b-value

estimation. In the first case, we simulate 1000 synthetic earthquake catalogues, each one with exponentially distributed

magnitudes, b-value=1, and different sample size, N = 50, 200, 500, 2000. Then, for each simulated dataset, we add an

arbitrary and known incompleteness at the lower magnitudes, adopting the procedure suggested by (Ogata & Katsura(1993);

Ogata & Katsura(2006)); in particular, we filter the data using the cumulative normal distribution

F (M |µ, σ) =

∫ M

−∞

1√
2πσ

e
− (x−µ)2

2σ2 dx, (21)
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How to be fooled searching for significant variations of the b-value 15

where µ and σ are constants: the first is the magnitude with a missing rate ν(Mc) = 0.5 (i.e., ν(M) is the probability that an

earthquake with magnitude M will be missing); the latter is the standard deviation of the normal distribution. F (M |µ, σ)

is the probability of detection at magnitude M , i.e., ν(M) = 1 − F (M |µ, σ). For our simulations, we set µ = 2 and

σ = 0.2 (the exact values of these parameters does not affect the final results, since we are dealing with a synthetic dataset,

for which we are simulating an arbitrary incompleteness).

In Figure 8, for each considered sample size, we group the estimated b-values as a function of Mc (and the associated

ν). For all N values, there is clear evidence of the bias affecting the b-value estimation for Mc between µ and µ + 2 · σ

(0.02 < ν(M) < 0.5). As expected, the b-value distribution exhibits a lower dispersion as the sample size increases.

In agreement with previous studies [e.g., (Woessner & Wiemer(2005); Mignan & Woessner(2012)) and references therein,

(Godano et al.(2014))], the medians are positively correlated withMc. More interesting and novel insights come from Table

1, which shows the results of both the Lilliefors goodness-of-fit test and the t-test of the null hypothesis b-value=1 for all the

sample sizes. The most striking result is that the t-test of the null hypothesis b = 1 has a rejection rate that is much higher

than the rejection rate of the Lilliefors test, which tests the exponential distribution null hypothesis. This means that often,

when the earthquake catalogue appears to be complete because the magnitude appears to follow an exponential distribution,

the missing events may still lead to significant underestimation of the b-value. Notably, this occurs also for large dataset

(N = 2000); in particular, when ν(M) = 0.07, the Lilliefors test seems unable to find significant discrepancies from the

exponential distribution, while the rejection rate of the t-test is 3 times higher than expected. This effect is likely due to

the fact that the nonparametric goodness-of-fit tests have less power that the parametric t-test, which is more sensible to

any departure from the exponential distribution. In other words, the incompleteness of the earthquake catalogue may be

undetected by goodness-of-fit tests, but it may induce significantly lower b-values. Although the choice of the minimum

reasonable Mc is always the best strategy to use the largest number of earthquakes in the analysis, we recommend to test

the stability of the outcomes for larger Mc.

The problem of the incompleteness emerges also in other kinds of applications that are mimicked by this second

simulation. In several application, the check of completeness is carried out for the whole earthquake catalogue, but the b-

value is calculated in some space and/or time partitions of the catalogue (subsets); for instance, this happens often when the

b-value is calculated in spatial grids [e.g. (Wiemer et al.(1998); Wyss & Wiemer(2000); Westerhaus et al.(2002); Wiemer

& Wyss(2002); Schorlemmer et al.(2004); Wiemer et al.(2005); Nanjo & Yoshida(2017))]. To investigate on this issue we

simulate the case where the chosen Mc holds perfectly for all subsets of the earthquake catalogue but one, and we show
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16 W. Marzocchi, I. Spassiani, A. Stallone , M. Taroni

how this can affect the search for significant b-value variations. Our simple case consists of an iterative application (1000

times) of the following algorithm:

(i) Generate a catalogue of 1000 magnitudes following the GR distribution, for which we set a minimum magnitude of

2 and a bin width of 0.1;

(ii) Divide the catalogue in 5 subsets, each with 200 data;

(iii) Model incompleteness for one subcatalogue only (the fifth), following the same procedure explained in Section 6.3;

(iv) Estimate the b-value assuming Mc = 2 for the whole aggregated catalogue (composed by 4 complete subsets and

one incomplete) and for each subset.

The outputs from the iterative simulation can be then summarised by finding the proportions of times when: i) the

Lilliefors test is rejected in each subset and in the aggregated catalogue; ii) the t-test is rejected in each subset and in

the aggregated catalogue. Results are shown in Table 2. Figure 9 shows the distributions of the b-value estimated for the

subcatalogues and the aggregated catalogue in the 1000 simulations. From Table 2 and Figure 9 we can see that most of

the times Mc = 2 is a reasonable completeness magnitude for the whole aggregated catalogue since the Lilliefors test is

not rejected and the b-value is not significantly different from 1. However, this is not true for the incomplete subcatalogue,

for which we find a b-value significantly lower than 1 about the 70% of times; in essence the apparently significant b-

value variability among the subsets is just derived from different subcatalogues completeness. This bias can be limited

by carrying out specific completeness analysis in each subset, avoiding to extrapolate to any subset the Mc estimated for

the whole catalogue. Although this comes to the price of having less data to estimate Mc and the b-value, exposing more

strongly the analyses to the biases discussed in this paper, we think this procedure has to become a standard for this kind of

analysis. To our knowledge, only a limited number of studies implement this best practice [e.g. (Cao & Gao(2002); Wiemer

et al.(2005); Papadopoulos et al.(2010); Chan et al.(2012); Kijko & Smit(2012); Kamer & Hiemer(2015); García Hernández

et al.(2018))].

