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Abstract Ideally, probabilistic hazard assessments combine available knowledge about physical
mechanisms of the hazard, data on past hazards, and any precursor information. Systematically assessing
the probability of rare, yet catastrophic hazards adds a layer of difficulty due to limited observation data.
Via computer models, one can exercise potentially dangerous scenarios that may not have happened in the
past but are probabilistically consistent with the aleatoric nature of previous volcanic behavior in the
record. Traditional Monte Carlo-based methods to calculate such hazard probabilities suffer from two
issues: they are computationally expensive, and they are static. In light of new information, newly
available data, signs of unrest, and new probabilistic analysis describing uncertainty about scenarios the
Monte Carlo calculation would need to be redone under the same computational constraints. Here we
present an alternative approach utilizing statistical emulators that provide an efficient way to overcome the
computational bottleneck of typical Monte Carlo approaches. Moreover, this approach is independent of
an aleatoric scenario model and yet can be applied rapidly to any scenario model making it dynamic. We
present and apply this emulator-based approach to create multiple probabilistic hazard maps for
inundation of pyroclastic density currents in the Long Valley Volcanic Region. Further, we illustrate how
this approach enables an exploration of the impact of epistemic uncertainties on these probabilistic hazard
forecasts. Particularly, we focus on the uncertainty of vent opening models and how that uncertainty both
aleatoric and epistemic impacts the resulting probabilistic hazard maps of pyroclastic density current
inundation.

Plain Language Summary We present a method to forecast the probability of inundation by
hot volcanic flows of rock and gas. In some sense, we can think of a natural hazard forecast much like a
weather forecast. Instead of how likely is it to rain tomorrow, we might ask how likely is our town or the
nearby power plant to get inundated by a volcanic flow? The weather forecasting analogy is, however, flawed
in an important way when dealing with rare events. Large-scale, highly destructive volcanic flows are rare
events, of course, and it is human nature to think that such events will happen as they have in the past. But
often the scale (here think mass of the flowing material) varies randomly, and sometimes an event bigger in
scale than any in the historical recorded will happen. Thus, to generate hazard forecasts, we must rely on a
combination of models—models of the physics governing the volcanic flows as well as models that describe
the probabilistic nature of historical data. Unfortunately, the typical process of combining these models
would require thousands of hours on a super computer. Instead, we build a surrogate model of the physical
volcanic flow model that alleviates the computational bottleneck.

1. Introduction/Motivation
Mapping of volcanic hazards is often based on field reconstructions and numerical modeling of specific
past events. In contrast, our goal is to produce dynamic probabilistic hazard maps—maps of probabilities
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indicating the likelihood of a hazard affecting the mapped locations—that are consistent with past events
but can reflect both aleatory uncertainty inherent in the system and epistemic uncertainty due to imper-
fect models and limited data (Marzocchi & Bebbington, 2012; Sparks, 2003). Further, a single probabilistic
forecast map is not the goal—instead, we wish to see how dynamic probabilistic hazard maps change as we
explore these uncertainties (Bevilacqua, Neri, et al., 2017; Neri et al., 2015). Ultimately, we envision these
dynamic probabilistic hazard maps as a tool to explore the impacts of uncertainties on probabilistic haz-
ard forecasts for those charged with making a hazard map. This paper provides an efficient and reliable
statistical framework to analyze hazards under uncertainty.

Physical simulations of pyroclastic density currents (PDCs), such as those employed in TITAN2D (Patra
et al., 2005), are indispensable for examining the possible impact of PDCs for a wide range of potential sce-
narios where, how large, and how frequent. Such scenarios need to be characterized to provide initial and
boundary conditions at which PDC simulations are exercised. That said, characterizing potential scenar-
ios is a significant scientific task in its own right. The inherent (aleatoric) randomness of such scenarios
demands a probabilistic description. The probabilistic hazard mapping tool outlined in this paper enables
one to readily combine a probabilistic scenario model—inputs scenarios treated as random variables and
modeled by probability density functions—with physical simulations to yield a probabilistic description of
the hazard. Furthermore, this methodology is independent of any specific probabilistic scenario model and
yet can rapidly produce a probabilistic hazard map once a probabilistic scenario model is chosen. This allows
one to compare probabilistic hazard maps under several probabilistic scenario models and to quickly update
a hazard map as new data or more sophisticated probabilistic scenario models become available.

Probabilistic assessments of volcanic hazards based on simulations of physical processes have gained trac-
tion over the past several years (Bevilacqua et al., 2019; Biass, Bonadonna, Di Traglia, et al., 2016; Biass,
Bonadonna, Connor, et al., 2016; Cappello et al., 2015; Connor et al., 2012; Dalbey et al., 2008; Gallant
et al., 2018; Mastin et al., 2014; Mead & Magill, 2017; Sandri et al., 2016, 2018; Tierz et al., 2018; Volentik &
Houghton, 2015). Computer model emulators (also known as statistical surrogates) are an efficient tool in
this type of modeling particularly when the physical model is computationally expensive to exercise (Bayarri
et al., 2009, 2015; Spiller et al., 2014). Probabilistic approaches are particularly useful as they let one explore
the impact of “tail events” in a systematic fashion. In other words, via simulation, one can exercise poten-
tially dangerous scenarios that may not have happened in the recent past but are probabilistically consistent
with previous volcanic behavior. Typically, these strategies rely on Monte Carlo (MC) simulations to perform
probability calculations (e.g., of a hazard inundation at a particular location), as the underlying question
does a particular sample scenario lead to inundation or not at the location of interest? cannot be answered
analytically. Standard MC integration is limited by the computational expense of physical simulations as it
converges slowly, requiring typically O(103–106) unique simulations.

The computational expense of standard MC does not readily allow us to change or update probabilistic
scenario models. Neither does standard MC let us explore the impact of our models being imperfect nor
our knowledge of the data being incomplete, for example, the impact of epistemic uncertainty on hazard
forecasts. This is problematic. As states of activity in a hazard system evolve, likely so will our choice of
probabilistic scenario models describing the aleatoric variability. Further, hazard assessments in volcanol-
ogy are often characterized with a high degree of epistemic uncertainty. Ultimately, one hopes to model
both aleatoric variability and epistemic uncertainty in a doubly stochastic sense in which a probability dis-
tribution reflecting aleatory variability of the system is itself uncertain (Bevilacqua et al., 2016; Marzocchi
& Bebbington, 2012; Ogata & Akaike, 1982; Sparks & Aspinall, 2013). Indeed, for example, the initiation
site of a hazardous flow can be modeled by an uncertain probability distribution (Bevilacqua et al., 2015;
Bevilacqua, Bursik, et al., 2017; Selva et al., 2012; Tadini et al., 2017). The statistical tool described in
this study avoids the computational roadblock of standard MC and as such can rapidly produce dynamic
probabilistic hazard maps.

Utilizing statistical surrogates is a key innovation to overcoming the computational limitations of standard
MC. Effectively, such emulators are a statistical model of physical models (Sacks et al., 1989, 2013; Welch
et al., 1992). Statistical emulators can effectively replace a computationally expensive physical simulation
with a computationally “free” function evaluation. Further, they allow one to account for any uncertainty
introduced be replacing the simulator with the emulator.An emulator-based approach to probabilistic haz-
ard mapping is “dynamic” in that it allows one to explore the impacts of various sources and varieties
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of uncertainty—including estimates of the probability of vent opening as a function of location—more
efficiently than ever before.

We developed this tool for the Long Valley volcanic region (LVVR) just east of the Sierra Nevada escarpment
in California. Although some details of this approach are specific to Long Valley (aspects of the scenario
space to focus on, digital elevation models, etc.), the general approach is not specific to a particular volcano
or region. Further, we developed this tool for PDC hazards, but the tool hinges on a very general strategy
of using surrogate models of physical simulations to identify important regions of input scenario space. In
this sense, we anticipate that the approach presented here and variations thereof will prove useful for a
wide range of volcanic hazards—lahars, tephra fallout, and pyroclastic surges. In particular, we imagine that
such an approach could be useful to overcome computational challenges described in Biass, Bonadonna,
Di Traglia, et al. (2016), Gallant et al. (2018), and Mead and Magill (2017).

