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Abstract 20 

Recent natural disasters that seriously affected Critical Infrastructure (CI) with significant socio-economic losses 21 

and impact, revealed the need for the development of reliable methodologies for vulnerability and risk 22 

assessment. In this paper, a risk-based multi-level stress test method that has been recently proposed, aimed at 23 

enhancing procedures for evaluation of the risk of critical non-nuclear infrastructure systems against natural 24 

hazards, is specified and applied to six key representative CIs in Europe, exposed to variant hazards. The 25 

following CIs are considered: an oil refinery and petrochemical plant in Milazzo, Italy, a conceptual alpine 26 

earthfill dam in Switzerland, the Baku-Tiblisi-Ceyhan pipeline in Turkey, part of the Gasunie national gas storage 27 

and distribution network in the Netherlands, the port infrastructure of Thessaloniki, Greece, and an industrial 28 

district in the region of Tuscany, Italy. The six case studies are presented following the workflow of the stress test 29 

framework comprised of four phases: Pre-Assessment phase, Assessment phase, Decision phase and Report 30 

phase. First the goals, the method, the time frame, and the appropriate stress test level to apply are defined. Then, 31 

the stress test is performed at component and system levels and the outcomes are checked and compared to risk 32 

acceptance criteria. A stress test grade is assigned and the global outcome is determined by employing a grading 33 

system. Finally, critical components and events and risk mitigation strategies are formulated and reported to 34 

stakeholders and authorities.  35 
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1. Introduction 36 

Critical infrastructure (CI) provides essential services to society and represents the backbone of economy, security 37 

and health. Recent examples from key CIs have revealed that natural hazards can cause significant economic and 38 

social damage, severely affect the provided services and lead to disasters, whilst cascading failures of CIs can 39 

cause multi-infrastructure collapse and widespread consequences even in developed countries (Pescaroli and 40 

Alexander 2016). Representative paradigms from Japan can be highlighted, i.e. the Tohoku earthquake, tsunami 41 

and Fukushima nuclear release in 2011 (Krausmann and Cruz 2013) and the Hyogo-Ken Nanbu (Kobe) 42 

earthquake in 1995 that caused extended damage to port and other critical infrastructure with long term 43 

consequences (Chang 2000). Among past events in Europe, devastating flash floods in the spring of 2010 caused 44 

extended dam failures in Poland (Reuters 2010), while major damage to industrial facilities was reported after the 45 

2009 L’Aquila and 2012 Emilia earthquakes in Italy (Grimaz 2014). 46 

The increase and intensity of such natural disasters over the last two decades (EMDAT 2019), which is correlated 47 

to the ageing infrastructure and in some cases its inadequate design as well as to urban growth, climate change 48 

and environmental degradation, has increased the interest of policy makers, practitioners and researchers toward 49 

the understanding of infrastructure vulnerability and risk (Giannopoulos et al. 2012; Theocharidou and 50 

Giannopoulos 2015; Opdyke et al. 2017). There is a remaining need to address gaps in existing knowledge in 51 

order to better understand and assess the vulnerability and risk of CIs and improve their resilience against natural 52 

hazards. In this respect, advanced and standardized tools for hazard and risk assessment of CIs are required, such 53 

as the stress test tools , that include both low-probability high-consequences (LP-HC) events and so-called 54 

extreme events, as well as the systematic application of these new tools to whole classes of critical infrastructure. 55 

In particualr, stress testing is the process of assessing the ability of a CI to maintain a certain level of functionality 56 

under unfavorable conditions.  Stress tests consider LP-HC events, which are not always accounted for in the risk 57 

assessment procedures and tools, commonly adopted by public authorities or industrial stakeholders. They  have 58 

been initially developed for the financial and nuclear sectors, e.g. to check whether the safety and design 59 

standards applied to nuclear power plants are sufficient to cover unexpected extreme events (Kutkov and 60 

Tkachenko, 2017). In Europe, after the accident at the Fukushima nuclear power plant in Japan, a comprehensive 61 

safety and risk assessment in the form of  stress tests was performed on all nuclear plants (ENSREG 2012). Stress 62 

tests contribute to the improvement of prevention and preparedness of critical infrastructure, providing the 63 

roadmap for strengthening measures of the high-risk components and the improvement of emergency response 64 

planning. Hence, stress tests contribute toward the resilience enhancement of the CIs, i.e. how they can adapt to 65 

and recover from shocks.  66 

In this context, an engineering risk-based multi-level stress test framework has recently been developed (Esposito 67 

et al. 2016; 2019), aimed at enhancing the current procedures for evaluating the risk of critical non-nuclear 68 

infrastructure against natural hazards, considering single or multi-hazards, probabilistic or scenario based 69 



3 

 

approaches, systemic analysis, interactions between components, cascading effects and an advanced grading 70 

system. 71 

The main objective of this paper is to demonstrate the applicability of this methodology, which is summarized in 72 

Section 2, through six case studies of CIs in Europe exposed to different hazards: (1) an oil refinery and 73 

petrochemical plant in Milazzo, Italy, by taking into account the impact of earthquakes and tsunami (Section 3); 74 

(2) a conceptual alpine earthfill dam in Switzerland under multi-hazard effects (Section 4); (3) the Baku-Tiblisi-75 

Ceyhan pipeline in Turkey, focusing on seismic threats at pipe-fault crossing locations (Section 5); (4) part of the 76 

Gasunie national gas storage and distribution network in the Netherlands, exposed to earthquake and liquefaction 77 

effects (Section 6); (5) the port infrastructures of Thessaloniki in Greece, subjected to seismic, tsunami and 78 

liquefaction hazards (Section 7); and (6) an industrial district in the region of Tuscany, Italy, exposed to seismic 79 

hazard (Section 8).  These applications are representative of the following CI types: (i) single-site (case studies 1, 80 

2 and 5), (ii) geographically extended (case studies 3 and 4), (iii) distributed multi-site (case study 6). The key 81 

elements and output of the six applications are summarised in Section 9. 82 

 83 

2. Methodology 84 

2.1 ST workflow and phases 85 

A harmonized framework for stress testing critical non-nuclear infrastructure systems has been recently proposed 86 

(Esposito et al. 2019) aiming to quantify the safety and risk of individual components as well as of whole CI 87 

system with respect to natural events and to compare the behavior of the CI to acceptable values. The multi-level 88 

framework combines probabilistic and quantitative methods to characterise both extreme and common scenarios 89 

and consequences, including potential multi-hazards and systemic amplification effects (e.g., Mignan et al. 2014; 90 

2016a; 2016b). To manage subjectivity and uncertainty, the proposed framework includes a multiple-expert 91 

integration (Selva et al. 2015), in which data, models and methods adopted for the risk assessment and the 92 

associated uncertainty quantification are clearly documented and managed by different experts. Different roles 93 

and responsibilities are assigned to different actors, namely the project manager (PM), technical integrator (TI), 94 

evaluation team (ET), pool of experts (PoE) and internal reviewers (IR). Their roles and interactions are 95 

illustrated in Figure 1, along with the workflow of the framework. 96 

 97 



4 

 

 98 

Figure 1. Workflow of the stress testing framework (Esposito et al. 2019) 99 

The proposed framework is implemented in four main phases: 100 

1. Pre-Assessment Phase (steps 1 to 3): the necessary data on the CI and hazards are collected. The risk measures 101 

and acceptance criteria, the time frame, the most appropriate stress test level(s) and level of detail of the analysis 102 

are defined depending on potential regulatory and stakeholder requirements as well as available resources and 103 

data (Esposito et al. 2019). . 104 

2. Assessment Phase (steps 4 to 5): the stress test at component and system levels is performed following state-of-105 

the-art methods for the hazard, vulnerability and risk analysis. 106 

3. Decision Phase (steps 6 to 8): the results of the Assessment phase are compared to the acceptance criteria that 107 

have been defined in the Pre-Assessment Phase. This comparison results in a grade that informs about the degree 108 

of the risk posed by the infrastructure, and, if the risk is unjustifiable or intolerable, how much the safety of the CI 109 

should be improved until the next periodical verification. Critical events that most likely cause the exceedance of 110 

a loss value of interest are identified through a disaggregation and/or sensitivity analysis. Risk mitigation 111 

strategies and guidelines are formulated. 112 

4. Report Phase (step 9): the experts present the stress test results to authorities and regulators of the CI. The 113 

presentation includes the outcome of stress test in terms of the grade, the critical trigger events, the guidelines for 114 

risk mitigation, and level of detail adopted in the stress test. 115 

2.2 Stress test levels 116 

Three Stress Test Levels (ST-Ls) are proposed. Level 1 (ST-L1): single-hazard component check (hazard-based, 117 

design-based, risk-based); Level 2 (ST-L2): single-hazard system-wide risk assessment; Level 3 (ST-L3): multi-118 
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hazard system-wide risk assessment. Each level is characterized by a different scope (component or system) and 119 

by a different complexity of the risk analysis. Within these three levels, potentially different implementations are 120 

possible. The quantification of epistemic uncertainty may not be performed (sub-level a). If performed, it may be 121 

based either on the evaluations of a single expert (sub-level b) or of multiple experts (sub-level c). In Levels ST-122 

L2 (sub-levels a, b and c) and ST-L3 (sub-levels a, b and c) probabilistic risk analysis (PRA) of the entire CI 123 

(system) is performed. Complementary scenario-based analysis (sub-level d) may be performed for specific 124 

conditions, events or hazards that cannot be included into the PRA due to methodological gaps. It is noted that 125 

ST-L1 should be the routinely check for each CI and it might be deterministically (hazard or design-based) or/and 126 

probabilistically (risk-based) defined. 127 

2.3 Penalty and grading system 128 

The stress test can result to three outcomes: Pass, Partly Pass, and Fail (Figure 2). In particular, the CI passes the 129 

stress test if it attains grade AA or A. Grade AA corresponds to negligible risk and is expected to be the risk 130 

objective for new CIs. Grade A corresponds to risk being as low as reasonably practicable (ALARP) (Helm, 1996; 131 

