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We introduce a doubly stochastic method for performing material failure theory based

forecasts of volcanic eruptions. The method enhances the well known Failure Forecast

Method equation, introducing a new formulation similar to the Hull-White model in

financial mathematics. In particular, we incorporate a stochastic noise term in the original

equation, and systematically characterize the uncertainty. The model is a stochastic

differential equation with mean reverting paths, where the traditional ordinary differential

equation defines the mean solution. Our implementation allows the model to make

excursions from the classical solutions, by including uncertainty in the estimation. The

doubly stochastic formulation is particularly powerful, in that it provides a complete

posterior probability distribution, allowing users to determine a worst case scenario

with a specified level of confidence. We apply the new method on historical datasets

of precursory signals, across a wide range of possible values of convexity in the

solutions and amounts of scattering in the observations. The results show the increased

forecasting skill of the doubly stochastic formulation of the equations if compared to

statistical regression.

Keywords: Failure Forecast Method - FFM, volcanic eruption forecasting, doubly stochastic models, stochastic

(functional) differential equation, volcanic hazard assessment

1. INTRODUCTION

The Failure Forecast Method (FFM) for volcanic eruptions is a classical tool applied in the
interpretation of monitoring data as potential precursors, providing quantitative predictions of the
eruption onset. The basis of FFM is a fundamental law for failing materials:

�̇−α�̈ = A,

where, following traditional notation, �̇ is the rate of the precursor signal, and α, A are model
parameters. The solution rate �̇ is a power law of exponent 1/(1 − α) diverging at time tf ,
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called failure time. The model represents the potential cascading
of precursory events, e.g., growth and coalescence of cracks and
consequent precursory signals, leading to a large-scale rupture
of materials, with tf a good approximation to the eruption
onset time te.

The FFM equation was originally developed in landslide
forecasting (Fukuzuno, 1985; Voight, 1987, 1988b; Voight
et al., 1989), and later applied in eruption forecasting (Voight,
1988a, 1989; Cornelius and Voight, 1995). The method was
retrospectively applied to several volcanic systems, including
dome growth episodes and explosive volcanic eruptions (Voight
and Cornelius, 1991; Cornelius and Voight, 1994, 1996;
Voight et al., 2000).

Seismic data are the type of signals most extensively studied
with the FFM method in volcanology. Volcanic tremor has been
related to the multi-scale rock cracking (Kilburn and Voight,
1998; Kilburn, 2003; Ortiz et al., 2003; Smith et al., 2009) and
volcano-tectonic earthquakes can be forecasted applying the
FFM on their characteristics (Tárraga et al., 2006). Rheological
experiments on lava domes revealed that also the magma
seismicity associated with effusive eruptions is consistent with
the FFM theory (Lavallée et al., 2008). In general, retrospective
analysis of pre-eruptive seismic data has produced good results in
several case studies (e.g., Smith and Kilburn, 2010; Budi-Santoso
et al., 2013; Chardot et al., 2013). Finally, the FFM has been
successfully tested on Synthetic Aperture Radar acquisitions,
opening the path to new forecasting applications based on
satellite data (Moretto et al., 2016).

The reliability of FFM forecasts is known to be affected by
several factors. When applied to seismic data, the performance
of the method is usually better for eruptions preceded by a single
phase of seismic acceleration (Boué et al., 2015). The preliminary
separation of signals originating from different sources can
improve the results (Salvage and Neuberg, 2016; Salvage et al.,
2017). Technically, nonlinear (power law) regression or non-
Gaussian maximum likelihood methods can also enhance the
accuracy of the forecasts, compared to linear models (Bell
et al., 2011, 2013). In general, the forecasting accuracy of
FFM has been related to the heterogeneity in the breaking
material (Vasseur et al., 2015).

Sometimes the method fails to predict the time of material
failure, and an improved probability assessment, including
uncertainty quantification, is required. For example, unrest
at large calderas is often characterized by variable rates
and ambiguous signals (Woo and Kilburn, 2010; Chiodini
et al., 2016). Accelerating trends can change shape during
a sequence, and signals from one precursor can accelerate,
while those from another remain constant, e.g., volcano-
tectonic seismicity accelerating under constant rates of ground
movement. Indeed, laboratory experiments and theoretical
models have demonstrated the FFM under constant stress and
temperature, and this is a hypothesis difficult to verify for
realistic scenarios. Without this assumption, the FFM should be
generalized to more fundamental relations between rock fracture
and deformation, which imply time dependent changes in the
power law expressing the precursor rate �̇ (Kilburn, 2012).
This generalized approach has been applied to very long-term

unrest at large calderas—including Rabaul, Papua New Guinea
(Robertson and Kilburn, 2016), and Campi Flegrei, Italy (Kilburn
et al., 2017). If the estimate of parameter α is assumed to evolve
with time, its increase may be related to the change from quasi-
elastic to inelastic rock behavior while approaching the eruption
(Kilburn, 2018).

In this study, we enhance the classical FFM approach
by incorporating a stochastic noise in the original ordinary
differential equation (ODE), converting it into a stochastic
differential equation (SDE), and systematically characterizing
the uncertainty. Embedding noise in the model can enable
the FFM equation to have greater forecasting skill by focusing
on averages and moments. Sudden changes in the power law
expression of �̇ are made possible. In our model, the prediction
is thus perturbed inside a range that can be tuned, producing
probabilistic forecasts. In the future our approach may lead
to general formulations of FFM, and we remark that during
the final approach to an eruption, the stochastic noise can
already replicate local discrepancies from the assumption of
both constant stress and temperature. We remark that our SDE-
based approach is not equivalent to a Kalman Filter approach
(Zhan et al., 2017). Stochastic noise is essential when coping
with forecasting problems, because classical data assimilation
methods naturally introduce a delay in the tracking of new
unexpected dynamics, while the noise can anticipate nonlinear
effects of perturbations. However, Ensemble Kalman Filters may
efficiently mitigate these effects and produce good results as well
(Houtekamer and Mitchell, 1998; Evensen, 2003).