This study also represents a novel strategy for the dynamic implementation of evolving input information
onto the background of long-term assessments. Marzocchi and Bebbington (2012) provide a detailed review
of both long- and short-term probability forecasts of volcanic hazards. Long-term assessments are based
on past eruption data and current tectonic information, while short-term assessments ideally include the
monitoring of precursors.

A key aspect to both long- and short-term forecasting is that volcanic systems evolve through different states
of activity. As such, hazard assessments should be updated and interpreted based on the current state of the
volcano. First, efforts at this aim applied Bayesian Belief Networks as a powerful modeling tool (Aspinall
et al., 2003). Several studies have explored long-term volcanic hazard assessments using Bayesian Event Tree
methodology (Marzocchi et al., 2004, 2010; Sobradelo & Marti, 2010; Selva et al., 2010). Many recent model-
ing efforts have also explored possible implications of short-term eruption forecasting on hazard assessments
(Sandri et al., 2012; Selva et al., 2014; Sobradelo & Marti, 2015). This paper presents an efficient, compu-
tationally judicious, and reliable statistical framework for evolving hazard assessments and their attendant
uncertainties. Such an approach used in conjunction with those above has a strong potential to advance this
field.

2. Background
Our approach and application to Long Valley hazard mapping provides an efficient strategy that uses statis-
tical emulators to combine vent opening data and models and physical simulations of PDCs for probabilistic
assessment of hazards. In this section we will briefly review each of the “ingredients.”

2.1. LVVR
The LVVR is an area of bimodal basaltic-rhyolitic volcanism encompassing 4,000 km2, east of the central
Sierra Nevada mountain range (CA/NV, USA). It became active at ∼4 Ma and at ∼760 ka erupted about
650 km3 of rhyolitic magma as the Bishop Tuff (Bailey, 2004; Hildreth, 2004). The deep structural sub-
sidence inside the ring fault zone and shallower landsliding produced Long Valley caldera, a depression
32 km × 18 km (Bailey et al., 1976; Hildreth, 2017; Hildreth & Mahood, 1986). The Mammoth Mountain
system developed since 230 ka on the southwest topographic rim of the caldera and includes a lava dome
complex 3,400 m high, competing in height with nearby Sierran peaks (Mahood et al., 2010; Hildreth et al.,
2014; Hildreth & Fierstein, 2016). The Mono-Inyo Craters volcanic chain and Mono Lake Islands are a
nearly linear array of vents stretching north of the caldera for ∼45 km (Bailey, 1989; Wood, 1983), with the
most recent eruption ∼ 1700 CE. A complete database of Late Quaternary eruptive ages in LVVR and their
uncertainty is reported in Bevilacqua et al. (2018).

Tomographic and magnetotelluric studies (Achauer et al., 1986; Flinders et al., 2018; Foulger et al., 2003;
Peacock et al., 2015, 2016) suggest that numerous, separate, midcrustal, potentially active magmatic sources
(partial melt zones) lie in an irregular, N/S elongated zone, extending from Mono Lake to south of Mammoth
Mountain. It is these multiple, restless, partial melt zones that are thought to supply the active Mono-Inyo
and Mono Lake Islands volcanism.

The ongoing period of unrest in the LVVR started in 1978, with a magnitude 5.8 earthquake at the south edge
of the caldera (Hill, 2006; Hill et al., 2017). A cumulative uplift of ∼83 cm since 1980 has been measured,
centered on the early postcaldera resurgent structure, aged ∼570 ka (Hildreth et al., 2017). The uplift has
been 3–5 cm since 2011 (Montgomery-Brown et al., 2015). Numerous episodes of unrest centered under
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Mammoth Mountain have also been observed, including one in 2014 (Prejean, 2003; Shelly & Hill, 2011;
Shelly et al., 2015). Diffuse CO2 emissions at Mammoth Mountain claimed four lives in recent decades and
killed ∼40 km2 of forest (Farrar et al., 1995; Gerlach et al., 1998, 1999). In contrast, relatively little degassing
is currently measured in the Mono region (Bergfeld et al., 2015). Such a long and complex geophysical and
geochemical unrest may culminate in a future volcanic eruption that could have a serious impact on the
region (Kaye et al., 2009; Miller et al., 1982).
2.1.1. PDCs in the LVVR
The late Quaternary record of volcanism in LVVR indicates that both dome collapse (Merapi type) and
column collapse (Soufriere type) PDCs have occurred. The Panum block and ash flow (BAF) occurred near
the very end of the North Mono eruption sequence, after much of the dome building phase had ceased.
It is typical in runout and volume for a BAF at LVVR and is the best exposed of these deposits (Dennen
et al., 2014). Column collapse PDCs are documented for the South Mono, North Mono, and Inyo eruption
sequences (Bursik et al., 2014; Miller, 1985; Sieh & Bursik, 1986) and, as is common, generally occurred
near the end of the pyroclastic phases of these eruptions. Both BAF and column collapse PDC deposits
occur in the late Quaternary Mammoth Mountain eruptive record, as well as in the Mono-Inyo record. BAF
deposits crop out along California Highway 203 near Mammoth Mountain ski resort, and column collapse
deposits occur in the record of the late (∼70 ka) pyroclastic deposits documented by Hildreth et al. (2014).
The volumes of potential PDCs are inferred from the data on past flows, as well as domes from which BAF
could be generated (Appendix A). A typical volume is taken to be approximately 0.01 km3, which represents
the failure of a portion of an average LVVR dome. A maximum, “worst-case scenario” volume is very roughly
estimated to be ∼1 km3. This volume represents the failure of an entire large Mono-Inyo dome or column
collapse associated with the largest pyroclastic eruptions of the late Quaternary, the Mammoth pumice fall
of unit rfp (Hildreth et al., 2014), or Wilson Creek formation layer B7 from Mono Craters (Yang et al., 2019).
2.1.2. Vent Opening Models for Long Valley
Because it is a tectonically complex region of diffuse volcanism, identifying likely locations of future vents is
a key step in assessing volcanic hazards in the LVVR. It is instructive to quantify these likely vent locations
and represent that analysis visually. To that end, one can construct a “map of vent openings” which is a dis-
tribution of vent openings (probability per unit of area) at each point within a region of interest. There are
many examples of vent opening maps in the literature, all of which model the aleatoric variability (inherent
randomness) of vent opening in a given region. Some of those maps are solely spatial assessments; that is,
they model the vent locations conditioned on a new eruption occurring (Bartolini et al., 2013; Bebbington,
2013, 2015; Bevilacqua et al., 2015; Capra et al., 2011; Chapman et al., 2012; Connor et al., 2000, 2012; Magill
et al., 2005; Marti & Felpeto, 2010; Mazzarini et al., 2013, 2016; Tadini et al., 2017). The most common
approaches are based on the assumption that new vents will open up near past vent locations. Regions
containing structural weakness (i.e., faults/fractures) can be incorporated probabilistically by treating geo-
physical or tectonic information as a model parameter(s) (Bevilacqua, Bursik, et al., 2017; Jaquet et al., 2012;
Martin et al., 2004). Some vent opening maps are so-called doubly stochastic(Cox & Isham, 1980; Ogata
& Akaike, 1982). That is, modeling the vent opening probabilistically reflects aleatoric uncertainty of new
vent locations, but these probabilistic models themselves are subject to epistemic uncertainties which reflect
model choices and/or limited data (Bevilacqua et al., 2015, 2016; Bevilacqua, Bursik, et al., 2017; Bevilacqua,
Neri, et al., 2017; Selva et al., 2012; Tadini et al., 2017).

The hazard mapping tool we are proposing provides an efficient procedure for incorporating vent opening
maps into probabilistic hazard maps, which represent the likelihood of threats from PDCs. The intuition
of standard MC is useful—one can imagine sampling the vent opening map and then running TITAN2D
at those sampled locations. The hazard mapping tool presented herein allows such analysis with a limited
number of computationally intensive simulations. Further, it allows us to quantify how uncertainty in the
vent opening maps impacts the resulting probabilistic hazard maps.

