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Abstract—The current development of high performance par-
allel supercomputing infrastructures are pushing the boundaries
of applications of science and are bringing new paradigms into
engineering practices and simulations. Earthquake engineering
is also one of the major fields, which benefits from above by
looking for solutions in grid computing and cloud computing
techniques. Generally, earthquake simulations involve analysis
of petabytes of data. Analyzing these large amounts of data in
parallel in thousands of nodes in computer clusters results in
gaining high performances. Open source cloud solutions such
as Hadoop MapReduce, which is highly scalable and capable
of processing large amount of data rapidly in parallel on
large clusters provide better solution compared to RDBDM.
Both GPUs and MapReduce are designed to support vast data
parallelism. For performance considerations, GPU computing
could be adopted over low performing CPU systems. This
paper discusses MapReduce system using Hadoop and Mars.
Mars is a MapReduce framework on graphics processor. Hence,
the proposition is to use GPU based systems for earthquake
simulations in which Digital elevation model 3D data sets are
fully materialized where scientist can make use of these data for
various analysis and simulations.

Index Terms—MapReduce, Spatial Data, GPU computing,
CUDA, Hadoop, Big Data

I. INTRODUCTION

Scientific Computing is applied to a variety of fields such
as climate research, satellite feeds, genomics etc. Data sets
are becoming more complexed and increasing in size by
the day, often running into a petabyte range. Their analysis,
archival and sharing have become difficult and challenging.
The complexity of data is such that it led to the application of
massively parallel supercomputing techniques during analysis.
To meet the demands created by complex data sets, there is
a need that algorithms use the parallel computer architectures
effectively.
The fields similar to earthquake engineering tend to look for
solutions in grid computing and cloud computing techniques
to analyse large amount of data. In earthquake simulations
it is not uncommon to see petabytes of data for analysis.
Analysing these data in parallel in thousand of computer/node
clusters enables high performance. Specially an open source
cloud solution like MapReduce using cheap commodity
hardware is a better solution in scalability and performance.
Programming models similar to Hadoop MapReduce gives
the capability to write applications which can process large
amounts of data rapidly in parallel on large clusters.

Commodity computer graphics chips are probably todays
most powerful computational hardware for the dollar.
Many researchers and developers have become interested
in harnessing the power of commodity graphics hardware
for general-purpose computing. Recent years have seen
an explosion in interest in such research efforts, known
collectively as GPGPU computing. Further, the introduction
of general purpose programming languages such as Nvidias
CUDA, Stream, and OpenCL has promoted their use as
general purpose processors.

An earthquake is the result of a sudden release of energy
in the earth’s crust that creates seismic waves. Earthquakes
are caused mostly by rupture of geological faults, but also
by other events such as volcanic activity, landslides, mine
blasts, and nuclear tests. The processes that cause earthquakes
mostly occur far below the earth’s surface. Scientists have
tried lot of different ways of predicting earthquakes, but none
have been successful. They can get a good idea of where an
earthquake is most likely to hit, but still can not tell exactly
when it will happen. Vibrations can be detected just before
an earthquake occurs, but this does not give enough time
for people to escape. However, the probability of a future
earthquake can be calculated, based on scientific data.
Scientist needs to generate ground characteristic data with low
resolutions for earthquake simulations. Since all earthquake
simulations need petabytes of ground characteristic data
generated in an ad hoc fashion, generation of data is very
expensive. For example ground model data for several large
earthquake simulations can take several days or few weeks.
Also most of these ground data are homogeneous. So instead
of using all the data, if scientists could use materialised
data(pre computed) generated in an ad-hoc manner without
using super commuting centres, scientists and seismologist
can get a huge advantage. In this paper we propose a
MapReduce system using Hadoop and GPUs to get higher
performance.
Figure 1 shows typical FE simulation, goal of this experiment
is to mesh generating and partitioning, where scientists can
use the final reduced(coalesced) results for further simulations.
Also it is possible for scientists to generate these data in an
ad hoc manner in less time without using super computing
powers. Finally reduced results set is obtained to understand
the fault regions in the ground without having to generate all



the mesh data. In seismologists and scientists’ perspective,
having a method to generate these ground characteristic data
in few minutes/hours or querying materialized(pre computed)
ground characteristic data is very useful.