In more detail, in the original equation the change of variables
η = �̇1−α implies:

dη/dt = (1− α)A,

i.e., the solution η is a straight line which hits zero at tf . If α = 2

then η = �̇−1, and the most commonly used graphical and
computational methods rely on the regression analysis of inverse
rate plots. We re-define η with:

dηt = γ [(1− α)A(t − t0)+ ηt0 − ηt]dt + σdWt,

also called Hull–White model in financial mathematics (Hull
and White, 1990). The parameter σ defines the strength of the
noise, and γ the rapidity of the mean-reversion property. We
validate the new method on historical datasets of precursory
signals already studied with the classical FFM in Voight (1988a),
including line-length and fault movement at Mt. St. Helens,
1981–1982 (Chadwick et al., 1983; Swanson et al., 1983), seismic
signals registered from Bezymyanny, 1960 (Tokarev, 1966, 1971,
1983), and surface movement of Mt. Toc, 1963 (Müller, 1964;
Voight and Faust, 1982). We remark that the last dataset is not
related to a volcanic eruption, but to the catastrophic slope failure
above the Vajont Dam in NE Italy (Kilburn and Petley, 2003;
Dykes and Bromhead, 2018).

A fundamental aspect of our formulation is the possibility of a
doubly stochastic uncertainty quantification. Doubly stochastic
models describe the effect of epistemic uncertainty in the
formulation of aleatory processes, and have been successfully
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applied in volcanology (Sparks and Aspinall, 2004; Marzocchi
and Bebbington, 2012; Bevilacqua, 2016). The division between
aleatory uncertainty and epistemic uncertainty corresponds to
the distinction between an intrinsic randomness of the system
and the additional uncertainty that affects its representation, the
latter originating from incomplete information. Thus, doubly
stochastic probability density functions (pdf) and estimates are
themselves affected by uncertainty. That is the reason for the
name doubly stochastic (Cox and Isham, 1980; Bevilacqua, 2016).
This approach has been applied in spatial problems concerning
eruptive vent/fissure mapping (Selva et al., 2012; Bevilacqua et al.,
2015, 2017a; Tadini et al., 2017a,b), long-term temporal problems
based on past eruption record (Bebbington, 2013; Bevilacqua
et al., 2016, 2018; Richardson et al., 2017), and hazard assessments
(Neri et al., 2015; Bevilacqua et al., 2017b). In this study, we
use a doubly stochastic model to develop a short-term eruption
forecasting method based on precursory signals. We remark that
these signals could be any time series related to material failure,
e.g., seismic or deformational. However, robust forecasts are not
guaranteed in every application, given themechanical complexity
of volcanoes and their magmatic systems.

The first part of this article defines the mathematical model
adopted. In section 2 we present the equations in FFM method,
in section 3 we define their enhancement with a mean-reverting
SDE, and section 3 details the properties of the mean reversion.
The second part of the article tests the model on historical
datasets. In section 5 we define the fitting algorithm and compare
retrospective analysis based on three different formulations of
FFM. Section 6 tests the model on forecasting problems, and
section 7 discusses the performance of the methods, showing the
increased forecasting skill of the doubly stochastic formulation.
Section 8 is a cautionary note on the limits of applicability of the
FFM method.

2. THE FAILURE FORECAST METHOD ODE

The classical Failure Forecast Method (FFM) equation is:

�̇−α�̈ = A, (1)

where α ≥ 1, A > 0, and � : [0,T] → R a precursor function,
like ground or fault displacement, seismic strain release (Voight,
1988a). We remark that the equation cannot be applied to any
precursory sequence, and assumes a constant rate of stress and
temperature (Kilburn, 2018). For simplicity we call X := �̇, and
the Equation (1) reads:

X−α dX

dt
= A.

If α = 1, the solution is the exponential X(t) = X(t0) exp[A(t −
t0)]. However, most common observations in volcanology
give α ∈ [1.7, 2.3]. We also note that if α < 1 a
solution exists in [0,+∞] and does not diverge in finite time
(Cornelius and Voight, 1995).

If α > 1, we see:

dX1−α

dt
= (1− α)X−α dX

dt
,

and the FFM equation becomes:

dX1−α

dt
= (1− α)A.

Simplifying again the notation, we can call η = X1−α , and the
FFM reads:

dη

dt
= (1− α)A.

We can solve this equation by immediate integration,

η(t) = (1− α)A(t − t0)+ η(t0), (2)

and equivalently:

X(t) =
[

(1− α)A(t − t0)+ X(t0)
1−α

]
1

1−α . (3)

The original method required fitting the two parameters α and A
on the monitoring data, and then to estimate the time of failure
tf , such that X(tf ) = +∞, or equivalently η(tf ) = 0. It follows:

tf = inf{t : η(t) = 0}, η(t) = (α − 1)A(tf − t),

and so:

tf − t =
η(t)

(α − 1)A
.