2.2. PDC Simulations Using TITAN2D
Depth-averaged physical models for granular flows introduced by Savage and Hutter (1989) and expanded
on by Bursik et al. (2005), Iverson (1997), Iverson and Denlinger (2001), and Pitman et al. (2003) along with
digital elevation models of a basal surface form a basis for modeling the depth and extent of dry pyroclastic
flows. It should be noted that the following describes the dense basal flow. The associated surges (see, e.g.,
Ogburn et al., 2014) are not included in this model. A simplified description of this depth-averaged granular
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flow model is as follows:
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where h(x, y, t) is the depth of the flow at location (x, y) and time t. vx, vy, hvx, and hvy are flow velocities
and depth-averaged momenta. (gx, gy, and gz) are components of gravitational acceleration, and db

dx
and db

d𝑦
represent terrain slopes of the basal surface b(x, y).𝜙int and𝜙bed are internal and basal friction angles, and the
terms including them reflect dissipation due to particle-particle interactions and flow over a basal surface,
respectively. 𝜅 is a rheological parameter which combines the friction angles and a flow-dependent earth
pressure coefficient.

Solutions to equation (1) are typically not available in closed form. TITAN2D software provides careful
numerical approximations to the evolution of the flowing mass over a topography represented by a digital
elevation model (Patra et al., 2005); those interested in using TITAN2D should see TITAN2D Mass-Flow
Simulation Tool (2010). TITAN2D employs a second-order Godunov solver with an adaptive mesh. The dig-
ital elevation model provides boundary conditions for the flowing mass equations while initial conditions
(initial volume, location, and velocity of the flowing mass) and parameters (internal and basal friction) must
be provided by the user. Note that we model Mono Lake as a flat surface that PDCs would flow over. This
modeling choice is consistent, to first order, with findings for PDC transport over water as documented in
Carey et al. (1996), Edmonds and Herd (2005), Mandeville et al. (1996), and Sigurdsson and Carey (1989).
More detailed modeling assumptions could be explored but are beyond the scope of the present work. Like-
wise, in this model each PDC is initiated with a cylindrical pile of material consistent with the volume of
the flow under consideration. Although BAF and column collapse pyroclastic flows are often modeled in
TITAN2D with different initial height to width ratios and basal friction angles, we have not varied these
parameters accordingly in the present work, as our intent is not to produce an operational flow inundation
hazard map but to explore and demonstrate a methodology for doing so. Such an approximation will likely
not constrain the resulting PDCs as much as real topography near a source, and thus, one should take the
resulting PDC footprints as conservative approximations for the dense underflow portion of the PDC. Note
that we are not modeling inundation by any dilute, overriding surge cloud, which has considerably different
dynamics and generally larger inundation footprint, from that of the underflow.

For the present study, initial location is of particular interest due to significant uncertainty in the vent open-
ing location which we must explore for a probabilistic assessment of PDC hazards. Together these sets of
inputs (initial conditions and parameters) represent a “scenario.” An example of TITAN2D output from four
scenarios is illustrated in Figure 1. Here the scenarios we consider include volumes of 0.01 and 1 km3 with
initial piles centered at (320242, 4167043) and (321071, 4166406) over UTM WGS84 zone 11. For each sce-
nario from these four combinations, we plot the maximum flow depth at each location. The 1-km3 cases,
Figures 1c and 1d, demonstrate that modeling initiation with a cylindrical pile is relatively crude. That is, the
flow is less constrained than it would likely be by detailed topography of the initiation. On the other hand,
while modeling the morphology of potential future vents may be an insightful endeavor, it would also be a
substantial study in its own right. To this end, it is worth noting that any physical modeling shortcomings
will be inherited by the emulator. This does not diminish the power of the emulator—that many potential
scenarios can be explored rapidly. This point can be seen in the 0.01-km3 TITAN2D runs, Figures 1a and
1b, where a slightly different vent location results in one PDC that inundates locations close to Mammoth
and another with a PDC that flows away from Mammoth. TITAN2D can be run on clusters of computers
to speed up processing and handle large amount of simulated data. However, one TITAN2D simulation for
a typical flow simulation can take around 30 min of compute time. This computational cost makes hazard
threat assessment based on standard MC—probability calculations to carefully search scenario space for
those that lead to inundation for each map location based on TITAN2D (or any computationally intensive
physical model)—significantly expensive. Statistical emulators are a key tool to overcome this bottleneck.
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Figure 1. Estimated maximum flow depth of a pyroclastic flow in Long Valley for events of volume (a, b) 0.01 km3 and
(c, d) 1 km3 (basal friction of 10.5◦ in each case) centered at (320242, 4167043; a, c) and (321071, 4166406; b, d). (Note
that for visualization, yellow represents max height ≥50 m.) Both initial positions are near the top of Mammoth
Mountain. A red dot is placed at the center of Town of Mammoth Lakes.

2.3. Statistical Emulators
Computer model emulators (also known as statistical surrogates) are effectively statistical models of com-
putationally intensive simulators like TITAN2D (Rasmussen & Williams, 2006; Sacks et al., 1989; Santner
et al., 2013; Welch et al., 1992). The benefit of using emulators is obvious—minutes or hours or days long
simulations can be approximated by a function evaluation which is computationally free. A popular choice
of an emulator is a separable Gaussian process (GP) fit to a relatively small set of simulator input-output
pairs. For the problem at hand, we will consider an “input” to TITAN2D a set x = {x1, x2, x3, x4} where x1 =
Volume, x2 = Easting coordinate of a vent location, x3 = Northing coordinate of a vent location, and x4 =
basal friction. In this surrogate fitting approach, we will take our “data” to be the maximum height over the
flow of a run of TITAN2D at every location of the map. We will then fit a GP to our scalar output—the max
height data, h, at each location on the map (e.g., the discretized locations indexed k = 1, … ,M max height
output is reported). It is worth noting that, once the training runs of TITAN2D are complete, these M emu-
lators can be fit in parallel (the approach we take here), or the so-called partial-parallel emulation can be
applied (Gu & Berger, 2016). Considering one location, we will let yS = [h1, … , hN ]T be a vector of simu-
lated output corresponding to each of N TITAN2D runs at scenarios in the design X. That is, X = {xD

𝑗
},

j = 1, … ,N. Then the GP surrogate is given by

Y (x) = 𝜇(x) + Z(x) (2)

where Z(·) is a constant variance, mean-zero spatial GP and 𝜇(·) is a user-specified mean function, typically
taken to be linear or constant. In this work, we take the mean to be linear in the volume component and
constant in the others. Like the mean, the choice of correlation structure is user specified. Typically, for
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emulating computer experiments a separable (distinct correlation length scale for each input dimension)
power exponential correlation or Matèrn correlation function is employed. Here we will use the Matèrn 5-2,
given by

c(xi, x𝑗) =
(

1 +
√

5d + 5d2

3

)
exp

(
−
√

5d
)

(3)

with d =
√∑4

m=1 (x
m
i − xm

𝑗
)2∕𝜌2

m and where 𝜌m is the correlation parameter in the mth dimension of input
space. We will define the N × N correlation matrix to be R = [Rij] with elements Ri𝑗 = c(xD

i , x
D
𝑗
). Then we

have the predictive mean and standard error given by

h̃(x) = E[Y ] = 𝜇(x) + RTR−1 (yS − 𝜇(xD)
)

(4)

s2(x) = 𝜎2
z

(
1 − RTR−1R + (1 − 1TR−1R)2

1TR−11

)
(5)

where 1 is a length N column vector of ones and R =
(

c(x, xD
1 ), … , c(x, xD

N )
)T . Beyond these definitions,

“fitting” a GP amounts to finding good estimates of parameters—𝜎2
z , parameters in 𝜇(·), and parameters in

the correlation structure, namely 𝜌1, … , 𝜌4 for this work. The takeaway here is that we now have estimates
of TITAN2D output from evaluating h̃(·) at scenarios where we did not run TITAN2D; for example, x ∈ ,
but x ∉ X. Further, s2(·) quantifies how much uncertainty we introduce by replacing h(·) with h̃(·). In
past work we have shown that the surrogates so constructed have small and quantifiable error in predicting
h(x, y) obtained by running TITAN2D. The surrogates are able to emulate TITAN2D, but situations where
the simulator performance is poor (e.g., the rheology assumed is a poor match for the actual flow or where
numerical grid choices are too coarse) are also reflected in the surrogate.