Fig. 1. Typical FE Simulation

II. RELATED WORK

Schlosser et al [1] proposed a MapReduce system for mate-
rialized community ground models for large-scale earthquake
simulations.
Euclid project [2] is developing the capability to perform
physical simulations by computing directly on databases. All
steps of the process, including mesh generation, solving,
and visualization, work by directly querying and updating
databases. With this database approach, the size of simulations
is limited by disk capacity rather than by memory capacity,
allowing scientists and engineers to run much larger simula-
tions on their desktop systems than what is currently possible.
The etree library has been widely used in the seismology
community to store and represent models of the ground used
in simulation. Southern California Earthquake Center (SCEC)
has adopted etrees as the standard representation and API for
ground models of Southern California.
Etree Library: Etree library [3] is part of a euclid Project,
where research effort is aimed at developing the capability
to perform physical simulations by operating on databases.
For earthquake modeling [4] etree based method provide more
performance. Etree library is a system for manipulating large
octrees on disk from C programs. With this approach, the
size of an octree is no longer limited by the size of the main
memory, but instead, by the size of the disk space. The main
memory serves as a disk cache to boost the performance.
The etree library operates on etrees. To the external world,
an etree is simply an ordinary UNIX file. Internally, an etree
encapsulates the details of an octree and has a disk-resident
index structure for fast octant data access.

III. COMMUNITY VELOCITY MODELS

Community Velocity Models are program which take lat-
itude, longitude and depth tuples as inputs and output set
of ground characteristic at those locations. Latitude,longitude
and depth values are coordinates of 3D space where we
can get each point of the earth interior. These CVM are
computer programs (Fortran code) and associated files that are
downloaded, compiled, and run locally. The 3D CVM provides
a unified reference model for the several areas of research that

depend of the subsurface velocity structure in their analysis.
[5], [6]

I SCEC Community Model: Community Velocity Models
within SCEC (Southern California Earthquake Center)are
computer programs and data files that provide informa-
tion about earths material properties from the surface to
depths below 100km: CVM-H [7] , CVM-S

II The Wasatch Front CVM
III New Madrid region CVM [8]

IV. SPATIAL INDEXING

Scientific applications that query into very large multi-
dimensional datasets are becoming more common. Efficiently
querying that data, however, is a considerable challenge as the
data is two-dimensional (or more). Extensive research has been
carried out on multidimensional indexing structures, to enable
efficient range queries and nearest neighbour searches. Com-
mon spatial index methods are, Spatial Index, Z-order(curve),
Quad-tree, Octree, R+ trees, R∗ trees, Hilbert R-tree [9], [10].

A. Octree

An octree [3], [11]–[15] is a tree-based data structure for
managing sparse 3-D data. Each internal node has exactly eight
children. Octrees are fundamental in many computer graphics
and simulation applications. In an octree 3D space is recur-
sively subdivided until a reaching required voxel resolution is
reached. As in Figure 2 Octrees can be drawn in different but
equivalent ways,

I Domain representation: where the octree is drawn as an
explicit decomposition of some rectangular domain.

II Tree representation

Fig. 2. Recursive subdivision of a cube into
octants

Fig. 3. Interleaving
bits to obtain morton
code in 2D

B. Z-order curve

In mathematical analysis and computer science, Z-order,
Morton order or Morton code is a function which maps
multidimensional data to one dimension while preserving
locality of the data points [16]. Morton code is used for
out-of-core algorithms that are designed to process data that
is too large to fit into a computer’s main memory at a time.
In order to compute the Morton code for a given XYZ 3D grid
coordinate, it is necessary to do bit interleaving as in Figure 3



V. MAPREDUCE

MapReduce [17], [18] is a distributed programming frame-
work originally proposed by Google for the ease of devel-
opment of web search applications on a large number of
commodity CPUs. For large-scale data-intensive computing,
the MapReduce paradigm has come up as a highly successful
programming model. MapReduce framework provides two
primitive operations. (1) A map function to process input
key/value pairs and to generate intermediate key/value pairs,
and (2) A reduce function to merge all intermediate pairs
associated with the same key.

A. Hadoop
Apache Hadoop [17] is an open-source software framework

for distributed storage and distributed processing of very
large data sets on computer clusters built from commodity
hardware. The core of Apache Hadoop consists of a storage
part (Hadoop Distributed File System (HDFS)) and a pro-
cessing part (MapReduce). This allows programmers without
any experience with parallel and distributed systems to easily
utilize the resources of a large distributed system.