We note that an estimate of η(t) is thus necessary to make
forecasts, a non-trivial process if noise is assumed to be present.
The effect of varying parameters α and A in the Equation (3) is
displayed in Figures 1A,B. Our purpose is to forecast the failure
time tf , and hence it is more practical to examine the plot of

X−1 = η
1

α−1 , shown in Figure 1B. The parameter α defines the
convexity of that function - for α ≤ 2 it is convex, for α ≥ 2
it is concave. The value α = 2 produces a straight line. We
call α the convexity parameter. In equation 2 the parameter A
defines the constant slope of η, that is −A. Hence we call A
the slope parameter.

3. THE FAILURE FORECAST METHOD SDE

We assume that the FFM equation is not exactly satisfied,
but there is a transient difference, which however decreases
exponentially through time. The equation becomes:

η(t) = (1− α)A(t − t0)+ β exp(−γ t)+ η(t0),

where β is the value at t = 0 and γ is the rate of decay of this
error term.

This allows a reformulation as a differential equation.
Given that:

η(t)− (1− α)A(t − t0)− η(t0) = β exp(−γ t),

then

ln
[

η(t)− (1− α)A(t − t0)− η(t0)
]

= −γ t + ln(β).
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FIGURE 1 | (A,B) Examples of ODE solution of FFM, (A) X, and (B) 1/X. (C–F) Examples of SDE solution of FFM, (C,E) with γ = 0, (D,F) with γ = 1. (C,D) with

α = 2, (E,F) with α = 1.7. The colored lines are the ODE solutions, the black lines are 50 random paths of the SDE solutions.

We can take the derivative, and obtain:

[

η(t)− (1− α)A(t − t0)− η(t0)
]−1

(

dη

dt
(t)− (1− α)A

)

= −γ ,

and so

dη

dt
= γ

[

(1− α)A(t − t0)+ η(t0)− η(t)
]

+ (1− α)A. (4)

In addition, we want to allow for an additive noise affecting the
new equation, and the final formulation is:

dηt =
{

γ
[

(1− α)A(t − t0)+ ηt0 − ηt
]

+ (1− α)A
}

dt + σdWt , (5)

or equivalently (Gardiner, 2009):

Xt =
{

X1−α
t0

+
∫ t
t0

{

γ
[

(1− α)A(s− t0)+ X1−α
t0

− X1−α
s

]

+ (1− α)A
}

dt

+
∫ t
t0

σdWs

}
1

1−α
, (6)

Frontiers in Earth Science | www.frontiersin.org 4 July 2019 | Volume 7 | Article 135

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Bevilacqua et al. Probabilistic Enhancement of the FFM

for each t < tf . This is also called a Hull–White model in

financial mathematics1 (Hull and White, 1990).
The effect of varying parameters σ and γ on the SDE

solution X is displayed in Figures 1C–F. In Equation (5), σ

defines the time scale of the additive noise, and so we call σ

the noise parameter. We remark that X is nonlinearly affected
by this random noise in Equation (6). The SDE defining η

is elevated to the exponent 1
1−α

, and even a relatively small
amount of noise can significantly change the failure time
(see Figures 1C,E). Parameter γ defines the time scale of the
exponential decay of perturbations with respect to the mean
solution. It controls the equation, reverting the paths of the
solutions toward the mean curve (see Figures 1D,F). We call γ

themean-reversion parameter.
The new formulation allows the SDE solution tomake random

excursions from the classical ODE solution. Figure 2 displays
three different solutions of X−1, assuming convexity parameter
α = 1.7, 2, or 2.3. The slope parameter is fixed A = 0.1.

Figures 2A,C,E show an example of solutions assuming
mean-reversion parameter γ = 0, or γ = 0.25. The noise is
additive in Figure 2A, and weakly non-linear in Figures 2C,E.
We note that although σ and γ define the noise affecting η, the
same (α, γ ) can produce significantly different noise effects on
X−1 depending on the exponent 1

1−α
.

A very important consequence of our stochastic formulation
is that the time of failure becomes a random variable:

X :

(

�, (Ft)t>t0 , P
)

, tf (ω) = inf{t :X−1(ω, t) = 0},

for almost every ω ∈ �, where (Ft)t>t0 is the filtration
generated by the noise2, and P is a probability measure over
it (Karatzas and Shreve, 1991). Figures 2B,D,F display the
probability density functions3 of tf calculated by Monte Carlo
simulation (2,000 samples). The pdf becomes more peaked and
symmetric when γ > 0.

4. THE MEAN-REVERSION PROPERTIES

Let η̂ be the ODE solution with data η(t0) at time t0. If σ > 0 and
γ = 0, the law of Brownian Motion and the linearity of the ODE
imply that:

η(t)− η̂(t) ∼ N
(

0, σ 2(t − t0)
)

.

If γ > 0 then
∣

∣η(t)− η̂(t)
∣

∣ is reduced to zero exponentially. If
σ = 0 and the equation starts with δ(t0) := |η(t0) − η̂(t0)| > 0
we have:

δ(t) :=
∣

∣η(t)− η̂(t)
∣

∣ = exp[−γ (t − t0)].

1The Hull–White model is utilized to describe the evolution of interest rates. The

instantaneous interest rate is randomly perturbed by market noise, but it stabilizes

statistically inside a corridor of variance defined around a deterministic function,

i.e., the long term rate.
2For each t > t0, Ft is the set of all the events that are defined by the random

realizations of the noise Wt up to time t. Ft models the amount of information

that is available at time t. It plays an important role in the formalization of X.
3In probability theory, a pdf, or density, of a real continuous random variable η, is

a function such that for any given measurable set H ⊆ R, P{η ∈ H} =
∫

H f (x)dx.