There are two natural approaches to implement emulator-based MC. Either one can directly sample Y
(instead of h) in a MC calculation or one can utilize h̃ to search for hazard contours that divide the input
space by separating scenarios that lead to hazard from those that do not. In this work, we will focus on the
former approach but explore the latter to build visual intuition about the methodology.

3. Methodology: Building a Dynamic Probabilistic Hazard Map
Here we will illustrate the methodology for building a dynamic probabilistic hazard map that combines syn-
thetic model-based data. The hazard mapping tool begins with a set of simulator runs, TITAN2D runs in our
case. For the reader not familiar with using emulators of complex computer models, the set of training runs
may not seem intuitive. Thus, we will describe motivation for and choice of the design, inputs/scenarios, to
exercise our training runs. Then we will describe building the emulators, extracting inundation contours,
and calculating inundation probabilities. We will walk through this process focusing on one map location,
but it is important to keep in mind that once the initial training runs are complete, the rest of the process
can (and should) be run in parallel. It is worth emphasizing that the probability calculations are done post-
processing and thus can be run repeatedly to reflect both aleatoric and epistemic uncertainty in probability
calculations. Further, if desired, these postprocessing probability calculations can be run for any level of
PDC inundation, hcrit, that the user defines to represent a PDC inundation hazard.

3.1. Designs for Hazard Mapping
Recall that the inputs we vary for different runs of TITAN2D are the event volume, Easting and Northing of
vent locations, and the basal friction coefficient. It is important to keep in mind that we are not assigning any
probability to events in the design but that we need to account for regions of design space that we may want
to sample later. To this end, in choosing the initial design of N distinct quadruplets {xD

𝑗
}, there are three

concerns to weigh: covering input space for the whole map, accounting for tail events, and space filling.

Covering the input space for the whole map balances the fact that a “global” probabilistic hazard map is
effectively the composite of many “local” problems. Intuitively, if a vent opens near a specific map location,
even a relatively small volume PDC could be catastrophic to that location. In contrast if a vent opens, say,
several kilometers away, it may take a very large volume of PDC to inundate the location of interest. Thus,
each location on the map has a critical region of design space, and a global design relevant for the whole
map must cover the union of these critical regions.
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Figure 2. (a) Projections of the design points into the basal friction-volume plane and (b) the Northing-Easting plane.

Accounting for tail events reflects that we take a probabilistic approach to quantifying hazards in our design
and include TITAN2D simulations that may correspond to very low probability events. Even if an event
is low probability, if we have no samples (TITAN2D runs or approximations thereof) near that event in
input/scenario space, corresponding probability calculations will be highly uncertain. To this end, we inten-
tionally choose to sample a wide footprint of vent opening locations and volumes up to 2 km3. In both cases
these ranges go beyond what we think is realistic, even for a rare catastrophic hazard. To reiterate, no prob-
abilities are assigned as this point in the process. That said, those points are included so that the support of
any probability density function that we might use to describe aleatoric variability is appropriately sampled
for the purpose of building emulators.

Space filling designs are the standard approach for training emulators of complex computer models (Santner
et al., 2013). In this work, we use so-called maximin Latin Hypercube (LHC) sampling to choose our design
points. These LHC designs spread out samples to ensure that the maximum distance from any point in
design space to its nearest neighbor is (approximately) minimized and thus are called space filling designs
(Johnson et al., 1990). Further, such LHC sampled designs when projected onto one axis of the input space
(4-D, in our case) will appear to the eye as N distinct samples from a uniform distribution as opposed to
using a grid which would result in N1/4 evenly spaced grid points.

Projections of the N = 12, 000 design points used to demonstrate the methodology are displayed in Figure 2.
In the Northing-Easting plane, we extended the design beyond the support of both the simple Gaussian
mixture model fit to previous vent locations and beyond the support of the sophisticated vent opening map
model Bevilacqua, Bursik, et al. (2017). Nominally, basal friction is a material property which is approxi-
mated by the angle whose tangent is H∕L (height drop of flowing mass/horizontal extent of runout; Hayashi
& Self, 1992; Sheridan, 1979). In physical models, the basal friction effectively acts as a mobility parameter
with lower values leading to more mobile flows (Charbonnier & Gertisser, 2009, 2012; Ogburn & Calder,
2017). The projection into the basal friction-volume plane is nonstandard in two ways. First, the density of
design points is twice as high below 0.05 m3 as it is above. This choice is motivated by the relative footprint
of typical small versus large volume flows to ensure that every location on the map has some small vol-
ume PDCs that lead to inundation in that site's emulator design. Second, for volumes less than 0.01 km3 the
design is clearly not a rectangle and warrants further explanation. It is known that gravity-driven mass flow
models such as TITAN2D do not accurately capture the mobility of large volume flows. Large volume flows
are more mobile than material properties of the flowing material would suggest. The work of Ogburn (2014)
and Ogburn and Calder (2017) shows that this model inadequacy can be mitigated by running TITAN2D
with artificially low (in the material property sense) basal friction values and then achieving model flow
mobility consistent with observed PDCs. The transition from basal friction values appropriate for small vol-
ume flows to those appropriate for large volume flows was modeled in Ogburn et al. (2016), and we based
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the range of basal friction values on this relationship. For volumes larger than 0.01 km3, we use a range from
9–12◦ which is again consistent with Ogburn (2014) and Ogburn and Calder (2017).

3.2. Emulating Hazard Contours and Calculating Hazard Probabilities
The process to construct emulators and to calculate hazard probabilities is identical for each location on the
map, and thus, we will describe it for just one location of interest, a site within the Town of Mammoth Lakes
(Mammoth). (Of course, to make a probabilistic hazard map, this process is repeated for each of M indexed
points on the map.) Mammoth has been already the target of volcanic risk analysis of critical infrastructures
(Kaye et al., 2009). Although the methodology does not require one to condition on a PDC occurring (Bayarri
et al., 2009, 2015), for demonstration purposes and to focus on the impact of uncertain vent openings, we
choose to do so. Thus, we seek to calculate the probability of inundation conditioned on an event of volume
v having occurred and visualize the impact of vent opening models on probabilistic hazard maps. We can
calculate this probability for any volume, but we will focus on two volumes, v = 0.01 km3 and v = 1 km3

which we take to represent a typical PDC for LVVR or a worst-case scenario PDC, respectively. A detailed
analysis of potential PDC volumes, based on previous eruptions, is reported in Appendix A. Note that we
are not endorsing gravity-driven, shallow water like flow models such as TITAN2D as “good” models for
flow events resulting from column collapse, but our approach is agnostic to physical/computational models.
That is, further analysis could be done with a different model specifically describing large mass flows from
column collapse events, including multiphase and 3-D effects (e.g., Iverson & George, 2014; Neri et al., 2003;
Pitman & Le, 2005; Valentine & Wohletz, 1989; Valentine & Sweeney, 2018).

We treat the vent location probabilistically, and we can consider any probability density function, p(E,N),
where E and N are the Easting and Northing coordinates of vent opening. Such an exploration is twofold.
We can consider different aleatoric models of the vent location and the resulting probabilistic hazard maps
under each. Likewise, by the same approach, we can consider epistemic uncertainty in a single probabilistic
model of vent opening.