7 CONCLUSIONS AND RECIPES

In this work, we have contributed to the discussion of how we may be fooled in estimating the b-value and its variability.

Below, we summarise the most important points, which could serve as a guide for a proper evaluation of significant b-value

variations, in particular when the b-value is estimated through the popular equation 2:
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How to be fooled searching for significant variations of the b-value 17

(i) The correlation between the b-value and the maximum magnitude of the earthquake catalogue may induce significant

unrealistic b-value variations, even when using hundreds of data. In particular, we show that stacking the b-value of hundreds

of sequences before mainshocks for a clustered process could lead to the artificial identification of statistically significant

low b-values. This problem can be minimised using at least one thousand of data, or replacing the classical statistical test

for checking anomalous b-values (i.e., the t-test) with a comparison between the observed b-value variability with the same

variability of a reference model which accounts for earthquake clustering, but having a constant b-value.

(ii) A proper estimation of the variability of the b-value depends on the process we are assuming, not on (reasonable)

magnitude errors. If we assume that the sample comes from an exponential distribution with a constant parameter, equation

4 and its normal approximation equation 6 hold. Bootstrap and other methods can be justified when we assume that the

b-value has its own natural variability violating the exponential distribution of the magnitude. This assumption can be tested

with goodness-of-fit tests. In case the magnitude does not conform to an exponential distribution, it is necessary to explain

what the estimated b-value means.

(iii) Magnitude binning leads to systematic underestimation of the b-value. This bias may be considered negligible in

many applications when the binning is ∆M = 0.1 or smaller. Conversely, if the b-value is calculated for ∆M ≥ 0.2 (e.g.

using historical catalogues), the b-value could be severely underestimated. If applied to seismic hazard analysis, this may

lead to important overestimation. Here we provide an analytical equation to correct the bias caused by the binning to the

b-value estimated through equation 2.

(iv) Applying equation 2 to truncated Gutenberg-Richter law may induce significant overestimation of the b-value when

the completeness magnitude is 2 units below the maximum magnitude. This bias sharply reduces when the difference

between the maximum and the completeness magnitude is 3 or more. We argue that the same bias may hold when using

any reasonable tapered version of the Gutenberg-Richter law, instead of the truncated one.

(v) Testing the completeness of the catalogue as a whole is not enough if we analyse the b-value in subsets of the

catalogue itself. It is important to check the reliability of the exponential distribution in each subset of data in which we

calculate the b-value.

(vi) The b-value and its uncertainty can be meaningfully estimated from the data when the magnitude has an exponential

distribution, or distributions that do not show significant departures from it. This can be checked statistically through clas-

sical goodness-of-fit tests, such as the Lilliefors test. However, some important departures from an exponential distribution

due to catalogue incompleteness that may induce significant low b-values are not always identified by goodness-of-fit tests;
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18 W. Marzocchi, I. Spassiani, A. Stallone , M. Taroni

although this comes to the cost of reducing the dataset, we suggest verifying the outcomes of the analysis increasing the

completeness magnitude inside a reasonable range.

The general message of this paper is that it is very easy to be fooled in searching for significant variations of the b-value

through retrospective analyses, and the recipes listed above can likely reduce, not removing completely, the problem. As

far as the search for b-value variations are aimed to improve earthquake forecasting, the best strategy to test this scientific

hypothesis is through prospective tests ((Zechar et al. (2010); Schorlemmer et al.(2018); Marzocchi (2018))).
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Table 1. Percentage of synthetic catalogues for which the Lilliefors (first row) and the t-test (second row) is rejected, as a function of the

missing rate ν(M) and the sample size.

ν(M) = 0.5 ν(M) = 0.31 ν(M) = 0.16 ν(M) = 0.07 ν(M) = 0.02 ν(M) = 0.01

N = 50

Lilliefors Test 15.1% 7.6% 5.9% 5.9% 5% 5.1%

t-test 29% 14.7% 8% 6.5% 5.6% 6.1%

N = 200

Lilliefors Test 41% 12.6% 5.7% 5.1% 4.3% 4.8%

t-test 70.8% 28.8% 12.2% 7.1% 6.2% 6.2%

N = 500

Lilliefors Test 78.1% 24.9% 9.6% 6.1% 5.2% 4.3%

t-test 95.8% 51.7% 17.6% 9.7% 7.7% 6.8%

N = 2000

Lilliefors Test 100% 77.5% 18.1% 6.8% 4.8% 4.8%

t-test 100% 96.9% 43.6% 15.4% 8.5% 7.7%
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Table 2. Proportion of subcatalogues/aggregated catalogues for which the Lilliefors (first row) and the t-test (second row) is rejected.