Figure 3A shows this example, and 3γ−1 provides the time
interval required to have δ(t) ≃ δ(t0)/20. If both σ > 0 and
γ > 0, the combined effect of the noise and the mean-reversion
defines the Ornstein-Uhlenbeck process4 (Gardiner, 2009), from
Equation (5) with A = 0 and ηt0 = 0,

dηt = −γ ηtdt + σdWt , (7)

whose solution is:

ηt ∼ N

(

0,
σ 2

2γ

[

1− exp(−2γ t)
]

)

≃ N

(

0,
σ 2

2γ

)

, (8)

when γ |tf − t0| ≫ 1. The constant

K :=
σ 2

2γ

uniquely defines the probability distribution of the solution of
this SDE. Different realizations of this process are displayed
in Figure 3B.

If σ 2 increases and γ decreases, then the perturbations are
more frequent, but reverted faster. This may have some effect
on the estimate of tf , but discrete data cannot provide any
information on perturbations occurring at frequency higher than
the measurements. In most of our examples we define γ−1 = 15
days. That is, any perturbation decays by 63%within 15 days, and
by 95% within 45 days, which is close to the total length of the
time interval considered. Sensitivity analysis on this parameter is
performed in Appendix A, Supplementary Material.

5. PARAMETER FITTING AND
UNCERTAINTY QUANTIFICATION

The application of our method requires the estimation of five
parameters5:

• curvature parameter α,
• slope parameter A,
• noise parameter σ ,
• mean-reversion parameter γ ,
• an unperturbed initial value η̂(t0).

We assume all these parameters to be positive, and α > 1. In
particular, the case α = 1 is trivial, and the cases α < 1 or A ≤ 0
imply tf = +∞. We note that η̂(t0) cannot be defined equal to
the first observation, because of the perturbations. We remark
that, for simplicity, we assume α to be constant.

Several techniques have been adopted in the determination
of the parameters in the ODE problem (Cornelius and Voight,
1995). The Log-rate vs. Log-acceleration Technique (LLT), and
the Hindsight Technique (HT) can both provide estimates of
α. We take advantage of these classical analyses also in our
examples6, and we rely on the calculations in Voight (1988a)

4The Ornstein-Uhlenbeck process is a Gaussian process with bounded variance

and a stationary probability distribution. The mean value of the distribution acts

as an equilibrium level for the process, which is thus calledmean-reverting.
5A list of all parameters and symbols is included in section 10 of this article.
6The LLT estimate of α is not well constrained on the ymyanny dataset. We did

not apply our analysis to that case.
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FIGURE 2 | Examples of SDE solutions of FFM, 1/X, (A,B) with α = 2, (C,D) with α = 1.7, (E,F) with α = 2.3. A black line marks the mean solution. In (A,C,E) the

colored lines are random paths, with γ = 0 or γ = 0.25. In (B,D,F) the colored continuous lines are the pdfs of tf , and random paths are dotted lines.

reported in Appendix B, Supplementary Material. The LLT is
generally less accurate because it needs an estimate of the time
derivative of the observations, and the logarithm is not well
defined on negative numbers. The HT requires that we know the
eruption onset te, and hence can only be used in retrospective
analysis. We remark that the time derivatives are always based on
Voight (1988a), and not affected by the roughness of the paths of
the new SDE formulation.

If α is given, then a linearized least square method can be used
to fit parameter A and η̂(t0) on the inverse plot 1/X. This is the

main method classically adopted as a forecasting technique in the
ODE problem. In particular, we apply a linear regressive model
to Equation (2):

X(t)1−α = (1− α)A(t − t0)+ η(t0),

producing estimates of (1− α)A and η̂(t0).
Finally, we fit the noise parameter σ on the residuals of this

linearized problem, by imposing the constant K = σ 2

2γ to be equal

to their variance and assuming γ−1 = 15 days, as explained
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FIGURE 3 | (A) SDE solutions with α = 2, 1/X, with σ = 0, but δ(t0) > 0. Different colors correspond to different values of γ . (B) Ornstein-Uhlenbeck processes with

equal K = σ2

γ , but different (σ , γ ).

FIGURE 4 | Estimators of tf based on Method 1. In (A–D) are reported four different case studies. Blue lines assume α as from LLT, red as from HT. The bold line is

gtf . The probability/day scale bar is related to gtf . Thin dashed lines bound the 90% confidence interval of the ODE paths of 1/X, and a thin continuous line is the

mean path. Black points are inverse rate data. A dashed black line marks te. Method 1 generally provides a good estimator of te, but often only the HT analysis allows

these robust estimates because of the lower uncertainty affecting α.
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in section 4. In summary, we plug-in α from classical LLT or
HT, then we obtain

(

A, η̂(t0),K
)

, and thus σ once γ is given.
The numerical solution of the SDE is performed by the Euler-
Maruyama method, which is equivalent to the Milstein method
in our case (Kloeden et al., 1994).

In the following we apply three different forecast methods on
the datasets in Voight (1988a), and we test tf as an estimator
of the eruption onset (or landslide initiation) te. Method 1
and Method 2 provide complementary assessments. The first
models the uncertainty affecting the parameters in the classical
ODE, the second provides SDE solutions based on the best-fit of
those parameters. Method 3 combines the two approaches and
represents one as epistemic uncertainty and the other as aleatoric
uncertainty. We remark that, in general, aleatoric uncertainty
describes the physical variability of a system under study, while
epistemic uncertainty is due to our imperfect knowledge of
the modeling of the system (Marzocchi and Bebbington, 2012;
Bevilacqua, 2016).