Calculating a hazard probability amounts to doing an integral. For the Town of Mammoth Lakes (henceforth
referred to as Mammoth and indexed by the subscript k), we have

Pk(inundation|event volume V = v occurs) = ∫
1hk≥1m p(E,N)dEdN (6)

where  is defined by E ∈ [294000, 348000], N ∈ [4138000, 4232000] and 1hk
≥ 1m is an indicator function

that is 1 if the flow height meets or exceeds 1 m at Mammoth and 0 otherwise. (Note that 1 m is a user-defined
choice to represent PDC “inundation,” likewise 0.25 or 0.5 m would be reasonable choices.) In a standard
MC approximation, it can be written as

Pk(inundation|event volume V = v occurs) ≈ 1
Nsamp

Nsamp∑
i=1

1hk(Ei ,Ni)≥1m (7)

where Ei,Ni ∼ p(E,N). Note that hk(Ei,Ni) represents the maximum height of the flowing mass resulting
at Mammoth for a PDC of volume v from a vent located at (Ei,Ni). This MC approximation would be pro-
hibitively expensive if each MC sample required a TITAN2D run. In other words, the computational expense
of this calculation is in evaluating the indicator function. To overcome this limitation, we utilize an emulator
of the max flow height of TITAN2D which we can use to approximate evaluations to this indicator function
rapidly. That is, we replace hk(Ei,Ni) ≥ 1 m in the indicator function in equation (7) with h̃k(Ei,Ni) ≥ 1 m.
Note also that we can quantify the uncertainty of using the emulator in place of TITAN2D by sampling the
GP given by equation (2) for Mammoth directly instead of utilizing the GP predictive mean. In this case, we
replace the right-hand side of equation (7) as

1
Nsamp

Nsamp∑
i=1

1hk(Ei ,Ni)≥1m = 1
NsampN′

samp

Nsamp∑
i=1

N′
samp∑
𝑗=1

1H𝑗

k(Ei ,Ni)≥1m

where H𝑗

k is the jth draw from the GP fit at Mammoth and the additional MC step to quantify the uncertainty
induced by replacing TITAN2D with a GP has Nsamp′ samples.

To construct this emulator, we first begin by identifying a subdesign or a subset of the full design that is
critical for Mammoth. For any location of interest, most of the TITAN2D runs from the full design will
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Figure 3. (a) Gray surface represents the level surface corresponding to x ∈ , where h̃(x) = hcrit, x-y plane is Easting
and Northing, and the z axis is volume on a log scale. Green (zero height) and red (positive height) dots denote training
runs of TITAN2D used to construct the emulator at Mammoth; for example, x ∈ Xk. Runs initiated at a given x and
median basal friction value, which fall within the contour defined by constant volume planes parallel to the x-y plane,
lead to inundation. (b) Level curve evaluated at v = 0.01 km3 (inner black curve) and v = 1 km3 (outer black curve),
effectively visualize slices of the surface on the left. Blue dots are 105 random samples of the vent location according to
the model in Bevilacqua, Bursik, et al. (2017). For a pyroclastic density current of given volume initialized at a design
point, vents within the respective black curve will result in inundation at Mammoth (red star).

result in no flow at that location. Thus, we will discard most of the zero-flow runs and keep only those
that are closest (in design space normalized to a unit hypercube) to TITAN2D runs that result in a positive
maximum flow height. Typically, the number of “critical” design points relevant to a location of interest is
approximately 2 orders of magnitude smaller that the full design and for Mammoth example is 270. (Note
that this approach to choose a subdesign is independent of the user-defined inundation threshold, hcrit.)
Again, denoting Mammoth with the index k, the resulting subdesign Xk ⊆ X in hand, we then move onto
building emulators and constructing hazard contours for Mammoth.

To help visualize this process, it is useful to think of the emulator's role in the probability computation in
another fashion. An emulator helps us identify a curve (or surface) that separates events in scenario space
that lead to inundation from those that do not. Toward this end, we build an emulator of the maximum
flow height at Mammoth utilizing only x𝑗 ∈ Xk and output from the corresponding TITAN2D runs ys

k =
{hs

k(x𝑗)}. We find the predictive mean of the resulting emulator by using this data in equation (4). We then
use the surrogate mean function, h̃k(x), to determine a level surface in design space, that is, x ∈  such that
h̃k(x) = hcrit. Figure 3a shows this level surface for Mammoth in volume×Easting×Northing space along
with the critical design points used to fit the emulator at Mammoth (Note that the level surface is evaluated
at the median basal friction value). Figure 3b shows contours in Easting×Northing space that result from
evaluating this level surface at specific volumes—here we focus on v = 0.01 km3 and v = 1 km3. About
105 random samples for the PDC initiation vent locations are also plotted on Figure 3b. Those are sampled
according to the probabilistic model detailed in Bevilacqua, Bursik, et al. (2017) and reviewed in section 4.2
of this study. We remark that the sharp boundary of the vent opening region depends on the uniform map
layer included in the model. The boundary is located at a 20-km range from past vent locations, excluding
regions above 3,000 m if not within a 5-km range from past vents. This choice is discussed in the vent opening
study, and it is relevant to mitigate the possibility of PDC unrealistically initiating over nonvolcanic plateaus
or peaks in the Sierra Nevada range. (Note that we use physical information where available to restrict the
analysis to only plausible inputs.) We also remark that ∼ 90% of the initiation points displayed in the figure
are localized along the Mono-Inyo volcanic chain, close to Mammoth Mountain, or over Mono Lake islands.

Using such a level curve in place of an indicator function in the MC calculation in equation (12) amounts
to sampling a probability density function for vent locations, p(E,N), and counting the fraction of vents
that fall within the level curve. As such probability calculations are now a postprocessing step that have
computational demands only restricted by the sampling.
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3.3. Computational Advantages of Emulator-Based MC
The most obvious advantage of using emulator-based MC is that TITAN2D runs each take
O(minutes)-O(hours) on super computers (depending on the domain, the local topography, the numerical
error tolerance, etc.) while emulators take a fraction of a second to evaluate on a laptop. This speedup is
perhaps not obvious in light of the extensive set of training runs we presented. LVVR covers 4,500 km2

and getting adequate coverage of possible vent locations to build emulators required N = 12, 000 training
runs. For any location of interest in LVVR, there are roughly N/10 runs whose vents are near enough to the
location of interest to get any flow to that location for the largest volume we considered (a 2-km3 flow). Of
course, run at smaller volumes, many of these runs still result in no flow at the location of interest. For fitting
an emulator, as we described for Mammoth, we need roughly an order of magnitude fewer runs (270 in that
case.) Of course, nearby locations will share “important” runs, but the large design required at LVVR is due
to the large spatial domain of that area and inputs to the emulator that vary spatially (e.g., vent locations.)

The power of replacing standard MC with emulator-based MC can be seen from investigating error analysis
of MC calculations. Our exceedance probability calculations are just integrals and in the most generic sense
can be written as

E𝑓 [G] = ∫
∞

−∞
g(x)𝑓 (x)dx (8)

where, in analogy to equation (12), g(·) is the indicator function and f(·) is a probability density function
describing our aleatoric uncertainty about potential scenarios. If we define the error in our MC simulation
as

e =
|||||| 1

N

N∑
i=1

g(Xn) − E𝑓 [G]
|||||| Xi ∼ 𝑓 (9)

then by Chebyshev's inequality, we have an error estimate given by Papoulis and Pillai (2002) and Ross (2012)

e ∝
√

var𝑓 [G]√
N

. (10)

Equation (10) tells us that there are two mechanisms to reduce the error in an MC estimator. The first is to
increase the number of MC samples. Note that since MC is O(N−1/2), we require a hundred fold increase in
to get 1 order of magnitude improvement in the error of the estimator. This is clearly problematic if each
additional sample requires an O(min)-O(hr) computation. The other mechanism to reduce the error is to
reduce the variance of the MC estimator, varf [G]. Importance sampling is a powerful variance reduction
technique, and there is a well-known result that the optimal importance sampling distribution is 𝑓 (·) ∝
𝑓 (·)g(·) (Bucklew, 2010). For our dynamic probabilistic hazard mapping approach this has two implications:
through f(·), variance reduction depends on the choice of aleatory model and through g(·) variance reduction
is location dependent as the indicator function is location dependent. Thus, there is no obvious systematic
way to improve MC estimates for calculating inundation probabilities for a whole map at once via smart
sampling schemes using a fixed and small number of samples. And if somehow we found one, it would be
suboptimal if we wanted to consider the impact of utilizing other probability distributions of scenarios as
we do to quantify epistemic and aleatoric uncertainties. Alternatively, one could explore location-dependent
importance sampling schemes by using the estimate of the indicator function provided by the emulator in
𝑓 (·) ∝ 𝑓 (·)g(·).