Jonkman et al. 2003), and is expected to be the risk objective for existing CIs. The CI partly passes the stress test 132 

if it gains grade B, which corresponds to the existence of possibly unjustifiable risk. The CI fails the stress test 133 

when grade C is assigned, corresponding to the existence of intolerable risk. The boundaries between grades, i.e. 134 

the risk acceptance criteria, are defined by the project manager of the stress test based on the requirements of the 135 

regulators and societally acceptable risk norms. The form of the boundaries can be expressed using point 136 

estimates, e.g. expected number of fatalities per year, or continuous functions, e.g. F-N curves, representing 137 

cumulative frequency of the risk measure per given period of time. These boundaries may differ between 138 

countries and industries. Further details can be found in Esposito et al. (2019).  139 

The application of the stress test concepts to six CIs in Europe is summarized in the following sections. It is noted 140 

that these applications include different ST levels based on the available data and resources in the framework of a 141 

research study and they should not be considered as formal or complete stress tests. For a more elaborated 142 

description of the case studies reference is made to Pitilakis et al. (2016). 143 

 144 
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 145 

Figure 2. Grading system for the outcome of stress test (Esposito et al. 2019) 146 

3. Application to oil refinery and petrochemical plant in Italy 147 

3.1 Pre-Assessment phase 148 

Natural events may dramatically interact with industrial equipment with different intensity and hazards. Structural 149 

failures may be indeed induced by seismic waves or tsunami waves, flooding and other combined scenarios. 150 

Hence, industrial accidents may derive, such as fires, explosions, toxic dispersion or environmental disasters. 151 

These scenarios are nowadays defined as Natech (Krausmann et al. 2011; Salzano et al. 2013; Renni et al. 2010; 152 

Krausmann et al. 2016). Natech risks should be included in the industrial risk assessment (Quantitative Risk 153 

Assessment, QRA), which is normally performed in early-design phase, during the licensing and land use 154 

planning procedures, and other civil protection applications. Quite typically, results are given in terms of 155 

locational risk and societal risks. The first is defined as the frequency per year that a hypothetical person will be 156 

lethally affected by the consequences of possible accidents during an activity involving hazardous materials, e.g. a 157 

chemical plant or transport activities. This risk indicator is a function of the distance between the exposed person 158 

and the activity, regardless of whether people are actually living in the area, or at the specified location. Societal 159 

risk is defined as the cumulative frequency that a minimum casualties due to possible accidents during an activity 160 

with hazardous materials.  161 

The refinery of Milazzo (Raffineria di Milazzo) is located in the north part of the island of Sicily, in Italy. It is an 162 

industrial complex, which transforms crude oil into a series of oil products currently available on the market 163 

(LPG, gasoline, jet fuel, diesel and fuel oil) and comprises a number of auxiliary services. The refinery has many 164 
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storage tanks containing a large variety of hydrocarbons, such as LPG, gasoline, gasoil, crude oil and atmospheric 165 

and vacuum residues. The capacities of the tanks vary from 100 m
3
 (fuel oil, gasoil, gasoline, kerosene) to 160 166 

000 m
3
 (crude oil). All tanks are located in catch basins (bunds) with concrete surfaces. The LPG is stored in 167 

pressurised spheres, while all other substances are stored in single containment tanks. 168 

In the following, a Natech QRA for this installation, based on public information regarding the industrial process, 169 

has been performed.  170 

3.2 Assessment phase 171 

Probabilistic Hazard Analysis was performed for both tsunami and earthquake (ST-L2). For the tsunamis, we 172 

have focused only on tsunami of seismic origin, which is the dominant component in most areas of the world. The 173 

impact of natural hazards on the accident or release scenarios and frequencies is given in Table 1. These 174 

frequencies have been calculated by taking into account the methodology described in several previous works 175 

(Salzano et al. 2015; Basco and Salzano 2016), where equipment vulnerability with respect to the intensity of the 176 

natural events has been assessed by taking into account the construction characteristics of equipment and, more 177 

important, the new limit states based on the release of content. 178 

Table 1. Scenarios and frequencies for stationary vessels due to natural hazards 179 

Scenario Frequency (-/yr)  

 Atmospheric vessels Pressurized vessels Pipelines 

Earthquake   
 

Instantaneous release of the complete inventory 3.70·10
-3

 1.16·10
-9

 - 

Continuous release of the complete inventory in 10 

min at a constant rate of release 

3.70·10
-3

 1.16·10
-9

 - 

Continuous release from a hole with an effective 

diameter of 10 mm 

7.33·10
-2

 0 - 

Full bore rupture - - 5.56·10
-2

 

Tsunami Atmospheric vessels Pressurized vessels Pipelines
 

Instantaneous release of the complete inventory 1.85·10
-5

- 3.47·10
-4 

0 
- 

Continuous release of the complete inventory in 10 

min at a constant rate of release 

1.85·10
-5

- 3.47·10
-4

 0 - 

Continuous release from a hole with an effective 

diameter of 10 mm 

0 0 - 

Full bore rupture - - 0 

Earthquake + Tsunami   
 

Instantaneous release of the complete inventory 3.7·10
-3

- 4.05·10
-3 

1.16 ·10
-9

 
- 

Continuous release of the complete inventory in 10 

min at a constant rate of release 

3.7·10
-3

- 4.05·10
-3

 1.16 ·10
-9

 - 

Continuous release from a hole with an effective 

diameter of 10 mm 

7.33·10
-2

 0 - 

Full bore rupture - - 5.56·10
-2

 

 180 
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3.3 Decision phase 181 

Results obtained for the Natech QRA for the refinery of Milazzo, in terms of locational risk and societal risk is 182 

presented in Figure 3. The isorisk curves take into account the combination of all natural and industrial hazards. 183 

The right part of the same figure allows the evaluation of the contribution of either industrial or natural events, 184 

separately, and their relative weights. The fact that the curves for Industrial and Earthquake  and Industrial, 185 

Earthquake and Tsunami coincide, means that tsunami adds a negligible contribution to risk. This methodology 186 

can be then used for the decision phase, in terms of licensing, land use planning, civil protection plan (emergency 187 

plan), early design and industrial and environmental authorizations. 188 

 189 

Figure 3. Locational risk (left) and societal risk (right) – Hazard combinations (industrial, seismic, tsunami) 190 

 191 

 192 

3.4 Report phase 193 

Naturally induced hazards can play an important role in the total risk associated with the presence of installations 194 

with dangerous goods. For the specific site analyzed, our stress testing results indicate that the predicted tsunamis 195 

can only damage a limited number of the atmospheric storage vessels along the shoreline. Hence the increase on 196 

the total risk is limited. Nonetheless, the overloading of emergency response should be considered, at least for the 197 

tanks along the coastline. 198 

Of more importance is the effect of an earthquake, which significantly increases the failure frequency of 199 

atmospheric storage tanks. Therefore, reinforcing the emergency response for multiple fire scenarios would be 200 

beneficial, together with structural improvement of the tanks. Neither an earthquake nor a tsunami significantly 201 

increases the failure frequency of, and hence risk imposed by, pressurized vessels (like LPG spheres). As for the 202 

considered site, the risk is largely dominated by the LPG tanks when failing due to industrial-related causes, 203 

whereas the impact of the natural hazards is limited. All in all though, naturally induced hazards should be 204 

considered when determining the overall risk and the risks associated with natural disaster. The communication 205 
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among key actors (emergency responders, public authorities, industrial stakeholders) is deemed mandatory, 206 

according to the Seveso directive (EC 2012). In particular, the communication should be improved by re-thinking 207 

of the information to the population related to the industrial risks, which is still mandatory by the Seveso directive 208 

(EC 2012), but completely lacking for the natural-technological interaction. 209 

4. Application to a large dam in Switzerland 210 

Dams operate by storing water (and its potential energy) in their reservoirs and releasing it when convenient. 211 

Often, that potential energy can produce massive damages if not controlled adequately. In the event of a failure or 212 

breach a large amount of water travels downstream in the form of a dam-break wave, affecting downstream areas 213 

more seriously than natural floods. To fully understand the risks associated with large dams one should therefore 214 

take into account the dam, the reservoir, the downstream areas, and the multiple elements and interactions that 215 

characterize what can be called the dam-reservoir system. 216 

Dam safety is most commonly tested using deterministic frameworks where the system’s response is simulated 217 

and analyzed in detail for a given number of limit cases (Zenz and Goldgruber 2013; Gunn et al. 2016). Although 218 

proven very successful, the deterministic approach’s focus on limit cases leaves countless possibly disastrous 219 

combinations of events unchecked. Furthermore, the probability of occurrence of the limit cases under test is not 220 

necessarily known and, therefore, even if the risk associated with the infrastructure can qualitatively be inferred to 221 

be small when the test succeeds, it remains unknown in quantitative terms. This justifies further investments on 222 

probabilistic alternatives. 223 

The present application aimed to develop a flexible probabilistic framework that separates the risk assessment for 224 

large dams in two sequential steps: the analysis of the dam-reservoir system, that provides information about the 225 

frequency of failures and the conditions under which water is released; and the downstream areas, where the 226 

progression of each dam-break wave is accounted for and damages are evaluated. The modeled system includes a 227 

dynamical representation of the dam-reservoir system that relies on the Generic Multi-Risk (GenMR) framework 228 

(Mignan et al. 2014; 2016) and accounts for multiple hazards, multiple elements, and a large number of non-linear 229 

influences and feedbacks between them. Also included in the system is a module capable of efficiently predicting 230 

inundation parameters for each simulated dam failure case to roughly 30 km downstream, where a sizable urban 231 

agglomeration is assumed to exist (Figure 4). 232 

A large conceptual alpine earthfill dam was taken as a case study. The infrastructure is approximately 100 m high, 233 

with a reservoir capable of holding over 100 000 000 m
3
 of water. It is equipped with a spillway in order to cope 234 

with excessive water levels, a bottom outlet that allows for the control of the volume of water stored, and a 235 

hydropower system through which the main purpose of the dam is fulfilled, i.e. producing energy. 236 
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4.1 Pre-Assessment phase 237 