In all our methods tf is assumed as a random variable,
and its pdf

gtf :R → R+,

∫ ∞

0
gtf (x)dx = 1

is estimated following a classical Gaussian kernel density
estimator. Parameter fitting is based on Monte Carlo simulations
of different number of samples depending on the method.
This number has been tuned to obtain a robust estimate of
gtf that is not sensitive to including additional samples. We
remark that we are producing forecasts and not deterministic
predictions, and hence the value of gtf (te) ≤ 1. This is
not a flaw of our approach, but a crucial consequence of its
probabilistic formulation.

• Method 1 solves the classical ODE, and the corresponding
forecasts are displayed in Figure 4. In particular, gtf depends
on the uncertainty affecting α and the pair (A, η̂(t0)) in the
regression method. We implement this model uncertainty as
a bivariate Gaussian in a Monte Carlo simulation of 5,000
samples.
Methods 2 and 3 are both based on the new SDE.

• In Method 2, the least-square curve is assumed to be the mean
solution, and gtf is defined by the noise. The forecasts are
displayed in Figure 5. We implement this aleatory uncertainty
in a Monte Carlo simulation of 5,000 sample paths of the
stochastic noise.

• Method 3 is doubly stochastic (e.g., Bevilacqua, 2016). The
mean solution is affected first by the uncertainty in the
regression method, and then perturbed by the stochastic noise
defined above. The values of gtf are thus reported as 5th
percentile, mean, and 95th percentile curves. We remark
that the two uncertainties are not independent, because the
properties of the noise are related to the residuals in the
linearized problem. The forecasts are displayed in Figure 6.
In this case, the mean pdf is based on a Monte Carlo
simulation of 10,000 samples. However, the percentile values
are based on a hierarchical Monte Carlo simulation of
60,000 samples, that is the product of 200 parameter samples

and 300 paths of the SDE solution. The higher number
of samples is made necessary by the higher complexity in
the probability space, that models the uncertainty in two
steps (Bevilacqua, 2016).

Our four case studies refer to the volcanic eruptions of Mt.
St. Helens (USA), 1982 (a) and 1981 (b), and of Bezymyanny
(USSR), 1960 (c), and to the landslide of Mt. Toc (Italy), 1963
(d), which caused the Vajont Dam disaster. Inmore detail, dataset
(a) is comprised of line-length measurements of the Mount
St. Helens crater floor collected in February-March 1982. The
floor was contracting as a consequence of endogenous inflation
against the relatively rigid crater walls (Swanson et al., 1983).
Dataset (b) contains the cumulative contraction measured across
the toe of the Christina 2 thrust fault in July-September 1981,
Mount St. Helens (Swanson et al., 1983). Dataset (c) is the
cumulative strain release registered at Bezymyanny in March-
April 1960. This quantity is the square root of seismic energy,
and hence it depends on both the number of earthquakes
and their magnitude (Tokarev, 1983). Dataset (d) is comprised
of the ground displacement measures taken on the northern
slope of Mt. Toc in August-October 1963, by means of daily
topographical surveys (Müller, 1964). We remark that dataset
(d) is not related to a volcanic eruption. These datasets are
characterized by different values of α, and by different confidence
intervals in the linear regression. Estimates of α are based on data
reported in Appendix B, Supplementary Material.

In general, the mean path is consistent in the three methods,
but uncertainty quantification is significantly different, as well as
the values of gtf . In particular:

(a) Mt. St. Helens, 1982—line length change. Data values are
initially scattered, until t = te − 20, and then become more
aligned. α ≈ 2, and E[tf ] overestimates te of 1–3 days in
all the methods. Uncertainty range is two-times larger in
Method 2 and 3 compared to Method 1.

(b) Mt. St. Helens, 1981—fault movement. This example is
characterized by α ≈ 1.6 in HT and α = 1.3± 0.2 in LLT. In
the first case (red), in all methods E[tf ] underestimates te by
only 1 day, with uncertainty range±2 days in Method 1, and
two-times larger in Method 2 and 3. The second case (blue)
is less accurate. In Method 1, 2, and 3 E[tf ] overestimates
te by 14, 11, and 14 days, respectively; always outside the
uncertainty range. However, in Method 3 the 95th percentile
plot is above 9% at time te.

(c) Bezymyanny, 1960—seismic strain. Data values are
persistently scattered until t = te − 10, and α ≈ 1.6. In
Method 1, E[tf ] correctly estimates te, with uncertainty
range of ±3 days. In Methods 2 and 3, E[tf ] underestimates
te by 1 day with an uncertainty range two-times larger.

(d) Mt. Toc, 1963—surface movement. According to HT, α ≈

2, while according to LLT, α = 1.7±0.3. In the first case (red),
inMethod 1 and 3 E[tf ] correctly estimates te, and inMethod
2 it underestimates it by 1 day. Uncertainty range is ±2 days
in Method 1, ±3 days in Method 2, ±4 days in Method 3.
In the second case (blue), in Method 1 E[tf ] overestimates
te by 5 days, but the uncertainty range is about ±10 days
and captures it. In Method 2 E[tf ] overestimates te by 4 days,
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FIGURE 5 | Estimators of tf based on Method 2. In (A–D) are reported four different case studies. Blue lines assume α as from LLT, red as from HT. A bold line is gtf .

The probability/day scale bar is related to gtf . Thin dashed lines bound the 90% confidence interval of the SDE paths of 1/X, and a thin continuous line is the mean

path. Black points are inverse rate data. Thin dotted lines show examples of random paths. A dashed black line marks te. Method 2 reduces the overestimation issues

of LLT observed in Method 1 (see Figure 5), but model uncertainty is neglected.

but uncertainty is reduced to ±3 days. Method 3 gives very
similar results to Method 1, and the 95th percentile plot is
above 20% at time te.