B. MapReduce on GPU
Both GPUs and MapReduce are designed to support vast

data parallelism. While the performance of CPUs has stagnated
, both the programmability and performance of the graphics
processor (GPU) have increased dramatically in recent years,
with a broad variety of applications demonstrating order-of-
magnitude gains in both performance and price-performance.
Some MapReduce Frameworks on GPU are Mars, Grex [19],
DisMaRC: A Distributed Map Reduce Framework on CUDA,
MITHRA MapReduce Framework on GPU [20], GPMR
MapReduce Frame work on GPU and Panda.

C. Mars
Mars [21] is a MapReduce framework, on graphics proces-

sors (GPUs). Mars hides the programming complexity of the
GPU behind the simple and familiar MapReduce interface and
It exploits the massive thread parallelism within the GPU. The
programmer is required to define a small set of APIs that are
similar to those in the CPU-based MapReduce framework. The
rest of implementation details such as the GPU runtime are
hidden by Mars framework. Mars hides the programming com-
plexity of the GPU behind the simple and familiar MapReduce
interface. Figure 4 illustrates the work flow of Mars. Similar to
the CPU-based MapReduce framework, Mars has two stages,
Map and Reduce. Before starting each stage, Mars initializes
thread configuration including the number of thread groups
and the number of threads per thread group on the GPU.

VI. SYSTEM MODEL

A. CVM-H model
CVM-H model developed by the SCEC community to

extract material properties in the region is used in this ex-
periment. Also HR model which has 250m x 250m x 100m
resolution is selected.

Fig. 4. The Work Flow of Mars on the GPU

B. How to find homogeneous regions

Morton code maps a point in a d-dimensional space to scalar
integer. The mapping is computed by interleaving the bits
of the binary representation of the fixed length coordinates
of the point. Octants in Figure 5 can be represented as in
Table I. The first 2 bits represent the level of octant and
other bits represent the morton code. This is called locational
code which represents any octant in octree structure in linear
address space.
For example in an octree representation in level 3, it is possible
to obtain maximum 83=512 voxels. So maximum coordinate
will be (7,7,7) where 9 bits are needed to represent the
coordinate. To represent the level 2 bits are needed.
Here neighbouring octants are generated by manipulating
locational code. In the highest octree level last 3 bits are
cleared. Then 6,9,12 .. least significant bits are cleared(put
zero) by each level up. In this way sibling octants will have
same intermediate keys.
For example for 84 records set has octree level 4 and to rep-
resent locational code totally 15 bits are needed. 12 bits(3*4)
for morton code and 3 bits for level (level 4=100). To find
sibling octants first the least significant 3 bits are cleared from
locational code, then least 6 bits are cleared and so on for
the each level up. In this case the sibling octants have same
intermediate key(modified locational code) in each level .

Fig. 5. octants tree representation

C. Thresholding

RST approach [22] (robust satellite technique) is a multi-
temporal scheme of satellite data analysis that is already
successfully used to monitor volcanoes at different geographic
locations. Index of Change of the Environment (ALICE) to
detect anomalies is defined as:



TABLE I
LOCATIONAL CODES

Octant Locational Code
(Level+Morton Code)

a 00 00000000
b 01 00000000
c 01 01000000
d 01 10000000
e 10 10000000
f 10 10010000
g 11 10010000
h 11 10010100
i 11 10011000
j 11 10011100
k 10 10100000
l 10 10110000
m 01 11000000

⊗v(x, y, t, T ) =
[V (x, y, t)− VREF (x, y, T )

σv(x, y, T )
(1)

where x,y is location and t is time.The following equation
was used to find threshold values in this experiment,

⊗v(x, y, z) =
[V (x, y, z)− Vmean(x, y, z)

σv(x, y, z)
(2)

x,y,z : coordinates (longitude, latitude and depth values),
V(x,y,z) : velocity values in specific coordinate Vp ,Vs or ρ,
Vmean : mean value of Vp ,Vs or ρ,
σv :Standard deviation of Vp ,Vs or ρ ,
Vp : Primary Velocity,
Vs : Secondary Velocity, ρ : Dencity
ALICE value factor is set to 1 for generating materialised data.

D. Methodology

As Figure 6 indicates in the Map phase, the digital elevation
model is divided in to small sub regions(voxels). So each node
will query CVM model for required Vp,Vs,Rho value. Input
for this is longitude, latitude and depth values. In the Reduce
phase Vp,Vs,Rho values are compared to threshold value and
homogeneous neighbours(siblings) are coalesced in each sub
region. In the final output homogeneous regions are coalesced
together. These pre computed values can be used instead of
considering the whole region for further simulations, leading
to higher performance. This system is implemented using both
Hadoop cluster and Mars framework.