The considered hazards included earthquakes, floods, internal erosion, and electromechanical malfunctions in key 238 

systems. Regarding elements, the dam and foundation, the bottom outlet, the hydropower system, the spillway, 239 

and the reservoir were modeled. The most relevant interactions considered were the damages induced on 240 

elements, the damage states that lead to changes in operations, the probability of internal erosion events and how 241 

it is affected by reservoir levels and damage through overtopping. Focusing on the downstream area, the response 242 

of each building to the inundation was also modeled resorting to fragility curves. Hazards were defined according 243 

to statistical distributions and, for each case, epistemic uncertainty on the parameters of those distributions was 244 

assumed. The response of each element to relevant hazards was also defined probabilistically, according to 245 

fragility functions.  246 

The objectives of the stress test were two-fold. First, regarding the frequency of failures. Second, the expected 247 

damages downstream as a direct consequence of such failures. Risk measures were, accordingly, the expected 248 

return period of dam failure events and the expected built volume downstream of the dam that would be destroyed 249 

as a result. 250 

 251 

Figure 4. Illustration of the impact of a specific dam-break wave on an urban area downstream 252 

4.2 Assessment phase 253 

The backbone of the assessment phase is the component level assessment (ST-L1). Here, as the case study is 254 

conceptual, it was admitted that all the elements of the system comply to and slightly exceed regulatory 255 

requirements. The ST-L2 system level assessment for a single hazard (earthquake) was undertaken in both 256 

deterministic and probabilistic models. In the ST-L3 system level assessment, for multiple hazards, the full 257 

integration of the dam-reservoir and downstream analysis realms was made. Through the simulation of 20 000 258 

000 years of dam operation a number of failures with different characteristics was sampled. It should be clear that 259 

the simulations are not extended 20 000 000 years into the future; rather, it is different possibilities for “next” year 260 

that are simulated. The number of simulations should be large enough to sample events of the order of magnitude 261 

of the return period intended for the infrastructure. For example, in 20 000 000 simulations it can be expected to 262 
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find, on average, 2 000 events with a return period of 10 000 years or above. For each one of these, inundations 263 

parameters were estimated throughout the downstream valley. Computations were performed by a machine 264 

learning meta-model trained based on detailed 2D hydraulic simulations of representative dam-break events. 265 

Integrating the information from all the simulations, including aleatoric and epistemic uncertainty, it was possible 266 

to gain remarkable insight on the system. Figure 5a, for example, illustrates the return period of individual 267 

buildings collapsing or being washed away as a result of dam failures. 268 

4.3 Decision phase 269 

With a return period of 25 000 years for failures, the conceptual dam was shown to meet the first of three risk 270 

objectives by having, on average, less than one failure per 10 000 years. In what concerns damages in the 271 

downstream area, the goal was to limit expected damages to the loss of one household per 100 years. In concrete 272 

terms, this was assumed to be equivalent to an average built volume loss of 7.5 m
3
 per year due to dam failures. 273 

After integrating expected losses in the downstream area, however, a substantially higher value of 200 m
3
 of built 274 

volume lost per year was estimated. As a consequence, the second risk objective was not met. Despite this the 275 

expected losses were deemed acceptable as the undesirably high value is more a product of the number of 276 

households exposed to the dam-break wave than on the frequency of dam failures, being therefore and to some 277 

extent beyond the influence of changes that the dam may undergo. The third objective is bound to the analysis of 278 

a F-N curve (Figure 5b), in this case prepared to show the cumulative frequency of built volume collapsing or 279 

being washed away as a consequence of a dam break upstream. The threshold AA-A corresponds to a risk of 7.5 280 

m
3
/yr, the A-B threshold, corresponding to the third risk objective, to 75 m

3
/yr, and finally B-C to 750 m

3
/yr 281 

(roughly equivalent to a household per year). 282 

 283 

Figure 5. Illustration of results from the study on large dams. a) return periods of individual buildings being collapsed or 284 

washed away following a dam failure upstream. b) F-N curve based on collapsed or washed away built volume following a 285 

dam failure upstream (adapted from Pitilakis et al. 2016) 286 

Collapsed or worse 

(T [years]) 

(a) (b) 
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4.4 Report phase 287 

The flexibility of the GenMR framework (e.g., Mignan et al. 2014), particularly when combined with machine 288 

learning methods that allow extraordinary gains in computational performance, makes this inclusive and formally 289 

correct estimate of risk attainable. Obviously, this is a highly desirable feature when performing a stress test.  290 

From the three objectives established in this stress test, one, concerning the dam-reservoir system and the 291 

probability of failures taking place, was met with a failure return period of 25 000 years, safely above the 10 000 292 

years mark. The second, focusing on the expected losses downstream, was not. Quantitatively the chosen risk 293 

metric was more than 25 times over the objective of 7.5 m
3
/year of built infrastructure collapsed or washed away. 294 

The third objective, defined on the basis on an F-N curve, classified the risk as ALARP. 295 

In this conceptual case, earthquakes appear to be responsible for the most part of the expected losses. They have a 296 

direct impact on the dam but can also lead to the catastrophic elevation of water in the reservoir through damages 297 

to the outlet structures. Investing in a more resilient bottom outlet would virtually prevent all overtopping events, 298 

being perhaps the most direct and cost-effective way to reduce risk. Regarding the downstream losses, a possible 299 

use of the analysis results and maps is to reinforce, provide with shelters or relocate the buildings which are 300 

assessed as high risk. However, the risk downstream is not only dependent on the probability of failure of the 301 

dam-reservoir system, but also on the amount of people and infrastructure exposed at risk. Once the CI is 302 

considered safe, it may be more cost-effective to invest on the protection of the downstream area than on the dam 303 

itself (for example, providing better warning systems and escape routes). For the conceptual CI that was studied, 304 

some potential failures could be averted by drawing down the reservoir. Therefore, beyond the notions of fragility 305 

that were explored, the resilience of the dam-reservoir system beyond the design requirements is very much 306 

defined by the capacity to perform a successful and timely drawdown operation. Cascade effects become 307 

important when the possibility of drawing down the reservoir is lost, and a substantial inflow arrives.  308 

Concluding, to evaluate the risk associated with the failure of a large dam it is important to bring together a 309 

number of experts in different fields, relevant to the structure itself, the foundation and hydrology. For an accurate 310 

quantification of impacts downstream it is essential to collect data and knowledge on infrastructure, property and 311 

populations, including the evacuation in case of a failure. Compared to other CIs, the verification of the safety of 312 

large dams is quite developed as these infrastructures are built not to fail. An improvement of existing approaches 313 

is the consideration of uncertainty, in the quantification of  hazards and fragility. 314 

 315 

5. Application to major hydrocarbon pipeline in Turkey 316 

The hydrocarbon pipelines usually extend over very long distances by crossing borders, hard geographic 317 

conditions and geo-hazard areas. As of seismic effects, they are prone to permanent fault displacement (PFD) 318 

hazard because fault crossings (upon their rupture) may cause large deformations on the hydrocarbon pipelines 319 
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and impose a major risk for their structural integrity. When such pipelines are exposed to PFD, typical damage is 320 

in the form of local buckling due to axial compression and/or bending  (in normal burial depths) and global 321 

(beam) buckling (in shallow burial depths) or in submarine pipelines. The rupture of the pipe could be due to 322 

severe compressive buckling of the pipe wall or tensile fracture. 323 

This section implements the stress testing methodology for seismic risk assessment of pipeline failure due to PFD. 324 

The Baku-Tiblisi-Ceyhan (BTC) pipeline is used as the case study that crosses several strike-slip fault segments 325 

in the Eastern Anatolia Fault.  326 

5.1 Pre-Assessment phase 327 

The diameter and thickness of the pipes at the five main fault segments are 42 inches (1.0688 m) and 20.62 mm, 328 

respectively. The pipeline trench is trapezoidal-shaped and packed with loose-to-medium granular cohesionless 329 

backfill with minimum soil cover. The pipeline crosses five fault segments along Eastern and North Anatolia 330 

Fault zones with fault-pipe crossing angles varying between 30 and 90. All other compiled data information 331 

about the mechanical features of BTC pipeline as well as fault properties important in PFD computations are 332 

given in Pitilakis et al. (2016).  333 

The risk measure in this case study is the pipeline rupture or loss of pressure integrity due to fault offsets. Table 2 334 

lists the probability ranges of different risk tolerances according to the grading system of the stress test 335 

methodology. 336 

Table 2. The risk tolerance levels and the probabilities defined for the stress test grade 337 

Grade AA A B C 

Risk tolerance Negligible ALARP Possibly 

Unjustifiable risk 

Intolerable 

Probability range in 2475-year 

return periods 

0%-2% 2%-10% 10%-50% 50%-

100% 

CI performance pass partly pass fail 

 338 

Eidinger and Avila (1999) propose four performance classes (life safety, key operational, other operational and 339 

disruption) to represent severity of pipe failure at pipe-fault crossings. These four performance goals are set to 340 

four pipeline failure probabilities (Table 2) that are defined as 1% (life safety), 2% (key operational), 10% (other 341 

operational) and 50% (disruption) against PFD underground-motions represented by 2475-year return period 342 

uniform hazard spectral ordinates. 343 

The stress tests comprise of three steps at component level (ST-L1), performing hazard-based (moderate 344 

accuracy), design-based (advanced accuracy) and risk-based assessment (high accuracy).  345 
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5.2 Assessment phase 346 

5.2.1 Hazard-based assessment: the 2475-year PFDs (recommended by ALA 2001; 2005) at five pipe-fault 347 

crossings are computed from the Monte-Carlo based probabilistic PFD hazard (Chen and Akkar, 2017; third row 348 

in Table 3). They are compared with the prescribed ALA hazard requirements (second row in Table 3). The 349 

comparisons indicate that of the five pipe-fault crossings, the computed 2475-year PFD hazard at #2, #3 and #4 350 

pipe-fault crossings are larger than the ALA requirements (last row in Table 3). The potential impact of mega-351 

ruptures in the region (Mignan et al., 2015) was not included in this analysis, since the mechanism of mega 352 

ruptures is complicated and models to estimate the fault displacement are yet to be proposed. 353 

Table 3. Hazard-based assessment – comparison of 2475-year return period PFD hazard with ALA requirements 354 

 Pipe-fault crossings 

#1 #2 #3 #4 #5 

2475-year ALA2001 (design) 1.31m 1.18m 1.61m 3.84m 0.63m 

2475-year ALA2001 (assessment) 0.73m 2.25m 3.91m 4.49m 0.44m 

Compliance (design ≥ assessment) yes no no no yes 

 355 

5.2.2 Design-based assessment: The tensile pipe strain under the 2475-year PFD is compared with the allowable 356 

tensile pipeline strain provided in ALA (2001). The allowable tensile pipe strain is designated as 3% in these 357 

design provisions. The comparisons are done for all five pipe-fault crossings and the tensile strains at these pipe-358 

fault crossings comply with the code requirements (Table 4). 359 

Table 4. Calculated tensile strains at the designated fault offsets 360 

Pipe-fault crossing Crossing angle 2475-year fault offset (m) Tensile strain Compliance ( 3%) 