4. Results and Discussion: Dynamic Probabilistic Hazard Maps in the LVVR
The hazard mapping tool proposed here provides a systematic and efficient strategy to combine physical
modeling and statistical modeling for forecasting resulting volcanic hazards. This approach provides both
state of the art hazard forecasting through probabilistic hazard maps and a mechanism to quantify attendant
uncertainties.

4.1. Quantifying Aleatoric Uncertainty
The process of constructing emulator-based probabilistic hazard maps as described in section 3 is indepen-
dent of any specific vent opening model. Ultimately, a probability model for vent opening that reflects the
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Figure 4. Dynamic probabilistic hazard maps conditioned on a PDC event of volume of 1 km3—a “worst-case
scenario” PDC at Long Valley volcanic region—and based on (a) a uniform vent opening probability distribution, (b) a
Gaussian mixture model based on known past vent locations, and (c) the mean values of the doubly stochastic model
in Bevilacqua, Bursik, et al. (2017). Black triangles mark past vent locations in the last 180 ka (Bevilacqua, Bursik,
et al., 2017). PDC = pyroclastic density current.

aleatoric variability of the system must be chosen and the resulting map quantifies that choice of aleatoric
variability via the hazard probability calculation in equation (12).

The dynamic probabilistic hazard mapping tool lets one investigate the impact of aleatoric modeling choices
on hazard forecasts. Here we walk through how a typical probabilistic modeling process might proceed.
Thus, we start with an uninformed, naive model of vent opening to reflect aleatoric variability, namely, a
uniform probability of vent opening over a given region. Then we proceed to consider a simple vent opening
model based on previous vent locations in LVVR. Finally, we consider a sophisticated model that incorpo-
rates both previous vent opening data and other geological data that indicate areas of possible new eruptions.
The key here is that one does not have to wait for “the best aleatoric model” to be developed to devise hazard
forecasts, and thus, one can see the impact of modeling choices on those forecasts.

Figure 4 shows three examples of probabilistic hazard maps (PHM) according to these very different vent
opening probability models and assumes an event of volume of 1 km3, for example, a worst-case scenario
PDC in LVVR (see Appendix A). (Note that in this example and throughout this section, we take hcrit =1 m
and evaluate the emulator at the median basal fiction value, 10.5◦.)

In detail, Figure 4a adopts a uniform vent opening probability distribution of a rectangular domain encasing
the past vent locations over the region [313000, 33100]× 4140000, 4231000]. The hazard levels are signifi-
cantly spread and influenced by topography, with 20% reached in the canyon of the Middle Fork of the San
Joaquin River. Figure 4b adopts a Gaussian mixture model with four components fit to past vent locations.
Hazard values are more peaked, with values >50% in the area of Mammoth Mountain and >20% West and
South of the Mono domes, as well as in the West Moat of Long Valley caldera. Figure 4c adopts the mean
values of the doubly stochastic model under consideration.These data—samples from the doubly stochastic
model–are publicly available here (Bevilacqua et al., 2019). Hazard values >35% are estimated for the area
West of Mono Domes and values >20% in the Inyo Domes region, the West Moat of Long Valley caldera,
and all around the Mono chain including the South portion of Mono Lake. In summary, the vent opening
model has a profound effect on the PHM values—on the maximum hazard levels reached, on where they
are located, and on the spatial extension of the area exposed. We imagine that this kind of analysis could
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Figure 5. (a, b) Vent opening probability maps for Long Valley volcanic region based on Bevilacqua, Bursik, et al.
(2017). In (a) we show the mean values of the probability per square kilometer and in (b) the uncertainty index
associated with those values. In (c) we show the uncertainty index of the related probabilistic hazard map (Figure 4c).
Black triangles mark past vent locations in the last 180 ka. PDC = pyroclastic density current.

be very useful not as a finished product but as an aid for understanding and communicating the impacts of
aleatoric uncertainties through the modeling process.

The power of this methodology lies in the ability to rapidly construct maps such as those in Figure 4. Once
TITAN2D training runs are done and emulators are constructed, producing new probabilistic inundation
maps takes roughly 5–10 min on a cluster. Thus, it is very easy to explore different aleatory probabilistic
descriptions of scenarios. In particular, we believe that this could be a useful tool to incorporate moni-
toring data into such probabilistic inundation studies. Aleatory models can be updated/adjusted to reflect
new information from monitoring data and then fed through the probabilistic hazard mapping process to
visualize the impacts of these updates on probabilistic inundation maps. This approach is faster than run-
ning a few one-off TITAN2D flows representing scenarios consistent with monitoring data. Further, and
more importantly, this approach is statistically robust as incorporates probabilistic descriptions of potential
scenarios.

4.2. Probabilistic Hazard Analysis in LVVR and Quantifying Epistemic Uncertainty
In the following description, we focus our hazard analysis by utilizing the vent opening map(s) described
in Bevilacqua, Bursik, et al. (2017). This is the most reliable vent opening model available to us, in terms of
volcanological knowledge. In this model, the authors consider “map layers” associated with three different
conceptual models and combine them with weights found using a Bayesian Model Averaging approach.

The first model focuses exclusively on the distribution of past vents and describes the expected distance
to new eruptive vents relative to past vent locations. The second model assumes that fault outcrops
(i.e., mapped faults) are related to future vent locations. Only structures which are likely to have previously
interacted with the rise of magma are considered, highlighting the preferred routes of previous dike intru-
sion. The third model is a uniformly distributed probability map inside a conservative (i.e., large) distance
range. It considers the effect of potentially missing information such as the presence of unknown past vents
or any vent opening dynamics missed by the other models. Note that the model averaging weights them-
selves are uncertain, reflecting the main effects of epistemic uncertainty in the doubly stochastic framework.
In particular, the sources of epistemic uncertainty include the unknown relationship between events in
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Figure 6. Probability of inundation hazard at Mammoth as a function of
pyroclastic density current volume. The mean hazard probability is plotted
as a solid black curve. The full spread of probabilities reflecting epistemic
uncertainty in the vent opening model is shading in light purple, while the
95% credible interval is within the black dashed curves.

the Northern (Mono) part of the region relative to those in the Southern
(Mammoth) part, the unknown expected distance to future vents from
past locations or from fault outcrops, and the chance of unmapped faults.

Figure 5 displays this state-of-the-art vent opening map along with prob-
abilistic hazard maps that utilize the vent opening model under consid-
eration. We have 250 sample vent opening maps from this model, each of
which has different weights to combine the map layers in the Bayesian
Model Averaging approach. These map samples reflect epistemic uncer-
tainty in the vent opening model and that epistemic uncertainty varies
spatially. Figure 5a displays the mean values of the vent opening pdf
per square kilometers. Maximum values of 1.3% probability per square
kilometers are located along the Mono chain and around Mammoth
Mountain. Secondary maxima above 0.5% per square kilometers are on
the Inyo chain and on the islands and North shore of Mono Lake. Positive
values, but <0.02% per square kilometers“ are spread on a wide region.
Figure 5b shows a description of variability due to epistemic uncertainty
among the vent opening map samples given by the uncertainty index

U(x, 𝑦) ∶=

{
𝜆 · q95(x,𝑦)−q5(x,𝑦)

q5(x,𝑦)) , if q5(x, 𝑦) > 0

0, otherwise
(11)

where (x, y) are the geographic coordinates, qn is the nth percentile of the vent opening pdf, and𝜆 is a normal-
ization constant such that max(U) = 1. The uncertainty index is a new definition and maps the uncertainty
as a relative error. We note that the uncertainty index is zero when the 5th percentile is (exactly) zero. How-
ever, in our case, if that is happening then the 95th percentile is also zero, thus the uncertainty is zero. The
index shows that the maximum uncertainty is localized in the Mammoth Mountain area, but significant
uncertainty affects the vent opening probability in Mono Lake and to the East of the Mono region.