In summary, when α ≈ 2 Method 1 generally provides a good
estimator of te, as well as Methods 2 and 3. A good estimate
of te when α = 2 is recognized by Voight (1988a), and this
is studied further in Kilburn (2018). Methods 2 and 3 generally
have larger uncertainty ranges. Sometimes, when α ≤ 1.6,
Method 1 tends to overestimate te. Method 2 reduces this issue,
but model uncertainty is neglected and the estimate still misses
te. Method 3 enhances Method 2, and its doubly stochastic
nature allows the production of either mean probability values or
more conservative 95th percentile values, with significantly high
probability of eruption at time te, even when the mean estimate
fails the forecast.

6. EXAMPLES OF PROBABILITY
FORECASTS

The estimators defined in the previous section are informed by
the entire sequence of data, up to the eruption onset or landslide

initiation te. This provides useful insight on the validity of the
model, but it is not a forecast (Boué et al., 2015). Indeed in any
forecasting problem the sequence of data is available up to a time
t1 < te, that represents the current time of potential forecast. All
the data collected after time t1 cannot be considered.

In the following figures we display forecasts of te based on the
FFM method, and obtained from the data collected in a limited
time window T = [t2, t1], except for the value of α. The noise,
when modeled, starts at time t1, and the initial value x0 := X(t1)
is estimated in absence of noise. We focus on the two examples
of Mt. St. Helens, 1982—line length change (α = 1.98 ± 0.09),
and Bezymyanny, 1960—seismic strain (α = 1.65 ± 0.12). We
remark that, for the sake of simplicity, the value of α is still based
on the entire sequence of data (see Appendix B, Supplementary
Material). Further studies on the evolution of parameter α would
require less sparse data than those available in our examples.
The modeling of time-dependent α, or the implementation of
nonlinear regression techniques, is an open area of research
(Bell et al., 2011; Kilburn, 2018).

Figure 7 adopts Method 1, Figure 8 Method 2, and Figure 9

Method 3. Method 1 and mean pdf in Method 3 both implement
a Monte Carlo simulation of 20,000 samples, Method 2 a Monte
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FIGURE 6 | Estimators of tf based on Method 3. In (A–D) are reported four different case studies. Blue lines assume α as from LLT, red as from HT. A bold line is gtf ,

and bold dashed lines are its 5th and 95th percentile values. The probability/day scale bar is related to gtf and its percentile values. Thin dashed lines bound the 90%

confidence interval of the SDE paths of 1/X, and a thin continuous line is the mean path. Thin dotted lines show examples of random paths. Black points are inverse

rate data. A dashed black line marks te. Method 3 enhances Method 2 and performs significantly better.

Carlo simulation of 5,000 samples. The percentile values in
Method 3 are based on a hierarchical Monte Carlo simulation of
150,000 samples, that is the product of 300 parameter samples
and 500 paths of the SDE solution.

If we compare these results with the estimators in section 5,
forecast results can be significantly more uncertain, because they
are inherently extrapolations based on fewer data. In Methods 1
and 3, sometimes P{tf = ∞} > 0 and there is a non-negligible
chance that the solution path never hits the real axis. In contrast,
if P{tf < t1} > 0 there is a chance that η̂(t1) < 0 and the
equation is not well defined. The probability of both these events
is quantified.

In our examples we consider three time windows T
progressively moving toward te. In general, uncertainty is always
reduced while T gets closer to te. In particular:

(a) Mt. St. Helens, 1982—line length change. If t1 = te − 20,
in Method 1 E[tf ] overestimates te by 90 days, in Method
2 by 40 days, in Method 3 by 80 days. Uncertainty is
[−89,+384] days in Method 1, [−18,+17] days in Method
2, and [−82,+301] days in Method 3. Only in Method 2
does E[tf ] fall outside the uncertainty range, and the 95th
percentile plot inMethod 3 is about 6% at time te. InMethods
1 and 3, P{tf = ∞} > 15%.

(b) If t1 = te−15, in Method 1 E[tf ] overestimates te by 37 days,
in Method 2 by 18 days, in Method 3 by 30 days. Uncertainty
is [−39,+125] days in Method 1,±12 days in Method 2, and
[−35,+86] days in Method 3. Again only in Method 2 does
E[tf ] fall outside the uncertainty range, and 95th percentile
plot in Method 3 is about 8% at time te. In Methods 1 and 3,
P{tf = ∞} ≈ 2%.

(c) If t1 = te − 10, in Method 1 E[tf ] correctly estimates
te, with an uncertainty range of [−6,+11] days. In
Method 2 E[tf ] underestimates te by 1 day, with an
uncertainty range of ±3 days. Method 3 performs similarly
to Method 1, and its 95th percentile plot is about 16%
at time te.

(d) Bezymyanny, 1960—seismic strain. If t1 = te − 17, in
Method 1 E[tf ] overestimates te by 21 days, in Method
2 by 4 days, in Method 3 by 12 days. Uncertainty is
[−32,+135] days in Method 1, [−9,+10] days in Method
2, and [−20,+86] days in Method 3. In all methods E[tf ]
falls inside the uncertainty range, and 95th percentile plot
in Method 3 is about 7.5% at time te. In Methods 1 and 3,
P{tf = ∞} ≈ 9%.

(e) If t1 = te − 10, in Method 1 E[tf ] overestimates te by 3
days, in Method 2 it estimates te correctly, in Method 3 it
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FIGURE 7 | Forecasts of tf based on Method 1. In (A–C) and (D–F) respectively, two examples are tested on three different time windows T. The bold line is gtf . Thin

dashed lines bound the 90% confidence interval of the ODE paths, and a thin continuous line is the mean path. The points are inverse rate data, those in T are

colored. A dashed black line marks te. The probability/day scale bar is related to gtf .

overestimates te by 2 days. Uncertainty is [−10,+18] days in
Method 1, [−6,+7] days in Method 2, and [−10,+17] days
in Method 3. The 95th percentile plot in Method 3 is about
10% at time te.