#1 60 0.73 0.33% Yes 

#2 70 2.25 0.85% Yes 

#3 30 3.91 2.18% Yes 

#4 45 4.49 2.00% Yes 

#5 90 0.44 0.18% Yes 

 361 

5.2.3 Risk-based assessment: The annual exceedance rate of pipeline failure is compared with the suggested 362 

allowable pipeline failure rates in the literature. The probabilistic pipeline failure is achieved by integrating the 363 

probabilistic fault displacement hazard, mechanical response of pipe due to fault displacement and empirical pipe 364 

fragility function (Cheng and Akkar 2017). The aggregated effects of tensile and compressive strains developed 365 

along the pipe are considered in the seismic pipe failure risk. The annual failure probability (Pf) for pipelines at 366 

fault crossings is computed for different pipe-fault crossing angles () by considering the uncertainty in . The 367 
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inaccuracy in fault-pipe crossing angle is modeled by a truncated normal probability with alternative standard 368 

deviations of 2.5 and 5. 369 

The acceptable annual pipe failure rate of 4.0·10
-5

 (Honegger and Wijewickreme 2013) is compared with the pipe 370 

failure rates at five designated pipe-fault crossings (Table 5). The comparisons indicate that pipe-fault crossings 371 

#3 and #4 are critical as their computed failure rates are larger than the allowable annual failure rate. The listed 372 

annual failure rates are also used to compute the aggregated failure risk along the whole BTC pipeline to complete 373 

the probabilistic risk assessment. Two marginal probabilities are computed: (a) perfect correlation between pipe 374 

failures at the five pipe-fault crossings (Pfc) and (b) independent pipe failures at the five pipe-fault crossings (Pfi). 375 

The aggregated marginal failure probabilities are very high and they range between 40% and 50% (Table 6) that 376 

fall into grade B: possibly unjustifiable risk according to Table 2. 377 

Table 5. Comparisons of annual pipe failure exceedance rates with the allowable pipe failure rate 378 

Pipe-fault 

crossings 

 (standard deviation) : 

 Uncertainity to pipe-fault crossing angles () 

Compliance 

(4.0 10
-5

) 

0 2.5 5 

#1 3.142·10
-6

 3.183·10
-6

 3.304·10
-6

 Yes 

#2 1.833·10
-6

 2.256·10
-6

 3.293·10
-6

 Yes 

#3 1.967·10
-4

 1.964·10
-4

 1.955·10
-4

 No 

#4 5.987·10
-5

 5.981·10
-5

 5.962·10
-5

 No 

#5 1.973·10
-5

 - - Yes 

 379 

Table 6. Aggregated failure probabilities of BTC pipeline under 2475-year PFD hazard before and after the risk mitigation 380 

strategies 381 

 Pfc (perfectly correlated case) Pfi (statistically independent case) 

Before retrofit 38.56 % 51.0 % 

After retrofit 0.775 % 2.206 % 

 382 

5.3 Decision and Report phase 383 

The probabilistic pipe failure risk assessment yields higher probabilities of pipe failure at #3 and #4 384 

pipe-fault crossings. Therefore, these pipeline segments are identified as critical components and it is 385 

decided to be upgraded.   386 

 The effective retrofitting of the pipeline segments at the critical crossings is to change the pipe-fault intersection 387 

angle. When the intersection angles of these three pipe-fault intersection angles are changed to 80, the resulting 388 

aggregated risk probability is reduced to negligible levels 389 
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Table 6). The disaggregation and sensitivity analysis of BTC pipe failure assessment bring forward the higher 390 

PFD hazard and small pipe-fault crossing angles (resulting in higher tensile strain) as the main sources of large 391 

failure probabilities at the pipe-fault crossings #3 and #4. 392 

6. Application to gas storage and distribution network in Netherlands  393 

This section summarizes the application of the stress test methodology to part of the main gas distribution 394 

network of Gasunie Gas Transport Services (Gasunie-GTS). The Groningen field is a large natural gas field 395 

located in the northern Netherlands, contributing to approximately half of the natural gas production in the 396 

country. The gas distribution relies on a major gas pipeline infrastructure, with a total length of over 12 000 km of 397 

installed pipes in. Located in an area of very low tectonic seismicity, gas extraction in the region has led to an 398 

increase in seismicity since the early 1990s. A sub-network (Figure 6) is studied located in the induced earthquake 399 

prone area, directly above the main gas field covering an area of approximately 3360 km
2
. 400 

6.1 Pre-Assessment phase 401 

Numerous seismic hazard studies dedicated to the Groningen area have been performed over the past several 402 

years and are still ongoing. In the current stress test one of the earlier model versions was adopted: the so-called 403 

Z1 model from Dost et al. (2013) for the seismic zonation (four zones), the Akkar et al. (2014a; 2014b) modified 404 

ground motion model (Bommer 2013) and the classical Gutenberg-Richter (GR) relation (Gutenberg and Richter 405 

1956). A maximum magnitude (for the stress test only) value of 6.0 was applied and the annual event rate for 406 

events with M≥1.5 is set to 30 events per year (Dost et al. 2013). 407 

Serviceability Ratio (SR) and Connectivity Loss (CL) are used as risk measures (Esposito et al. 2015). The 408 

Serviceability Ratio is directly related to the number of demand nodes in the network, which remain accessible 409 

from at least one source node following an earthquake. Connectivity Loss measures the average reduction in the 410 

ability of demand nodes to receive flow from source nodes due to an earthquake event. 411 

An as low as reasonable practicable (ALARP) grade of the risk measures is targeted for the existing gas transport 412 

network to pass the stress test (Jonkman et al. 2003). In the Netherlands a standard for quantified risk assessment 413 

(QRA) exists, issued by the national “Committee for the Prevention of Disasters” (CPR 18E 1999). In the current 414 

application of the stress test methodology to the Gasunie-GTS case, no full QRA was performed for the 1000 km 415 

sub-network. However, values for the annual failure rates originally prescribed in (CPR 18E 1999) and adjusted 416 

values nowadays used for the Gasunie network are selected to define grade boundaries (Table 7): 417 

 418 
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 419 

Figure 6. Selected sub system of the gas distribution network (right) located above main natural gas field (top left) 420 

Table 7. Definition of grading boundaries for the gas network 421 

Boundary Pipe [yr
-1

km
-1

] Station [yr
-1

] 

AA-A  8·10
-6

 8·10
-6

 

A-B 6·10
-5

 6·10
-5

 

B-C  1.4·10
-4

  1.4·10
-4

 

 422 

For illustrative purposes only, indicative grading boundaries are attributed to the values of the performance 423 

parameter connectivity loss (CL). The boundaries used are taken from (Esposito et al. 2016). No actual 424 

calibrations for these bounds with respect to economic loss or fatalities exist yet for the sub-network at hand and 425 

the grading is indicative and provisional. 426 

The stress test has been performed up to ST-L2 considering earthquake as single hazard and conducting a full 427 

Probabilistic Risk Analysis using Monte Carlo simulations for the network analysis. ST-L1 considers individual 428 

components for which also a risk based approach is applied. As the methods in this case for ST-L1 and ST-L2 are 429 

both Monte Carlo based, ST-L1 makes use of the ST-L2 results. 430 

Accuracy levels targeted are classified as advanced: the stress test is risk based for the network as well as for the 431 

individual components with site specific hazard analyses, structure specific fragility functions and using outcomes 432 

of dedicated studies by, among others, the NAM, KNMI, TNO and Deltares as well as by an international 433 

community of experts (WINN_TA-NAM 2016). 434 

6.2 Assessment phase 435 

The ST-L2 for the evaluation of the seismic network performance is consisted of five major steps: 436 
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 Seismic hazard assessment of the region considering gas depletion as source of the seismic activities. 437 

 Evaluation of ground motion hazard in terms of PGA, PGV and permanent ground displacement (due to 438 

liquefaction). 439 

 Seismic demand evaluation at each station and pipe section to obtain the failure using fragility curves. 440 

 Vulnerability analysis through the use of a connectivity algorithm to assess the network performance. 441 

 Probabilistic risk assessment in terms of mean network functionality and annual exceedance curves. 442 

The likelihood of liquefaction given the soil conditions in the Groningen area, the Netherlands,  was first assessed 443 

(Miraglia et al. 2015) in which a model based on the Idriss-Boulanger model (Idriss and Boulanger 2008) is used. 444 

Two soil profiles based on CPT tests were analyzed by describing the soil properties as stochastic parameters and 445 

sampling the liquefaction response of the layers with earthquake events. Sampling results were then summarized 446 

as fragility curves as a function of PGA values for the two soil profiles. Soil liquefaction can cause permanent soil 447 

displacements as well as floating or sinking of pipe segments due to gravity. Structural reliability calculations are 448 

performed for distinct pipe configurations and probabilities of failure are calculated conditional on liquefied soil. 449 

For transient load effects, again structural reliability calculations are performed based on Newmark’s formulae of 450 

seismic strain for buried pipelines (Newmark and Rosenblueth 1971). As a result transient load fragility curves 451 

were obtained as function of PGV values. For the stations, a generic fragility curve from the HAZUS 452 

methodology (NIBS 2004) was adopted.  453 

 454 

Figure 7. ST-L1: annual failure frequencies (per km) for the pipe sections (black lines on background indicate the earthquake 455 

zones) 456 
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Seismicity, network and network properties are modeled with the OOFIMS (Franchin et al. 2011) tool and Monte 457 

Carlo simulations are performed. The results show a good performance with respect to CL (Figure 8): the annual 458 

probability of having a connectively loss of e.g. 50% or more is 3.6·10
-5

. For the serviceability ratio very high 459 

exceedance frequencies for all values of the serviceability ratio are found, with only a drop near SR reaching one. 460 

Hence the results show a high robustness of the network, indicating a vast redundancy in possible paths between 461 

demand and source nodes. Sampled results (failure, no failure) per component (pipes/stations) from the ST-L2 462 