Figure 5c displays the uncertainty index of the PHM of Figure 4c. Uncertainty is significantly peaked around
Mammoth Mountain, the West Moat of Long Valley caldera, and in the canyon of the Middle Fork of
the San Joaquin River. Before moving on to further hazard analysis, we describe in more detail how the
emulator-based hazard mapping tool is used to construct Figures 4c and 5c.

The probabilistic hazard mapping approach presented here can readily capture the effects of epistemic
uncertainty on a forecasted PDC hazard map. To do so, we construct a probabilistic hazard map using
equation (7) for each of the 250 sample vent opening maps. That is, we repeat the MC calculation for each
of 250 p(E,N), but the added computational expense is negligible when using the emulator in place of
TITAN2D. And for each location of interest (e.g., Mammoth), the emulator only needs to be constructed
once. Considering Figure 3b, the analogy here is that each sample of the vent opening map will yield a dif-
ferent set of vent samples that can be evaluated with the same emulator. That is, the blue dots will change
from one map sample to the next but not the black contours.

We can construct dynamic probabilistic hazard maps conditioned on any PDC volume. This allows us to
explore the probability of PDC hazard inundation as a function of volume under any vent opening map.
Figure 6 shows this probability of catastrophic hazard (here defined as a flow exceeding hcrit = 1 m) as a
function of PDC volume at Mammoth. The epistemic uncertainty inherited from the vent opening model is
also explored as a function of volume and included in this figure. It is worth noting that the mean hazard
probability has the steepest slope between volumes of 0.1 and 0.3 km3. This kind of analysis is useful in
thinking about the sensitivity of hazard forecasts to an uncertain input scenario even when a probabilistic
model of that scenario is not readily available.

In Appendix A we explore four models for volume (two data sets and two models for each.) We will not
present full probabilistic hazard maps using those models as the models are still preliminary. That said,
incorporating volume models into the probability of inundation calculation is quite straight forward. Thus,
emulator-based MC approach allows us to explore the impacts of epistemic uncertainty in the vent opening
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Figure 7. Histograms of probabilities of inundation at Mammoth reflecting epistemic uncertainties are depicted above.
In each figure, the blue histograms reflect uncertainty in the vent opening model and volume model (Case 1), the
salmon histograms reflect uncertainty only in the volume model (Case 2), the purple histograms fix both models, and
the white bars represent the mean inundation probability in each case. Each figure above represents one model/volume
data set choice: (a) Pareto distribution, past dome data set; (b) Lognormal distribution, past dome data set; (c) Pareto
distribution, PDC data set; and (d) Lognormal distribution, PDC data set. PDC = pyroclastic density current.

models (as above) and volume models on the probability of inundation. To isolate the impacts of epistemic
uncertainty on the hazard forecast at Mammoth, let us consider an updated version of equation (7), namely,

Pk(inundation | PDC occurs) = ∫
1hk≥1m p(E,N)p(V)dEdNdV (12)

Here p(V) has uncertain parameters, and we can either plug in the average parameters or sample those
parameter values to get a family of p(V)s much as we have a family of 250 vent opening maps as described
above. For each p(E,N) and p(V) under consideration, we will take Nsamp = 105 MC samples of {E,N,V}
as to diminish the effects of MC error on the calculations of Pk (recall that k was the index that denotes
Mammoth.) We explore three cases and present histograms of each: (1) sample parameters in p(V), sample
vent opening maps p(E,N); (2) sample parameters in p(V), fix p(E,N) (as full posterior); and (3) fix p(V) at
median parameter values, fix p(E,N). In each of the three cases, and for each of the four volume models
under consideration, we repeat the MC calculation 250 times and collect histograms of hazard probabilities
that illustrate the impacts of the various sources of epistemic uncertainty. These results are summarized in
Figures 6 and 7. The epistemic uncertainties for models fit to past dome deposit data (a and b) are relatively
similar to each other. As anticipated from the heavy-tailed nature of the Pareto distribution (a) the right
“tail” of the histograms extends further than they do in the lognormal case (b; for both histograms 1 and 2),
although the lognormal has a higher mean inundation probability. In contrast, the epistemic uncertainties
for models fit to only PDC deposit data (c and d) behave quite differently from each other. In the Pareto case
(c) there is a dramatic impact on the right tail of both probability histograms (1 and 2). The mean inundation
probability estimate for the Pareto case is about twice that for the lognormal case. Further, the mean value
in the Pareto case barely falls in the support of histogram (2) for the lognormal case (Figure 7).

Note that Figures 6 and 7 represents 300 million individual MC samples which would be computationally
infeasible if a new TITAN2D run were required for each but takes roughly 2 hr (10 min for each of 12
histograms) to complete on a laptop. As with the dynamic probabilistic hazard maps presented in this paper,
such an analysis could be run for each site in parallel with distributed jobs on a cluster.
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Figure 8. (a, b) Mean probabilistic hazard based on the model of Bevilacqua, Bursik, et al. (2017) and conditioned on a
PDC event of volume of 0.01 km3 plotted over a topographic map in (a), over a satellite image in (b; note that we are
presenting both as snow cover obscures some of the topography that drives inundation toward the southwest of
Mammoth Mountain), (c) the corresponding uncertainty index of the probabilistic hazard map. Black triangles mark
past vent locations in the last 180 ka. PDC = pyroclastic density current.

We remark that, even if we focus on volumes larger than V = 0.001 km3 (see Figure 2a), the chance of future,
smaller PDCs may not be negligible, because they are difficult to distinguish in the ash layers and often
ancillary to larger flows (see Appendix A). However, the footprints of such flows are quite geographically
constrained and we suspect a resulting PDC hazard forecast map would differ little from the vent opening
model under consideration. Instead, for larger PDCs, the interplay of vent opening, topography, and flow
physics is usually nontrivial. From Figure 6 it is apparent that rare yet large-scale events are those most
likely to lead to catastrophic hazards.

Assuming V = 0.01 km3, Figures 8a and 8b show the mean of our 250 probabilistic hazard maps over
two representations of topography, while Figure 8b shows the uncertainty index, which describes variabil-
ity among the 250 probabilistic hazard maps. Note that the palest yellow which dominates the left/middle
figures represents a probability of hazard of less than 1%. Some of this area reflects the uniform component
of the vent opening model (and hence location of possible future PDCs) which itself represents epistemic
uncertainty. Taking such uncertainties into account renders these resulting probabilistic hazard maps as
rather conservative. The mean hazard values are ≥1% only in a range of ∼5 km from the past vents of Mam-
moth Mountain, Mono-Inyo domes, and Negit Island in Mono Lake. Hazard values >5%, with maximum at
7.4%, are located in the northwest of the Mono chain and at the eastern base of Mammoth Mountain, where
Mammoth is situated. The uncertainty index is again peaked around Mammoth Mountain and surrounding
areas, with secondary maxima to the east of Mono domes and in the northwest of Mono Lake.

5. Conclusion
We have constructed probabilistic hazard maps for PDCs of volumes 0.01 and 1 km3. These volumes volumes
are representative of the largest PDC volumes seen in the LVVR in the Holocene and the late Quaternary,
respectively (Sieh & Bursik, 1986). The probabilistic hazard maps represent the likelihood, with uncertainty,
that a flow of the given volume would inundate a locality, assuming the physical model is appropriate and
given an eruption can happen at vent locations consistent with the aleatoric model of vent locations from
Bevilacqua, Bursik, et al. (2017) and eruptive behavior typical of the late Quaternary period. For PDCs of
volumes of the range ∼0.01–1 km3, the inundation could likely pose a risk to large engineered structures
and complexes such as dams, bridges, and entire ski resorts in addition to roads and minor, nonengineered
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structures, such as houses. We further illustrated how, using this emulator-based strategy, we can incor-
porate probabilistic models of volume and vent opening into such hazard calculations. Further, this
methodology enables visualization of the impact of scenario model epistemic uncertainties on the proba-
bility of inundation as we illustrated at Mammoth. The impact of other uncertain inputs can be analyzed
in a similar fashion. If combined with a temporal vent opening map (Bevilacqua et al., 2018), the data in
these maps could be used to generate a map of probability of inundation on an annualized, centennial, or
millennial basis, whichever is more appropriate to a given engineering or civil defense application.