(f) If t1 = te − 5, in Method 1 E[tf ] underestimates te by 1
day, in Method 2 by 2 days. Method 3 performs similarly
to Method 1. Uncertainty is [−3,+6] days in Method 1,
[−2,+3] days in Method 2, and [−3,+7] days in Method
3. The 95th percentile plot in Method 3 is about 16% at time
te. We remark that in Methods 1 and 3, P{tf < t1} ≈ 15%.

In summary, for these cases the forecasting results of Method
1 and Method 3 are similar, but the more complex uncertainty
quantification related to Method 3 improves its performance.
In particular, when the forecast is not well constrained, Method
3 generally reduces the uncertainty range of the estimates
if compared to Method 1. Indeed the noise can push 1/X
to zero in advance, when it is decreasing asymptotically.
Method 2 tends to give a correct forecast only when
the eruption is close. The doubly stochastic formulation
of Method 3 appears to have an impact, and the 95th
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FIGURE 8 | Forecasts of tf based on Method 2. In (A–C) and (D–F) respectively, two examples are tested on three different time windows T. The bold line is gtf . Thin

dashed lines bound the 90% confidence interval of the SDE paths, and a thin continuous line is the mean path. Thin dotted lines show examples of random paths. The

points are inverse rate data, those in T are colored. A thin dashed line marks 1/x0, and a dashed black line marks te. The probability/day scale bar is related to gtf .

percentile of the eruption probability is significantly high
at time te.

7. DISCUSSION

We described three different methods for estimating tf ,
the ODE-based Method 1, the new SDE-based Method
2, and their combined doubly stochastic formulation
Method 3. We tested the methods in four case studies, and

in two of them we also performed forecasts on moving
time windows.

Figure 10 summarizes the likelihood gtf (te), reported as a
probability percentage. Figure 10A compares Method 1 (black
bars) andMethod 2 (colored bars). Method 1 always outperforms
Method 2 when α is based on the more accurate Hindsight
Technique (red bars), and provides likelihoods above 15%.
In contrast, when α is based on Log-rate vs. log-acceleration
technique (LLT) (blue bars) the two methods provide lower
likelihoods, below 1% in some case. Figure 10B displays the
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FIGURE 9 | Forecasts of tf based on Method 3. In (A–C) and (D–F) respectively, two examples are tested on three different time windows T. The bold line is gtf , and

bold dashed lines are its 5th and 95th percentile values. Thin dashed lines bound the 90% confidence interval of the SDE paths, and a thin continuous line is the mean

path. Thin dotted lines show examples of random paths. The points are inverse rate data, those in T are colored. A thin dashed line marks 1/x0, and a dashed black

line marks te. The probability/day scale bar is related to gtf and its percentile values.

likelihood provided by the doubly stochastic Method 3. Full
colored bars report the mean likelihood, shaded bars the 95th
percentiles of the likelihood. Mean likelihoods are very similar or
above those provided byMethod 2. The 95th percentile values are
significantly higher. In particular, when α is based on LLT (blue
bars), Method 3 percentiles are all higher than in Method 1.

These features are confirmed and strengthened in the
forecasting examples based on the moving windows. Figure 11
summarizes the corresponding gtf (te). Figure 11A compares

Method 1 (black bars) and Method 2 (colored bars). In Mt. St.
Helens, 1982—line length change (blue), Method 2 outperforms
Method 1 only in the third time window, with the only likelihood
above 10%. In Bezymyanny, 1960—seismic strain (red), Method
2 outperforms Method 1 in the first two time windows, with
likelihoods above 5%. Figure 11B concerns the doubly stochastic
Method 3. Full colored bars report the mean likelihood, shaded
bars its 95th percentile values. In this case, mean likelihoods are
very similar to those provided by Method 1. The 95th percentile
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FIGURE 10 | Column plots of the likelihood gtf (te), i.e., the probability of failure time tf in the correct day te. In (A) the black bars assume Method 1, the colored bars

Method 2. (B) Assumes Method 3, and the full bars are the mean values, and the shaded bars are the 95th percentile values of the likelihood.

values are again significantly higher, from 5 to 10% in the first and
second time windows, and above 15% in the third.

We note that the higher number of parameters involved in
Model 2 and 3 compared to Model 1 is not implying over-
fitting of the results, because of the epistemic uncertainty
affecting them. We also remark that the new methods are not
requiring more data or more difficult data processing than the
classical formulation. In a real crisis, they could enhance the
possible interpretations of collected signals, without a significant
increase in computational effort.