Monte Carlo analysis of the network are used to calculate ST-L1 annual failure probabilities per component (e.g. 463 

Figure 7). Pipes as well as stations showed satisfactory performance in terms of reliability. 464 

6.3 Decision phase 465 

With respect to the grading on component level the following results are obtained: 466 

 Pipe sections: Most pipe sections obtain grade AA, some obtain grade A. The pipe sections pass the stress 467 

test. 468 

 Stations: Most stations are classified with grade AA or A. Some, near or within the seismic zone, obtain 469 

grade B. The stations partly pass the stress test. 470 

With respect to the network performance Figure 8 presents the values for the connectivity loss relative to the 471 

indicative grading boundaries. The network performance is shown to comply with grade AA and passes the stress 472 

test. 473 

These findings are obtained despite a number of conservative assumptions made with respect to fragilities. Also 474 

the seismic demand was modeled in a conservative way with e.g. a maximum magnitude of 6 and an annual rate 475 

of occurrence for ML > 1.5 equal to 30. Reducing these assumptions to a maximum magnitude of 5 and or an 476 

annual rate equal to 23 leads to all stations complying with grade AA or A. 477 

With respect to components, both types (pipe sections and stations) are found to contribute evenly to the network 478 

performance. From these: 479 

 Specific pipe sections can to some extend be identified as being a weakest link in the network. These 480 

sections should be checked on their current actual state assessing the need for upgrading. 481 

 For the stations a rather strong assumption is made with respect to the fragility curve adopted. These 482 

should be quantified in more detail and depending to findings retrofitting of stations might be necessary. 483 

In the current analysis soil liquefaction is the dominant failure mechanism. As much uncertainty still exists in the 484 

liquefaction fragilities for the Groningen area, further studies into these fragilities and their geographical 485 

distribution is recommended. 486 
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6.4 Report phase 487 

The stress test is performed as being initiated by the asset owner, the Gasunie Transportservices and as such 488 

reported to the asset owner. No formal presentation of the outcome of the stress test to (other) CI authorities 489 

and/or regulators is foreseen. Reporting, in terms of the grade, the critical events, the guidelines for risk 490 

mitigation, and the accuracy of the methods adopted in the stress test is accomplished in Pitilakis et al. (2016).  491 

Most pipe sections and stations conform to grade AA or A, except for few stations that reach grade B. Turning 492 

points are magnitude ML=5 or annual rate NM>1.6=23 at which all components comply to grade AA or A and pass 493 

the stress test, see Table 8.  494 

At the time of performing the stress test, no governing earthquake specific design requirements existed in the 495 

Netherlands. The CI’s safety and resilience will be improved by reassessing the need for retrofitting of a confined 496 

number of pipe sections identified. The stress test also revealed the need for site-specific fragility functions for the 497 

Gasunie-GTS stations as well as further research into the liquefaction mechanisms for the Groningen site 498 

conditions. 499 

Table 8. Stress test results for Gasunie-GTS sub-network 500 

Item Mmax NM>1.6 Grading Result 

Pipe sections 6 30 AA, A Pass 

Stations 

6 30 AA, A, B Partly pass 

5 30 AA, A Pass 

6 23 AA, A Pass 

Network CL 6 30 AA, A Pass 

 501 
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 502 

Figure 8. Exceedance frequencies for connectivity loss relative to (indicative) grading boundaries 503 

7. Application to port infrastructures of Thessaloniki in Greece 504 

This section outlines the application of the stress test methodology to the port of Thessaloniki, one of the most 505 

important ports in Southeast Europe and the largest transit-trade port in Greece. Ground shaking, liquefaction and 506 

tsunami hazards have been considered in the case study. Readers are referred to Pitilakis et al. (2017) for more 507 

details on this stress test.  508 

7.1 Pre-Assessment phase 509 

A GIS database for the examined port facilities, i.e. waterfront structures, cargo handling equipment, buildings 510 

(offices, sheds, warehouses etc.) and the electric power supply system has been developed. The Port subsoil 511 

conditions are characterized by soft alluvial deposits, sometimes susceptible to liquefaction. All necessary 512 

information to perform site specific ground response analyses were obtained by a comprehensive set of in-situ 513 

geotechnical tests (e.g. drillings, sampling, SPT and CPT tests), detailed laboratory tests and measurements, as 514 

well as geophysical surveys (cross-hole, down-hole, array microtremor measurements) at the port broader area. A 515 

topobathymetric model was also produced for the tsunami simulations, based on nautical and topographic maps 516 

and satellite images (Cotton et al. 2016; Selva et al. 2016). 517 

The vulnerability of the port infrastructures to the given target hazards is assessed using site and case specific or 518 

generic fragility functions. New seismic fragility curves have been developed for typical quay walls and gantry 519 

cranes subjected to ground shaking based on dynamic numerical analyses. Analytical tsunami fragility curves as a 520 

function of inundation depth have been developed for representative typologies of RC buildings, warehouses and 521 

gantry cranes (Karafagka et al. 2016; Salzano et al. 2015). For simplicity reasons, the waterfront structures were 522 
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considered as non-vulnerable to tsunami forces. The electric power lines were also assumed as non-vulnerable for 523 

the three hazards.  524 

The stress test includes a component level risk based assessment of the key components (ST-L1) and a 525 

probabilistic risk analysis at the system level (ST-L2). A complementary scenario-based system wide risk 526 

assessment is also conducted associated to two earthquake return periods. Specific risk measures and acceptance 527 

criteria have been defined related to the functionality of the port at system level and the structural losses at 528 

component level. Since two terminals (container, bulk cargo) were assumed herein, the system performance is 529 

measured through the total number of containers handled (loaded and unloaded) per day (TCoH), in Twenty-foot 530 

Equivalent Units (TEU), and the total cargo handled (loaded and unloaded) per day (TCaH), in tones. Risk 531 

measures related to structural and economic losses of the buildings were also set for the tsunami case and the 532 

scenario-based assessment. Since no regulatory boundaries exist for the moment for port facilities, continuous 533 

(Figure 9) and scalar boundaries (Table 9) were defined based on general judgment criteria for the probabilistic 534 

and scenario-based system-wide risk assessment respectively. 535 

7.2 Assessment phase 536 

In the component level assessment, a risk-based assessment of each component is carried out for earthquake and 537 

tsunami hazards to check whether the component passes or fails the minimum requirements for its performance. 538 

The hazard function at the location of the component and the fragility function of the component are convolved in 539 

risk integral in order to obtain the probability of exceedance of a designated limit state in a period of time. To 540 

check whether or not the component is safe against collapse, the target probability was compared with the 541 

corresponding probability of exceeding the ultimate damage state. A reference target probability of collapse equal 542 

to 1·10
-5

 has been pre-defined based on the existing practice.  543 

In the system level assessment, a probabilistic risk analysis (PRA) is conducted separately for earthquake and 544 

tsunami hazards considering specific interdependencies between network and components. The objective is to 545 

evaluate the mean annual frequency (MAF) of events with the corresponding loss in the performance of the port 546 

operations. The analysis was based on an object-oriented paradigm where the system is described through a set of 547 

classes, characterized in terms of attributes and methods, interacting with each other (Franchin et al 2011; Kakderi 548 

et al. 2014). A Monte Carlo simulation is carried out sampling events and corresponding damages for the given 549 

hazards. The seismic hazard is based on the 2013 European Seismic Hazard Model - ESHM13 (Woessner et at 550 

2015, Giardini et al 2013) and the modeling procedure described in Weatherill et al. (2014). The tsunami hazard 551 

analysis was performed considering tsunamis generated by co-seismic sea floor displacements due to earthquakes 552 

(e.g., Grezio et al. 2017; Davies et al. 2017; Lorito et al. 2015) and obtaining 253 representative scenarios based 553 

on inundation simulation of the Thessaloniki area (Selva et al. 2016). The performance indicators (PIs) of the port 554 

system for both the container and cargo terminal were evaluated for each simulation based on the damages and 555 

corresponding functionality states of each component and considering the interdependencies between 556 
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components. The final computed PIs are normalized to the value referring to normal (non-seismic) conditions 557 

(Pmax) assuming that all cranes are working at their full capacity 24 hours per day while the performance loss is 558 

defined as 1-PI/PImax.  559 

 
a) 

 
b) 

 
c) 

Figure 9. MAF of exceedance curves for the port system PIs (TCoH, TCaH) in terms of normalized performance loss (1-560 

PI/PImax) for the seismic (a) and tsunami (b) hazard case and the buildings in collapse state for the tsunami case (c).  561 

 562 

For the seismic hazard case, Figure 9a shows the MAF of exceedance curves (“performance curve”) for the 563 

normalized performance loss in terms of TCoH and TCaH. The green, blue and red continuous lines correspond to 564 

the boundaries between risk grades AA (negligible), A (ALARP), B (possibly unjustifiable risk), and C 565 

(intolerable). For performance loss values below 40% TCaH yields higher values of exceedance frequency, while 566 

for performance loss over 40% TCoH yields higher values of exceedance frequency. For the tsunami hazard case, 567 

an example for one of the alternative models (i.e. the epistemic uncertainty is not considered here) is presented in 568 

Figure 9b. The container terminal is not expected to experience any loss (TCoH), while the loss in the cargo 569 

terminal (TCaH) is very low. This is due to the non-vulnerable condition of waterfront structures, the high 570 

damage thresholds for the cranes (i.e. inundation values that are not expected in the study area) and the distance of 571 

the electric power substations from the shoreline. The annual probabilities for buildings collapses are also low 572 

(Figure 9c). As an example 10% of the total buildings in the Port (~9 structures) will be completely damaged 573 

under tsunami forces with annual probability equal to 5·10
-5

. 574 

The scenario-based risk analysis (SBRA) is performed complementary to the classical PRA approach described 575 

previously, to quantify the potential impact of the local site response at the port area and to reduce the 576 

corresponding uncertainties. This type of effects may be of major importance in port areas, and by adopting 577 

specific scenarios is possible to model the site response more accurately than in standard PRA. Two different 578 

seismic scenarios were defined in collaboration with a pool of experts: the standard seismic design scenario and 579 

an extreme scenario corresponding to return periods of Tm=475 years and Tm=4975 years respectively. For the 580 