Subcat 1 Subcat 2 Subcat 3 Subcat 4 Subcat 5 Whole catalogue

Lilliefors Test 4.6% 4.3% 4.4% 5.6% 40.1% 10.6%

t-test 6.1% 6.2% 5.9% 6.7% 69.1% 28.5%
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Figure 1. Plot of the ratioR (equation 11) between the magnitude PDFs with and without the random Gaussian error, obtained for β = 2.3

and σN = 0.1, 0.3. As a reference, dashed horizontal lines identify the range 1±0.003, in which the ratio could be considered negligible.

The vertical dotted lines show the initial points 3σN of the magnitude ranges to be considered to avoid loss and/or addition of data caused

by the Gaussian error (see text for more details).
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Figure 2. Plot of the b-value obtained by equation 2 (with the modification Mmin = Mc − ∆M/2 to account for binning) as a function

of the maximum magnitude foreshock in synthetic ETAS catalogues. The four panels are relative to a different number of data used to

calculate the b-value. In each plot we report the P -value obtained by the Kendall-tau test for the null hypothesis of no correlation.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article-abstract/doi/10.1093/gji/ggz541/5647355 by IN

G
V user on 03 D

ecem
ber 2019



How to be fooled searching for significant variations of the b-value 27

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15

b-value

0

5

10

15

20

25

Fr
eq

ue
nc

y

Mean
Median

Figure 3. Histogram of the b-value estimated through equation 2 (with the modificationMmin = Mc−∆M/2 to account for binning) for

all the stacked foreshock sequences in the ETAS synthetic catalogue (see text for more information). The vertical solid yellow line shows

the theoretical value used to generate the synthetic ETAS catalogue, and the dashed red and black lines show, respectively, the median and

the mean of the distribution of the b-value.
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Figure 4. Plot of the ratio between the corrected b-value and the estimation given by equation 2 as a function of the amplitude of the

magnitude binning. Colors refer to different b-values.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article-abstract/doi/10.1093/gji/ggz541/5647355 by IN

G
V user on 03 D

ecem
ber 2019



How to be fooled searching for significant variations of the b-value 29

0.7 0.8 0.9 1 1.1 1.2 1.3
b-value

0

50

100

150

200

250

300

Fr
eq

ue
nc

y

 M =0.1
 M =0.6

Figure 5. Histogram of the b-values estimated through equation 2 for 1000 simulations of 100 magnitudes each, with ∆M = 0.1 and 0.6.
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Figure 6. Mean difference between the β-values estimated for 100 simulated datasets drawn from both N Trunc-GR (formula 20) and N

classical GR (formula 2) distributions, for N = 100, 200, 300, 400; one-σ error bars are also shown.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article-abstract/doi/10.1093/gji/ggz541/5647355 by IN

G
V user on 03 D

ecem
ber 2019



How to be fooled searching for significant variations of the b-value 31

3 2.5 2 1.5 1

M* - Mmin

0

2

4

6

8

10

12

14

16

18

20

B
ia

s
 p

e
rc

e
n
ta

g
e

Figure 7. Bias percentage in the calculation of the b-value through equation 2 as a function of the difference between upper and lower

limit of the magnitude. In x-axis the term M? is the maximum magnitude of the truncated GR (red curve), and the corner magnitude of

the tapered GR (blue curve).
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Figure 8. For each sample size (N = 50, 200, 500, 2000), we group the estimated b-values by the threshold magnitude Mc, with

µ ≤Mc ≤ µ+ 3 · σ (and the associated ν). The obtained distributions are summarized by boxes, whose upper (lower) limit corresponds

to the 95th (5th) percentile. The middle red line represents the median of each distribution.
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Figure 9. The distributions of the 1000 b-values estimated for the five subsets and the whole catalogue are shown. They are summarized by

boxes, whose upper (lower) limit corresponds to the 95th (5th) percentile. The middle red line represents the median of each distribution.

The box referring to Subcatalogue 5 represents the b-values estimated for the incomplete subsets.
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Table A1. Input parameters

Gutenberg-Richter Law Omori’s Law Aftershocks decay with distance

b-value c p a n

1 0.095 1.34 0.008 1.37

APPENDIX A: ETAS SIMULATION

We use the stochastic program from (Felzer et al.(2002)) to simulate a synthetic catalogue based on the ETAS model

[(Ogata(1988))]. The code models the Gutenberg-Richter law for earthquake magnitudes, the Omori’s law for earthquake

times of occurrence and the (Felzer & Brodsky(2006)) law of aftershock decay with distance. Inverse method is used to draw

samples from the empirical distributions. We model all the events as point sources and we leave unchanged the parameters

as provided in the code (see Table A1), except the range of possible distances, in km, between triggered and triggering

earthquakes, which we set equals to [0.001 100].
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