8. A CAUTIONARY NOTE FOR PRACTICAL
APPLICATIONS

Despite our enhancement of the FFM method, we add this word
of caution to its practical application in hazards evaluation.
The examples used in our paper involved relatively well-
conditioned data. Data encountered at other volcanoes may be
less regular. The FFM method may provide valuable parameters
for decision making, but it is one which obviously cannot
guarantee success in every application, given the mechanical
complexity of volcanoes and their magmatic systems, and the
variety volcanoes display in their behavior. For instance, the
possibility for false alarms is not eliminated by this method, and
included in this category is the “arrested” (or failed) eruption, in
which the volcano displays the precursory symptoms typical of
an eruption, but does not culminate with magma reaching the
surface (Cornelius and Voight, 1995). The 1983–1985 crisis at
Rabaul caldera, Papua New Guinea, provides one such example
(McKee et al., 1984; Tilling, 1988; Robertson and Kilburn, 2016).
This phenomenon is typical of calderas (Acocella et al., 2015),
and other examples include Campi Flegrei, Italy, bradiseismic
crises of 1968–1970 and 1982–1985 (Bianchi et al., 1987; Gaudio

et al., 2010; Giudicepietro et al., 2017; Troise et al., 2019),
Long Valley volcanic region, California (USA), in 1978–2000
(Hill, 2006; Montgomery-Brown et al., 2015; Hildreth, 2017;
Hill et al., 2017), Santorini, Greece, in 2011–2012 (Newman
et al., 2012), and Yellowstone, Wyoming (USA), in 2004–2010
(Chang et al., 2010).

At Redoubt volcano, Alaska (USA), analyses in hindsight
revealed precursory Real-time Seismic-Amplitude Measurement
(RSAM) rate changes prior to the dome-destroying eruption of
January 2, 1990, of sufficient consistency, duration and intensity
to enable quantitative evaluation by classical FFM (Voight and
Cornelius, 1990, 1991). However, the frequent dome collapse
events between February and April, 1990 (about 15 events in 112
days) during nearly continuous exogenous dome building at low
extrusion rate were associated with erratic and short-lived seismic
trends (Cornelius and Voight, 1994), and forecasting exclusively
based on RSAM would have been misleading. Instead, inverse
Real-time Seismic Spectral Amplitude Measurement (SSAM)
plots would have been informative for early detection of long-
period seismicity of low energy content, typical for this type of
eruption (Hyman et al., 2018).

Although we know that the failure time does not always mean
eruption time, it could be argued, if the geophysical signal looks
different after the failure time, that the failure time is likely a time
of state transition. For example, if the background seismicity rate
in many cases drops dramatically after the failure time, then we
could say that the failure time was a time of transition between a
time of stress release by microseismicity, and a time of relatively
quiescent stress build up. Further research could focus on the
meaning of the probabilistic estimates of failure time in case of
arrested eruptions.

In summary, a remaining goal is whether precursory
signals can distinguish between pre-eruptive and non-eruptive
outcomes, and whether seismic rates will accelerate to bulk failure
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FIGURE 11 | Column plots of the likelihood gtf (te) in two forecasting examples, on three different time windows. In (A) the black bars assume Method 1, the colored

bars Method 2. (B) Assumes Method 3, and the full bars are the mean values, and the shaded bars are the 95th percentile values of the likelihood.

without an interval of steady behavior (Kilburn, 2018). Thus, the
limitations of FFM should be appreciated by the user. However,
under appropriate circumstances and with mature judgment, the
tool might serve an important role for those responsible for
evaluating and managing volcanic crises.

9. CONCLUSIONS

In this study, we have introduced a new doubly stochastic method
for performing material failure forecasts. The method enhances
the well known FFM equation, introducing a new formulation
similar to the Hull-White model. The model is a mean-
reverting SDE, which assumes the traditional ODE as the mean
solution. New parameters include the noise standard deviation
σ and the mean-reversion rapidity γ . They are estimated based
on the properties of the residuals in the original linearized
problem. The implementation allows the model to make
excursions from the classical solutions, including the possibility
of some degree of aleatory uncertainty in the estimation. This
may replicate the effect of local discrepancies from a state of
constant stress and temperature. Thus, we provided probability
forecasts instead of deterministic predictions.

We compared the new method and the forecasting method
based on the classical formulation. We also compared an Hull-
White model without considering the model uncertainty, and
its doubly stochastic formulation. A comparison is performed
on four historical datasets of precursory signals already studied
with the classical FFM, including line-length and fault movement
at Mount St. Helens, 1981–82, seismic signals registered from
Bezymyanny, 1960, and surface movement of Mt. Toc, 1963.
We also considered forecasting problems over moving time
windows, based on data in the case studies of Mount St. Helens,
1982 and Bezymyanny, 1960. The data shows the performance
of the methods across a range of possible values of convexity
α and amounts of scattering in the observations, and the
increased forecasting skill of the doubly stochastic formulation
in Method 3.

The doubly stochastic formulation is particularly important
to forecasting because it enables the calculation of the 95th
percentiles of the probability of failure. These values are generally
higher than the mean estimates, and could be interpreted as
the worst case scenario with a probability of occurrence above
5%. This was not possible in the classical formulation. This
approach is the subject of ongoing and future work, with the
purpose to further enhance short-term eruption forecasting
robustness, for example exploring the sensitivity on a linear
or polynomial evolution of the parameter α with time, or
a more general structure of the noise. Further examination
of arrested eruptions also represents a very important field
of research.

10. LIST OF PARAMETERS AND SYMBOLS

For the sake of clarity, we include a list of all parameters and
symbols used in the study:

Precursors Functions� is a time dependent precursor signal,
X = �̇ is its rate, η = �̇1−α is the linearized expression
of X.
Model Parameters α defines the convexity of X−1, A is the
slope of η, σ is the strength of the noise, γ is the speed

of mean-reversion, K = σ 2

γ
scales the variance of the

perturbations in a stationary limit.
Time Values t0 is the initial time of observation, T = [t1, t2]
is the time window in forecasting examples, and x0 = X(t1).
tf = inf{t : η(t) = 0} is the failure time, gtf its pdf, and te the
occurred eruption onset or landslide initiation
Error Terms η̂ is the ODE solution when compared to the
SDE solution, δ = |η − η̂| is the time dependent difference
between them.
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