475 years scenario a set of 15 accelerograms was selected to fit the target spectrum defined based on the 581 
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disaggregation of the probabilistic seismic hazard analysis results (SRM-LIFE 2007; Papaioannou 2004) and the 582 

median plus 0.5 standard deviation of Akkar and Bommer (2010) spectrum (Pitilakis et al. 2019). For the 4975 583 

years scenario the selection of ground motion requires special attention considering that it might be an extreme 584 

event that has not been recorded yet. Thus, two different approaches were considered: 4975 years scenario I and II 585 

(Pitilakis et al. 2019). In particular, 10 synthetic accelerograms were computed to fit the target spectrum (median 586 

plus one standard deviation Akkar and Bommer (2010) spectrum) (4975 years scenario I) and broadband ground 587 

motions were generated (Smerzini et al. 2016) using 3D physics-based “source-to-site” numerical simulations 588 

(4975 years scenario II). 1D equivalent-linear (EQL) and nonlinear (NL) site response analyses including also the 589 

potential for liquefaction are carried out. It is observed that the EQL approach is associated with higher number of 590 

non-functional components for all considered seismic scenarios whereas for the NL approach non-functional 591 

components are present only for the 4975 years scenario I (Table 9). This is due among other factors to the 592 

significantly higher PGA values calculated using the EQL approximation, which lead to higher damage 593 

probabilities and consequently higher performance loss. Thus, even though the vulnerability using the NL 594 

approach is assessed considering both ground shaking and liquefaction hazards, the estimated combined 595 

exceedance probabilities and the corresponding performance loss are still lower compared to the ones predicted 596 

by the EQL approach (Pitilakis et al. 2019).. As also evidenced by the estimated functionality state of each 597 

component, the port system is non-functional both in terms of TCaH and TCoH for the 4975 years scenario I. A 598 

100% and 67% performance loss is estimated for the TCoH and TCaH respectively when considering the EQL 599 

approach for the 475 and 4975 years II scenarios, while the port is fully functional when considering the NL 600 

approach both in terms of TCaH and TCoH for the latter scenarios. 601 

 602 

Table 9. Estimated normalized performance loss of the port system for TCaH and TCoH and comparison with risk 603 

acceptance criteria for the scenario-based assessment 604 

Scenario Analysis type 
Performance loss (1-PI/PImax) Risk acceptance criteria Stress test outcome 

TCaH TCoH AA-A A-B B-C TCaH TCoH 

475 years 
EQL 0.67 1.00 

0.10 0.30 0.50 
Fail Fail 

NL 0.00 0.00 Pass Pass 

4975 years I 
EQL 1.00 1.00 

0.30 0.50 0.70 

Fail Fail 

NL 1.00 1.00 Fail Fail 

4975 years II 
EQL 0.67 1.00 Partly pass Fail 

NL 0.00 0.00 Pass Pass 

 605 

7.3 Decision phase 606 

With reference to seismic hazard for both bulk cargo and container terminals, the port obtains grade B, meaning 607 

that the risk is possibly unjustifiable and the CI partly passes this evaluation. The basis for redefinition of risk 608 
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objectives in the next stress test evaluation is the characteristic point of risk, which is defined as the point 609 

associated with the greatest risk above the ALARP region. The CI receives grade AA (negligible risk), and as 610 

expected in this example application, passes the stress test for the tsunami hazard. Based on the proposed grading 611 

system, for the case which the port obtains grade B and partly passes the stress test, the B-C boundary in the next 612 

stress test is reduced (i.e. B-C: 53% performance loss) while the other boundaries remain unchanged (Figure 9a). 613 

The scenario-based assessment showed that the CI may pass, partly pass or fail for the specific evaluation of the 614 

stress test (receiving grades AA, B and C respectively) depending on the selected seismic scenario, the analysis 615 

approach and the considered risk metric. This level of analysis is complementary to the PRA and shows that a 616 

detailed modelling of local site effects is of major importance for the outcome of the stress test. It is also worth 617 

noting that the risk objectives and the time between successive stress tests should be defined by the CI authority 618 

and regulator. Since regulatory requirements do not yet exist for the port infrastructures, the boundaries need to 619 

rely on judgments. 620 

 621 

7.4 Report phase 622 

For the selected target probabilities of collapse, all port components are deemed as unsafe towards seismic 623 

hazards at the component level assessment (ST-L1), while only few cranes are characterized as safe against 624 

exceedance of the collapse limit state for the tsunami hazard. These results cannot be judged unconditional to the 625 

fact that subjective boundaries relying on expert judgments are used, since regulatory requirements for port 626 

infrastructures do not yet exist. 627 

For ST-L2, and for the seismic case, several electric power distribution substations present high failure risk and 628 

contribute to the performance loss of the port due to loss of power supply to the cranes. It is recommended to 629 

investigate further the response of the substations under seismic shaking and consider potential upgrade or/and 630 

alternative power sources. The systemic tsunami risk connected to direct damages from waves results not 631 

significant. This is primarily connected to the physical position of the port (with relatively low tsunami hazard) 632 

and the low fragility of components to tsunami waves. However, the potential effects of debris collisions have not 633 

been accounted for. Therefore, a careful check of preparedness against tsunami should be suggested, ranging from 634 

the connection to efficient tsunami warning systems as well as the definition of actions to secure ships and port 635 

equipment. 636 

For the scenario-based assessment the estimated losses are significantly dependent on the analysis approach. In 637 

particular, the EQL approach is associated with higher losses even for the design scenario (475 years), while for 638 

the NL approach the losses to the cranes, waterfronts and electric power substations are expected solely for the 639 

4975 scenario I. Therefore, the impact of local site effects on the stress test outcome is very important and should 640 

be considered in the PRA through advanced seismic site response analysis. 641 
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The risk mitigation and resilience planning for the port infrasrtructure include preventive, e.g. 642 

early warning systems for earthquakes and tsunami, retrofitting of high-risk facilities, 643 

improvement of foundation soil, updating of contingency plans and training exercises, and 644 

reactive measures, e.g. efficient emergency and restoration plans, back-up capabilities for such as 645 

use of mobile cranes or diesel generators for power supply. In this context, Galbusera et al. (2018) 646 

performed a resilience analysis for the port infrastructures of Thessaloniki, considering the 647 

fragility and importance of each component, the interdependencies, the recovery priorities and the 648 

buffering capabilities for given seismic scenarios. Stress testing can further benefit the resilience 649 

planning, while the effective communication between the key actors (e.g. port authority, operators, 650 

experts) is essential.8. Application to industrial district in Italy 651 

The performance and consequences assessment of an industrial building stock in Northern Italy, and more 652 

specifically in the region of Tuscany, is presented in this case study. Only seismic hazard has been considered, as 653 

it is the predominant hazard to which the industrial building stock in Tuscany is exposed. The limited budget for a 654 

stress test of an industrial district (given that these facilities do not serve the same critical functions as other 655 

infrastructure considered herein) has conditioned the level of detail and complexity of the stress test. 656 

Nevertheless, the simplicity of the case study allows the full probabilistic risk assessment and disaggregation 657 

methodology to be fully demonstrated. Readers are referred to Rodrigues et al. (2017) for more details on this 658 

stress test. 659 

8.1 Pre-Assessment phase 660 

The exposure data of the industrial infrastructure in Tuscany have been provided by the Seismic Section of the 661 

Tuscany Region. The details related to 300 industrial buildings in the province of Arezzo were used for the case 662 

study, which included the geographical location (represented by a pair of coordinates), year of construction, floor 663 

area, structural type, non-structural elements, and other data useful for identifying the value of contents, type of 664 

business, and geographical extent of the facility’s customer base (Figure 10). 665 

 666 

Figure 10. Location of the 300 industrial facilities in the province of Arezzo. Due to the close proximity of some of the 667 

buildings, each point that is shown on this map could represent up to 20 buildings 668 
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 669 

The majority of reinforced concrete precast industrial buildings in the Tuscany region can be categorized into 670 

three classes as a function of the design code level (pre-code or low-code, depending on whether the buildings 671 

were constructed before or after 1996), type of structure (type 1 buildings with long saddle roof beams, and type 2 672 

with shorter rectangular beams and larger distances between the portals) and type of cladding (vertical precast 673 

panels (V), horizontal panels (H) and concrete masonry infills (M)). Once the building subclass has been assigned 674 

to each building in the exposure model, it is then necessary to add the value of the structural components, non-675 

structural components, contents and business interruption (in terms of revenue per day). Typical construction 676 

costs for an industrial facility are used to assign the value of the structural and non-structural elements, estimated 677 

using the mean market prices of industrial/typical warehouses as a function of their location within so-called OMI 678 

zones “Osservatorio del Mercato Immobiliare” (Italian Revenue Agency 2016). The industrial sector in the 679 

Tuscany region is dominated by mining due to the abundance of underground resources, but also textiles 680 

industries, chemicals/pharmaceuticals, metalworking and steel, glass and ceramics, clothing and 681 

printing/publishing sectors have a strong presence in the region. Specific data on the contents of each industrial 682 

building was not available in the current database, and so the contents categories that are commonly damaged in 683 

Italian industrial buildings have been considered to be present in all buildings (until more reliable information on 684 

the contents of each building is available): i.e. fragile stock and supplies on shelves, computer equipment, 685 

industrial racks and movable manufacturing equipment. The cost of the contents has been estimated according to 686 

FEMA (2012), where it states that the value of the contents for the type of facilities considered herein can be 687 

assumed to be 44% of the total value of the construction. Finally, business interruption costs have been estimated 688 

using the HAZUS methodology (FEMA 2003). 689 

Structural and non-structural fragility functions were derived using the analytical framework as described in Babič 690 

and Dolšek (2016). The contents fragility functions were derived using a simplification of the procedure in ATC-691 

58 (ATC 2012), as proposed by Porter et al. (2012).  Business interruption is defined herein as the time needed to 692 

repair building damage, and so median downtimes have been estimated for each damage state in the structural 693 

fragility functions. The downtime is currently only related to the structural damage as it is assumed that any non-694 

structural damage can be addressed in parallel during the time required to recover from structural damage. 695 

For the hazard model, the three source models (area sources, fault sources and distributed seismicity) of the 2013 696 