In the present contribution, we have discussed the role of statistical surrogates (emulators) in volcanic
hazards assessment and probabilistic hazard map construction for the LVVR, CA.

The important points of the exercise are the following:

• Emulators provide a flexible tool for the construction of probabilistic hazard maps from a particular type
of volcanic phenomenon (in the present case, PDCs), given aleatory and epistemic uncertainty in the
position, persistence, and characteristics of the potential source locations. New, computationally costly
numerical model (simulator) runs are not needed as knowledge of the source improves with continued
development of geologic information on past events or geophysical information about evolving unrest.
Moreover, the direct characterization of the critical output as a function of possible eruption scenarios (in
terms of location, volume, and mobility of flows) compensates for the lack of knowledge of many aspects
of the physics.

• Dynamic hazard maps allow one to efficiently examine the impact of various sources of uncertainties on
probabilistic hazard forecasts.

• Given the ability to develop a hazard map quickly, we have shown that there is a role for near real time,
probabilistic hazard forecasting and hazard mapping as a situation of unrest, or continued generation of
pyroclastic flows evolves.

• The TITAN2D modeling tool here makes many simplifications and does not capture the effect of several
significant phenomena (e.g., entrainment and flow stopping criteria) for which data are unavailable and/or
the physics is poorly understood. Nevertheless, the careful accounting of uncertainty in the dynamic
probabilistic hazard map construction outlined here is insightful and implicitly overcomes some of the
inadequacy of the model while providing support for decision making by experts.

• Potential further investigations include the following:
- As part of a holistic probabilistic hazard study at LVVR, calculating frequency and volume models of flow

hazards and incorporate those using the presented methodology to make probabilistic hazard maps and
study the impacts of various uncertainties (see Appendix A for a preliminary analysis of past volumes.)

- Making it possible for civil authorities to communicate probabilistic hazard forecasts and uncertainties
as part of a hazard analysis or risk assessment.

- Taking temporal eruption frequency into consideration, providing time-space assessments (Bebbington
& Cronin, 2011; Bebbington, 2013; Bevilacqua et al., 2016; Connor & Hill, 1995; Jaquet et al., 2017) and
even volume-space assessments (Bebbington, 2015; Bevilacqua, Neri, et al., 2017).

We reiterate that, although details in this work are specific to PDCs and the LVVR, the approach we present
here is quite general and flexible. That is, a similar emulator-based dynamic hazard mapping strategy could
be applied to different volcanoes or volcanic regions. Further, a similar strategy could be used to assess
hazards associated with other volcanic phenomena such as lahars or tephra fall.

Appendix A: Statistics of Expected PDC Volume
Figure A1 shows the volumes observed in the Mono-Inyo PDC deposits. Data are collected from Bursik
et al. (2014), Miller (1985), and Sieh and Bursik (1986). There are 11 volume estimates, ranging from 0.005
to 0.06 km3 and including both BAF generated by lava dome collapse (e.g., Panum BAF) and pumice flows
from eruptive column collapse (e.g., Panum Dune flow). We rely on information on the three most recent
eruptions that occurred in the LVVR: the Inyo eruption (South Deadman flow of 0.05 km3 and half of Obsid-
ian flow pyroclastic deposits of 0.01 km3), North Mono eruption (Panum Dune flow of 0.009 km3, Panum
BAF of 0.033 km3, Panum Uppermost flow of 0.017 km3, West flow of 0.05 km3, and undifferentiated flows
of 0.019 km3), and South Mono eruption (half of Upper Gray beds of 0.06 km3, half of Orange Brown beds of
0.02 km3, and half of the Basal beds of 0.005 km3). The first two of these eruptions occurred in 1338 CE ±13
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Figure A1. (a, b) Histograms of the volume of Mono-Inyo PDC deposits (blue) and lava domes (red). (c, d) Maximum
likelihood pdf of the volume. (c) Assumes lognormal and (d) Pareto distribution. Dashed lines show the 90% symmetric
confidence for the values of the pdf. Labels report the parameter values with 90% confidence interval.
PDC = pyroclastic density current.

separated by a ∼1- to 2-year gap, while the third eruption occurred in 621 CE ±13. We also include Wilson
Butte flow, of 0.04 km3, and occurred in 290 CE ±50. Volumes below 0.001 km3 is missing in our data set.
Often, small deposits may not be preserved as they are prone to wash away or because of the difficulty to dis-
tinguish among the ash layers. A table summary of these values is included in the supporting information.
Because of their sparsity, these data represent a preliminary approximation to the real volume distribution
of past flows.

Given the local complex intercalation of fall, flow, and surge deposits, making it difficult to trace distinct
beds, we applied a multiplicative corrector of 0.5 to the total volume published for the South Mono eruption
flows and the Obsidian flow pyroclastic flows. Volumes below 0.001 km3 are missing in our data set. Deposits
of such small volumes may not be well preserved as they are prone to erosion and redeposition, and they
are underrecorded because we have not separated them out for the South Deadman and South Mono flow
deposits. The average value of measured Mono-Inyo PDC deposits is well represented by a value of v ≈
0.03 km3. Again, some of the PDC deposits are known to be a combination of two or three separate, similar
PDCs in rapid sequence (minutes to hours), difficult to distinguish, and possibly from multiple sources. For
this reason, in Figure 8, we detailed the scenario of a single flow with v = 0.01 km3.

Although the volume of domes and the volume of related PDCs are very uncertainly related, dome collapse
is certainly an initiation mechanism for LVVR flows. Hence, we tentatively inferred additional flow vol-
umes from lava dome volumes, including those of the Mammoth Mountain domes. Results are included
in Figure A1 and are collected from Bevilacqua et al. (2018), Burkett (2007), Bursik et al. (2014), Miller
(1985), and Sieh and Bursik (1986). Average dome volumes are about 1 order of magnitude larger than those
obtained from measured PDC deposits. We applied a multiplicative corrector of 2.5 to pass from dense rock
(DRE) to an equivalent pyroclastic volume. However, the resulting values may be overestimating those of
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actual dome collapse flows because domes usually only collapse partially. There are thus 23 additional vol-
ume estimates, ranging from 0.006 to 0.96 km3. We rely on dome and lava flow volumes for the Inyo eruption
(Glass Creek dome of 0.25 km3, Obsidian Flow dome of 0.43 km3, and South Deadman dome of 0.33 km3),
the North Mono eruption (Cratered Dome of 0.005 km3, Panum Dome of 0.03 km3, Panum tephra ring of
0.007 km3, North Coulee of 0.96 km3, Upper Dome of 0.093 km3, and Satellite Dome of 0.005 km3), the South
Mono eruption (South Coulee 0.81 km3), and Wilson Butte eruption (Wilson Butte of 0.13 km3), and 12 of
the domes of the Mammoth Mountain dome complex approximately erupted from 100 to 50 ka and ranging
from 0.025 to 0.58 km3 in volume. These values are also summarized in the supporting information.

The average value of tephra equivalent to the rock volume of measured domes is well represented by v ≈
0.2 km3. However, in Figure 4, we detailed the scenario of a single flow with v = 1 km3, related to the total
collapse of the largest domes and flows in the record (North Coulee and South Coulee). We remark that such
an extremely large event is not assumed to be likely in the LVVR but is consistent with the largest scale of
the effusive phases of the most recent events. The chance of events more extreme in volume than the PDCs
observed in the past is subject to great uncertainty and strongly depends on the statistical model adopted
for the extrapolation of the tail of the probability distribution of the PDC volumes reported in Figure A1.
For example, assuming a lognormal distribution, the 95th percentile of the volume is v ≈ 0.1 km3, but if the
Pareto distribution is assumed, this value increases to v ≈ 1 or 2 km3. The 95th percentile values obtained
from the lava domes are 2 orders of magnitude larger than these values. However, lava domes of such sizes
(≫1 km) are almost completely unknown in the geologic record and certainly unknown at LVVR. In general,
the logarithm of the observed volumes is compatible with the null hypothesis of the Shapiro-Wilk test for
a Gaussian distribution, and the maximum likelihood in the lognormal class is significantly higher than in
the Pareto class (see Figure A1).
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