E. MapReduce Architecture

As in Figure 6, Vp,Vs and ρ values are generated for
each X,Y,Z (longitude, latitude and depth) values invoking the
CVM-H model. Each Map task considers a sub region and
generate data sets for that sub region and reducer is a zero
reducer. Zero reducer means reduce step will be skipped and
mapper output will be the final output.
Figure 7 represents the system architecture for checking homo-
geneous regions. Here, each Map task takes 64MB or 128MB
blocks and for each record it extracts locational code as the
key and other data as values. Map task clear(put zero for least

Fig. 6. System architecture

Fig. 7. MapReduce Phase in a Single Node in nth Iteration/Level

significant bits) the last 3 bits in the locational code and send
the cleared locational code as key and other data as values.
So in Reducer phase, it takes modified key(modified locational
code) as key value and the record set with same modified key
as value list to check the homogeneity in the neighbouring
octants. If Vp,Vs and ρ values of all records with same key
are homogeneous, a single value will be returned instead of
all record set for the next Iteration . If the values are not
homogeneous, all the records will be returned as final output.
This process is repeated till there are no more homogeneous
regions in the data set. Here n level can have maximum n
iterations or less.



VII. RESULTS

Table VII represents the maximum voxels/records size that
can be in each octree levels after invoking the CVM-H models.
These data(records) represents longitude,latitude, depth values
and Vp,Vs, and ρ values.

TABLE II
MAXIMUM VOXELS IN EACH OCTREE LEVEL

Octree Level Maximum Voxels
Level 1 81=8
Level 2 82=64
Level 3 83=512
Level 4 84=4096
Level 5 85=32768
Level 6 86=262144
Level 7 87=2097152
Level 8 88=16777216
Level 9 89=134217728
Level 10 810=1073741824

The results from Octree level 9 is shown in Table III, initial
data includes 134217728 records and after analysing for
homogenous records in neighbouring octants, it returns final
output as 99298212 records. So the initial data are reduced by
26.1% factor. These threshold parameters for Vp,Vs and rho
values are originally specified by ground modelling experts.
Results for different data sets are shown in Table IV

Figure 8 represents, initial data records (84 records) with
X,Y,Z(longitude,latitude,depth) values against density in level
4 and Figure 9 represents reduced final output records.

A. Execution Time

1) Execution Time with Hadoop: Table V represents exe-
cution time for 17 million and 134 million records with 2 and

TABLE III
LEVEL 9(134 MILLION RECORDS): DATA IN EACH ITERATION AFTER

CHECKING THRESHOLDING

Records Compression
Initial Data Records 134217728
After Iteration 1 To Next Iteration 4783234 28.51%

For Final Output 95951856 71.48%
After Iteration 2 To Next Iteration 319019 34.70%

For Final Output 3123434 65.29%
After Iteration 3 To Next Iteration 23384 34.66%

For Final Output 208437 65.34%
After Iteration 4 To Next Iteration 3469 48.83%

For Final Output 11964 51.16%
After Iteration 5 To Next Iteration 473 37.53%

For Final Output 2167 62.47%
After Iteration 6 To Next Iteration 62 34.25%

For Final Output 311 65.75%
After Iteration 7 To Next Iteration 12 41.93%

For Final Output 36 58.06%
After Iteration 8 To Next Iteration 3 66.67%

For Final Output 4 33.33%
After Iteration 9 To Next Iteration 0

For Final Output 3
Initial Records: 134217728
Total Records For analyzis: 99298212
Percentage : 73.9%
Reduced data : 26.1%

TABLE IV
COMPRESSION OF THE CVMH MODEL DATA(250X 250X250)M

RESOLUTION OCTANT(CUBE) WITH ALICE=1

Octree Level Sampled Octants Coalesced Octants Compression
(Initial Records) (Final output)

Level 5 32768 3967 12.10%
Level 6 262144 150808 57.52%
Level 7 2097152 1308378 62.39%
Level 8 16777216 10467876 62.39%
Level 9 134217728 99298212 73.98%

Fig. 8. Initial Input data
for Rho(ρ) values: Level 4 (84
records)

Fig. 9. Final output data for
Rho(ρ) values: Level 4 (84
records)

3 node cluster. Here, three computers are used with following
configurations:

TABLE V
OCTREE LEVEL 9 : EXECUTION TIME IN CLUSTER NODES WITH HADOOP
[(CPU MHZ: 2999.622 ,CPU(S): 2,RAM: 8GB ,INTEL(R) XEON(R) CPU

E3110 @ 3.00GHZ - 2NODES) & ( CPU MHZ: 1200.000 ,CPU(S):
1,RAM: 1GB -1 NODE)]

With 1 node With 2 Nodes With 3 Nodes
cluster cluster

Level 9 2hrs,12min,25sec 1hrs,35mins,42sec 1hrs,15mins,48sec
(134million (7945 seconds) (5742 seconds) (3948 seconds)
records)
Level 8 15 mins 34 sec 10 mins 10 sec 5 mins, 20 sec
(17million (934 seconds) (610 seconds) (320 seconds)
records)

Fig. 10. Time taken to compute homogeneous regions in octree level 8 & 9
with 3 nodes using Hadoop

2) Execution Time with Mars : Table VI represents time
taken for each octree level with Mars. With above system
configurations Tesla C2075 GPU, only upto 8 levels can
be tested (total data processing without dividing into sub
regions). This is because it is not possible to upload map
input data onto device memory, since device memory size is



TABLE VI
TIME TAKEN FOR MAPREDUCE PROCESS USING MARS WITH CUDA
(TESLA C2075 , GPU RAM= 5GB,CPU RAM=4GB,2.93GHZ INTEL

CORE I3,CUDA RUNTIME VERSION :6.5),UBUNTU 14.04

Octree Sampled Mars (ms)
Level Octants
4 4096 File reading time 67.369

Total Time 97.162
Process time without file reading 29.793

5 32768 File reading time 151.223
Total Time 231.406
Process time without file reading 80.183

6 262144 File reading time 728.256
Total Time 2011.891
Process time without file reading 1283.635

7 2097152 File reading time 6301.407
Total Time 13656.491
Process time without file reading 7355.084

8 2097152 File reading time 153545.967
Total Time 219692.911
Process time without file reading 66146.944

insufficient to allocate data .

VIII. CONCLUSIONS

When the data set is large, it have to be distributed across
hundreds or thousands of machines in order to finish process-
ing in a reasonable amount of time. Over the past few years
large clusters comprising 1000s of commodity CPUs, running
Hadoop MapReduce, have powered the analytical processing
of Big data involving hundreds of terabytes of information.
Now with CUDA GPUs have created the potential for a new
disruptive technology for Big data analytics based on the use
of much smaller hybrid CPU-GPU clusters.
Two aspects are focused in this experiment. Those are, re-
duction of input data for the final analysis and to do this
reduction effectively in terms of time. Hadoop cluster and GPU
techniques are used as different techniques in this experiment
to improve performance. As in Table IV data are reduced
considering homogeneous regions.
In this experiment hadoop release version 0.22.0 is used. These
results depend on various factors including nodes configura-
tions, number of Maps, Number of Reducers, Input format
(TextInputFormat, SequenceFileInputFormat etc..), Number of
input files / paths, File types.
Comparing run time in Figure 10, 1.5X speedup can be seen
when each node is increased in the cluster(scale out) .
Comparing with Hadoop results for 17 million records(level
8), it took 934 seconds with 1 Node & 610 seconds with 2
Nodes & 320 seconds with 3 Nodes in Hadoop Cluster. With
Mars processing time is 66 seconds. It is possible to see 5X-
10X speedup with 3 Node and 2 Node clusters. For the data
that does not fit GPU memory, data is divided into parts so as
to fit GPU memory.

IX. FUTURE WORKS

As future works Hadoop map reduce framework can be
improved using Spark. Spark is a fast and general compute
engine for Hadoop data and it provides a simple and expressive

programming model that supports a wide range of applications,
including ETL, machine learning, stream processing, and
graph computation. Spark run programs up to 100x faster than
Hadoop MapReduce in memory, or 10x faster on disk.
Also an algorithm can be implemented using thrust. Thrust is
a powerful library of parallel algorithms and data structures.
Thrust provides a flexible, high-level interface for GPU pro-
gramming that greatly enhances developer productivity. Using
Thrust, C++ developers can write just a few lines of code to
perform GPU-accelerated sort, scan, transform, and reduction
operations orders of magnitude faster than the latest multi-core
CPUs.

REFERENCES

[1] S. W. Schlosser, M. P. Ryan, R. Taborda-Rios, J. López, D. R.
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