European Seismic Hazard Model, ESHM13 (Woessner et al. 2015) were used together with a ground-motion 697 

prediction tree (GMPE) logic tree described in Rodrigues et al. (2017).  698 

The stress test includes a component level risk based assessment of the key components, i.e. the industrial 699 

buildings, (ST-L1) and a probabilistic risk analysis to assess the economic losses at the system level, combining 700 

structural, non-structural, and contents damage as well as business interruption (ST-L2).  701 
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8.2 Assessment and Decision Phase 702 

The annual probability of collapse for the component-based assessment only considers the structural components 703 

of the facilities (as these are the only components that need to be legally considered in design). This risk-based 704 

component level assessment has been undertaken for the 300 industrial facilities in Arezzo (see Figure 10) using 705 

hazard curves (i.e. PGA versus annual probability of exceedance) estimated with the OpenQuake-engine (Pagani 706 

et al. 2014) using the ESHM13 (Woessner et al. 2015), amplified considering topography-based Vs30 estimates 707 

(USGS 2016), together with the complete damage structural fragility functions for each sub-class of structure 708 

(Babič and Dolšek 2016). According to the proposed grading system none of the structures has an annual 709 

probability of collapse below 1·10
-5

 (the specified A-B boundary), which means that all facilities are classified as 710 

“partly pass” or “fail”. More specifically, 260 facilities are assigned grade B (partly pass) and the others 40 711 

facilities are assigned grade C (and thus fail), as they had an annual probability of collapse below 2.0·10
-4

 (the 712 

specified B-C boundary). 713 

For the system level assessment (where the seismic damage to a whole industrial district is estimated), economic 714 

loss-based measures and objectives have been used due to the large losses that were experienced in Italy 715 

following the Emilia-Romagna earthquakes (see Krausmann et al. 2014). The economic loss has been estimated 716 

considering the losses due to structural damage, non-structural damage, contents damage and associated direct 717 

business interruption (due to downtime). Specific objectives for these risk metrics have not yet been defined by 718 

stakeholders in the industrial facilities, and thus hypothetical values have been considered herein for illustrative 719 

purposes of the methodology. The threshold for the total AAL at the A-B boundary was defined as 0.05% of the 720 

total exposure value, and 0.10% for the B-C boundary. For the second objective, the loss due to business 721 

interruption at a mean annual rate of 10
-4

 (i.e. 1 in 10,000 years) should not be higher than 7 times the daily 722 

business interruption exposure (i.e. 10 million €) for the A-B boundary, and not greater than 30 days for the B-C 723 

boundary (42 million €). 724 

In order to calculate probabilistic seismic risk for the spatially distributed portfolio of assets in Arezzo, the 725 

Probabilistic Event-Based Risk (PEBR) calculator from the OpenQuake-engine (Silva et al. 2014) has been 726 

employed. This calculator generates loss exceedance curves and risk maps for various return periods based on 727 

probabilistic seismic hazard, within a Monte Carlo event-based approach. 728 



29 

 

 729 
Figure 11. Loss exceedance curves for (left) structural and (right) business interruption losses in Arezzo 730 

The average annual losses (AAL) have also been calculated from the loss exceedance curves in Figure 11 and 731 

these results show that the largest component of loss is given by business interruption. The results also indicate 732 

that the A-B system level assessment objective is not met (as the total AAL percentage is 0.052%), but the B-C 733 

level is instead met. Hence the grading would be B (partly pass) for this objective. The business interruption loss 734 

at a mean annual rate of exceedance of 10
-4

 is 64 million € (which can be translated as an average of 45 days of 735 

business interruption), and so the grading would be C (fail) for this objective. 736 

In order to develop a potential risk reduction strategy, it is relevant to better understand which sub-classes of the 737 

industrial facilities are contributing most for the average annual losses, and to identify the type of hazard events 738 

that contribute to different loss levels. The disaggregation of the average annual loss, in terms of the critical 739 

components for each loss, are given in Figure 12. The sub-typologies that contribute most to the total average 740 

annual losses are V2 (i.e. pre-code type 2 portal frame with vertical cladding), H1 (i.e. pre-code type 1 portal 741 

frame with horizontal cladding) and V3 (i.e. low-code type 2 portal frame with vertical cladding). 742 

 743 

Figure 12. Disaggregation of AAL according to building sub-class for each component of loss 744 
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8.3 Report Phase 745 

Although each industrial building has not been assessed individually in detail according to current 746 

Italian/European design requirements for single buildings, the results of the component-based assessment indicate 747 

that a significant percentage would not meet current design requirements. The final overall outcome of the stress 748 

test is driven by the system-level test and is deemed to be C (intolerable/fail), and thus this should stimulate 749 

stakeholders to upgrade the existing industrial districts such that they will improve their grading in the following 750 

stress test cycle. The performance of these pre-cast buildings would be significantly improved by strengthening 751 

the weak beam-column connections. Collaborative action from a large number of stakeholders, represented by the 752 

owners of each industrial warehouse, is required to improve the grading of the stress test, and this should be 753 

encouraged and enforced by the regulatory authorities.  754 

However, it is noted that the outcomes of the stress test presented herein are highly influenced by the assumptions 755 

made in developing the exposure model as well as the definition of the target objectives, which have been defined 756 

herein by the authors rather than the relevant stakeholders. Hence, further comments on the outcome of the stress 757 

test are not made in these conclusions and instead it is stressed that additional efforts are needed in the future to 758 

work with the owners of the industrial facilities to collect reliable content and annual revenue data, and to identify 759 

the most appropriate target objectives. 760 

9. Discussion - Conclusions 761 

An engineering risk-based methodology for conducting stress tests of critical non-nuclear infrastructures has been 762 

applied to six CIs in Europe. Different stress test levels were selected according to the characteristics of the 763 

particular CIs and the available resources. The objective was to demonstrate the efficiency of the methodology 764 

and how the proposed framework can be specified and implemented with regard to different types of CIs, i.e. 765 

single site, geographically extended, distributed multi-site, each one exposed to varying hazards.  These case 766 

studies can be used as a basis for similar types of CIs, while the proposed framework can be adjusted and 767 

implemented to other sectors. However, risk measures and acceptance criteria may vary depending on the 768 

peculiarities of each CI, even if of similar type. For example, in case of port facilities, a risk measure in terms of 769 

economic loss could be an alternative, instead of the loss in terms of cargo or container handled that is used in the 770 

present application. Inevitably, the heterogeneity of the different CIs justifies the reasonable assumptions and/or 771 

simplifications made in some steps of the applications. In this context, the authors disavow a quantitative 772 

interpretation of the results provided, as these applications were not, nor should they be, considered formal stress 773 

tests in each particular CI. In Table 10, the key elements of the six case studies are summarised, i.e. CI data, 774 

hazard data, risk measures, risk acceptance criteria (component, system), stress test level, risk acceptance check, 775 

and risk mitigation guidelines. 776 

 777 
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The Table is provided at the end of the documentTable 10. Overview of the key elements of the six stress test case 778 

studies 779 

 780 

The stress test to the oil refinery of Milazzo showed that the earthquake impact is important for the atmospheric 781 

storage tanks.  The tsunami effect on the atmospheric storage vessels along the shore line is relatively negligible 782 

in terms of cascading effects and increase of the overall risk on population. Neither an earthquake nor a tsunami 783 

significantly increases the failure frequency of, and hence the risk imposed by, pressurized vessels. Despite this, 784 

the risk remains largely dominated by the LPG tanks failures due to industrial-related causes, whereas the impact 785 

of the natural hazards is limited. Mitigation measures include the enhancement of the emergency preparedness for 786 

multiple fire scenarios and the structural upgrade of tanks. 787 

The stress test to a large dam in Switzerland exposed to multi-hazard effects, considering earthquakes, floods, 788 

internal erosion and electromechanical malfunctions in key systems, showed that the first of three risk objectives 789 

concerning the dam-reservoir system and the probability of failures taking place was met. The second objective, 790 

related to the expected losses downstream was not met, while the third one, defined on the basis of an F-N curve, 791 

classified the risk as ALARP (as low as reasonably practicable). The most efficient mitigation measure is to 792 

upgrade the bottom outlet of  the dam to prevent all overtopping events. Also, the resilience of the dam-reservoir 793 

is very much defined by the capacity to perform a successful and timely drawdown operation, therefore cascade 794 

effects become important when the possibility of drawing down the reservoir is lost, and a substantial inflow 795 

arrives. The mitigation measures for the downstream area include the reinforcement or relocation of the high-risk 796 

buildings, the installation of early warning systems and the improvement of emergency planning, e.g. shelthes, 797 

escape routes. 798 

The application to Baku-Tiblisi-Ceyhan pipeline that crosses strike-slip fault segments in the eastern Anatolia in 799 

Turkey, indicated that two pipe-fault crossings are critical as their failure rates exceed the allowable rate. The risk 800 

assessment showed that risk is classified possibly unjustifiable. The risk mitigation guidelines are focused at the 801 

retrofitting of the pipelines at the critical crossings by changing the angle of the pipe-fault intersection. 802 

The stress test to the Gasunie gas distribution network in Groningen, Netherlands, exposed to earthquake and 803 

liquefaction effects, showed that soil liquefaction is the dominant failure mechanism. In particular, with respect to 804 

components, the pipe sections pass the stress test, while stations pass the stress test only partially. With respect to 805 

the systemic risk the stress test is passed. The safety and resilience of this CI will be improved by reassessing the 806 

need for retrofitting of the critical pipe sections identified in this study. The stress test also revealed the need for 807 

site-specific fragility functions for the stations and the need for further research into the liquefaction mechanisms 808 

for the Groningen site conditions. 809 

The stress test to the port infrastructures of Thessaloniki exposed to seismic, tsunami and liquefaction hazards 810 

showed a variation in the outcomes depending on the type of analysis. Most of the port components do not pass 811 
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the safety test against collapse for both earthquake and tsunami hazards in the case of a component level 812 

assessment. The systemic risk is possibly unjustifiable and negligible for the PRA of earthquake and tsunami 813 

hazards respectively, meaning that the port partly passes or passes this evaluation of the stress test. The scenario-814 

based assessment showed the importance of the modelling approach of local site effects in the outcome of the 815 

stress test. The proposed mitigation planning includes the potential upgrade of the electric power substations due 816 

to their criticality for the port operations or/and the installation of alternative power sources. Moreover, the 817 

resilience planning of the port should consider the fragility and importance of each component, interdependencies, 818 

recovery priorities and buffering capabilities. 819 

The stress test to an industrial district in Northern Italy, exposed to seismic hazard, concluded that the facilities 820 

partly pass or fail to pass the component-based assessment. For the system level assessment, where economic 821 

loss-based measures and objectives have been used, the industrial district partly passes or fails to pass the test 822 

depending on the considered boundaries used as thresholds of loss due to business interruption. Risk mitigation 823 

can be achieved on the basis of strengthening building sub-classes that contribute most to the total losses, in 824 

particular the weak beam-column connections of pre-cast buildings. 825 

In summary, standardized actions and results are foreseen in the proposed framework, which are defined based on 826 

the level of stress testing and the level of detail that is applied. For example, if a low level is adopted leading to 827 

lack of risk acceptance then a more advanced method should be used, while if a component fails the assessment 828 

risk mitigation actions must be applied. In all six case studies the risk objectives boundaries have been set mainly 829 

based on expert judgment. However, formulation of risk acceptance criteria is not a straightforward task. In 830 

practice, setting objectives and establishing risk measures is difficult and strongly dependent on legal, socio-831 

economic and political contexts and they should be defined by the corresponding stakeholders. Nevertheless, 832 

when needed, the results of the stress tests have the potential to stimulate stakeholders to take action to upgrade 833 

the existing infrastructure aiming to improve their grading in the following stress test cycle toward improving the 834 

resilience and preparedness of CIs. Lessons learned through the six applications is the need for improvement of 835 

existing assessment approaches considering the uncertainties in the quantification of  hazard, vulnerability and 836 

loss estimates as well as the need for site-specific fragility models. An important issue is also the collaborative 837 

action and effective communcation of the key actors, i.e. stakeholders, experts, owners and operators of the CIs 838 

and regulatory authorities.  839 
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Table 10 

 Oil refinery and 

petrochemical plant in 

Milazzo, Italy 

Alpine earthfill dam, 

Switzerland 

Baku-Tiblisi-Ceyhan 

pipeline,Turkey 

Gasunie national gas 

storage and distribution 

network, Netherlands 

Port infrastructure of 

Thessaloniki, Greece 

Industrial district in 

the region of Tuscany, 

Italy 

CI data 

Number of 

components 

177 hydrocarbons storage 

tanks (gasoline, gasoil, crude 

oil, LPG) 

conceptual dam-reservoir 

system: dam and foundation, 

spillways, bottom outlet, 

hydropower system and 

reservoir. 

downstream area: approx. 

1000 buildings 

1,800 km buried pipeline of 

crude oil 

~1,000 km pipe network for 

gas transport; 11 M&R 

stations; 15 feeding points 

and 91 receiving points as 

end nodes 

25 waterfront structures 

(WS); 35 cargo handling 

equipment (CE); 4 gantry 

cranes (GC); 85 building and 

storage facilities (BD); 

electric power lines (EL) and 

17 distribution substations 

(ES) 

300 buildings (structural 

elements) 

Typology steel storage tanks with 

variable capacities: 100 m3 

(fuel oil, gasoil, gasoline, 

kerosene) to 160 000 m3 

(crude oil) located in catch 

basins (bunds) with concrete 

surfaces. LPG: pressurised 

spheres 

dam-reservoir system: 

custom typology; height: 

100 m, reservoir capacity: 

100 000 000 m3 

 

downstream area: 

buildings grouped according 

to the number of storeys 

material: steel API XL 

Grade X65;  

diameter: 42 inches; 

thickness: 20.62mm; 

buried depth: 1.5m 

main gas transmission pipes 

(4 to 8 MPa); diameters 

ranging from 114 mm to 

1219 mm; M&R stations: 

predominately small 

masonry buildings 

WS: concrete gravity block 

type quay walls, non-

anchored components; CE: 

non-anchored components 

without backup power supply; 

GC: capacity 45 tons; EL: 

non-vulnerable; ES: low-

voltage, with non-anchored 

components 

pre-code or low-code 

reinforced concrete precast 

industrial buildings 

Hazard data 

Hazard type seismic (ground shaking and 

liquefaction), tsunami 

seismic, flood, internal 

erosion, bottom outlet 

malfunction, and 

hydropower system 

malfunction 

permanent fault 

displacement (PFD)  

seismic (ground shaking and 

liquefaction) 

seismic (ground shaking and 

liquefaction), tsunami 

seismic 

Model probabilistic seismic hazard 

analysis (PSHA); 

seismic probabilistic tsunami 

hazard analysis (SPTHA) 

seismic hazard maps of the 

Swiss Seismological service; 

extreme flood analyses; 

expert knowledge and 

historically observed 

malfunction frequencies 

PFD at 5 fault crossings: 

scenario-based (2475 years); 

uncertainty in pipe-fault 

angle crossing 

PSHA: Z1 model for 

Groningen area (Dost et al. 

2013); modified GMPE 

(Bommer 2013) 

PSHA: ESHM13 and 

Weatherill et al. (2014). 

SPTHA: 253 representative 

scenarios based on inundation 

simulation. 

seismic scenario-based: 475 

years (EQL, NL), 4975 years 

(EQL, NL) 

2013 European Seismic 

Hazard Model (ESHM13) 

Risk measures 

Component annual probability of release 

of content of hazardous 

materials (defined standard 

mass flow rate)  

1) annual probability of 

failure and 2) annual 

probability of household loss 

annual probability of loss of 

pressure integrity  

annual failure probability annual probability of collapse annual probability of 

collapse 

System locational and individual risk 

(fatalities/year); societal risk 

(F/N curve) 

obj1: uncontrolled release of 

the reservoir; 

obj2: probability of a 

household being collapsed or 

washed away (lost 

N/A connectivity loss (Esposito 

et al., 2016) 

normalized loss of: 

total number of containers 

handled (loaded and 

unloaded) per day (TCoH); 

total cargo handled (loaded 

obj1: average annual loss;  

obj2: mean annual rate of 

economic loss (due to 

structural damage, non-

structural damage, contents 
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volume/year) and unloaded) per day 

(TCaH) 

damage and direct business 

interruption) 

Risk acceptance criteria 

Component target probability of collapse 

of equipment with the 

instantaneous release of 

content less or equal to 

1.0x10-8  

all the components comply 

to and slightly exceed 

regulatory requirements 

(assumption of a conceptual 

dam) 

target probability of pipeline 

failure in 2475 years: 

4.0x10-5 

 

scenario-based: 

AA-A: 2-10, A-B: 10-50, B-

C: 50-100 (% loss for 2475 

years) 

AA-A: 8.0x10-6  

A-B: 6.0x10-5  

B-C: 1.4x10-4  

Pipes (km/year);  

M&R stations (object/year) 

target probability of collapse: 

1.0x10-5 

target probability of 

collapse:  

A-B: 1.0x10-5  

B-C: 2.0x10-4  

System* fatality rate as given by 

acceptability parameters 

either for the locational risk 

(1.0x10-4 f/year for workers, 

1.0x10-6 f/year for 

population) or for the 

societal curve  

(F<1.0x10-3/N2) 

obj1:  

p(failure)≤ 1.0x10-5 

obj2: 

AA-A: 7.5 m3/yr (~one 

household lost per 100 

years), 

A-B: 75 m3/yr, 

B-C: 750 m3/yr (~one 

household lost per year) 

N/A AA-A: 1.0x10-4, 

A-B: 4.0x10-4,  

B-C: 8.0x10-4, 

for annual probability of 

100% loss 

(Esposito et al., 2016) 

 

PSHA & SPTHA: 

AA-A: 7.5x10-4, 

A-B: 2.0x10-3,  

B-C: 4.5x10-3, 

for annual probability of 

100% loss. 

 

scenario-based: 

AA-A: 10, A-B: 30, B-C: 50 

(% loss for 475 years) 

AA-A: 30, A-B: 50, B-C: 70 

(% loss for 4975 years) 

obj1: 

A-B: 0.05%,  

B-C: 0.1%  

obj2: 

A-B: 10-4 for 10 Million 

Euro loss (7 days), 

B-C: 10-4 for 42 million 

Euro loss (30 days) 

Stress test level ST-L1a; ST-L2b; ST-L2d ST-L2b/L2d; ST-L3c/L3d ST-L1 ST-L1; ST-L2a ST-L1; ST-L2b; ST-L2d/L3d ST-L1; ST-L2a 

Risk acceptance 

check (AA-A: 

pass, B: partly 

pass, C: fail) 

ST-L1a, ST-L2b, ST-L2d: 

AA-C (earthquake), 

AA-C (tsunami) 

ST-L2 (seismic): AA-A 

ST-L3 (all five hazards): 

AA-A 

 

 

ST-L1: (hazard based 

assessment), fault crossings 

#2, #3 and #4 do not comply 

with the code requirements.  

ST-L1: (design based 

assessment), all five 

crossings comply with the 

code requirements. 

ST-L1: B (risk based 

assessment), fault crossings 

#3 and #4 do not comply 

with the target risk tolerance 

ST-L1 (components): AA-B 

ST-L2a (system): 

AA-A 

(see Table 8)  

ST-L1: C (seismic), AA-C 

(tsunami) 

ST-L2b: B (seismic), AA 

(tsunami) 

ST-L2d/L3d: AA, A, B, C 

(depending on the scenario 

and analysis type, see Table 

9) 

ST-L1: B (260 facilities), C 

(40 facilities) 

ST-L2a:  

B for obj1, C for obj2 

Risk mitigation 

guidelines 

reinforcing of tanks for 

earthquake and tsunami-

induced structural damage 

and defining the emergency 

response in case of release of 

hazardous materials 

invest on the resilience of 

the reservoir drawdown 

mechanism (bottom outlet) 

upgrading of two critical 

fault crossing points by 

changing  the orientation 

angles of pipes (after 

upgrading, the risk is 

classified as AA) 

retrofitting pipe sections 

identified; site-specific 

fragility functions for the 

Gasunie-GTS stations  

consider potential upgrade of 

substations or/and alternative 

power sources; measures to 

secure ships and port 

equipment 

upgrade of building sub-

classes that contribute most 

to the total losses 

* boundaries for system risk acceptance criteria were based on expert judgement 

 


