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Abstract—We present a practical approach for provenance
capturing in Data-Intensive workflow systems. It provides con-
textualisation by recording injected domain metadata with the
provenance stream. It offers control over lineage precision,
combining automation with specified adaptations. We address
provenance tasks such as extraction of domain metadata, injec-
tion of custom annotations, accuracy and integration of records
from multiple independent workflows running in distributed
contexts. To allow such flexibility, we introduce the concepts of
programmable Provenance Types and Provenance Configuration.
Provenance Types handle domain contextualisation and allow
developers to model lineage patterns by re-defining API meth-
ods, composing easy-to-use extensions. Provenance Configuration,
instead, enables users of a Data-Intensive workflow execution o
prepare it for provenance capture, by configuring the attribution
of Provenance Types to components and by specifying grouping
into semantic clusters. This enables better searches over the
lineage records. Provenance Types and Provenance Configuration
are demonstrated in a system being used by computational
seismologists. It is based on an extended provenance model, S-
PROV.

Index Terms—Reproducibility, Workflow management soft-
ware, Metadata, Data flow computing, Collaborative work

I. INTRODUCTION

Scientific communities are building platforms where Data-
Intensive scalable computing systems (DISC) [26] are crucial
to conduct their research campaigns. Such systems often use
workflows to express and combine independent processing
tasks. The workflow languages used adopt abstractions to
facilitate re-use of methods across application domains and
computational environments. As a result, methods are often
multi-disciplinary and co-developed by research-developers
and data engineers. This requires a framework where pro-
fessionals can cooperate while pursuing scientific challenges
that present different levels of complexity concerning data,
methods, organisation and distribution of the computations.
Fostering dialog between the domains of expertise facilitates
diagnosis, validation, reproducibility and management of both
data and processes. Provenance recordings associated with
the production of scientific results underpins these facilities.
However, in Data-Intensive tasks, provenance information is
sometimes too coarse or too detailed [29]. It may fail to
capture information that would enable domain scientists to
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link the recorded traces with the high-level concepts and
the data properties that are specific to their field. Moreover,
lack in precision in describing data derivations could make
traceability of results ineffective for a correct understanding of
the method’s behaviour [6]. This suggests the need for linage
recording mechanisms that facilitate the contextualisation of
the provenance with metadata linking to the purpose of the
study. It also motivates improvements to the accuracy of the
data-derivations in the scope of the combinatorial operators.
These objectives are achieved with the introduction of a model
for Data-Intensive operations, based on PROV [4] and a
conceptual and technical framework that enables domain and
user-driven contextualisation, precision tuning, selectivity and
rapid exploitation. We address modern Agile systems [23] and
in particular Data-Intensive workflow tools [19]. We encourage
domain experts and engineers to collaborate in the analysis
of the computational methods by presenting provenance as a
lingua franca. The former can then focus on the concepts and
terms established in their community, while the latter focus
on how methods map to platforms. Our main contributions
are the following.

Provenance representation for Data-Intensive workflow
systems. The key elements to be recorded (observables) are
described and linked in terms of their provenance relationships
in a comprehensive model, that we call S-PROV, which
makes use of and further specialises PROV constructs (Section
III). The model includes concepts such as processors’ state,
data and metadata granularity. It describes the computational
components and their distribution, abstracting the mapping to
concrete executables [18] with special attention to streaming
and stateful operations.

Integration of provenance capturing and analysis tools.
We deliver a provenance framework integrated with the work-
flow system’s abstractions that scales across different execu-
tion environments. It exposes rules and extensions supporting
developers keeping dependencies consistent and precise. This
improves the usability of the provenance records with respect
to precision and domain-relevant metadata. We introduce the
concepts of Provenance Types and Provenance Configuration
(Sections IV, V) and show how their combination enables the
contextualisation of the provenance information at runtime.
This paper uses lineage visualisation and exploration tools
developed in the context of this research [31]. It reports an



approach and technologies that foster the Active interaction
between users and a workflow’s provenance mechanisms.
Workflow developers and end users choose whether to control
and tailor their provenance collection. The framework is
available for data-streaming applications using dispel4py
[19] mapped to several platforms. It is in use for demanding
applications in seismology and climate-impact research, for
the VERCE1 [7] and CLIPC2 projects, and now the DARE
project3. The DARE architecture and vision, described in a
contemporary paper [8], is the context for our recent achieve-
ments, illustrated with the seismic rapid assessment use case.
(Section VI).

II. RELATED WORK

In scientific computing a result is considered reliable when
the scientific process that generated it is understood and
agreed valid and it is (1) reproducible and (2) analysable
for potential defects [10]. Reproducibility is one of the
reasons why workflow management systems (WMS) gained
momentum in science [5], [9], especially when they integrate
solutions to capture prospective and retrospective provenance.
The former describing the workflow variations in structure and
parametrisation, and the latter showing the progressive effects
on the data [13], also known as data-lineage. The provenance
model ProvOne [2], based on the PROV specification, offers
a framework to represent workflow related provenance by
merging the two prospective and retrospective concepts. In this
work we extend the model to allow a multi-layered interpre-
tation of the lineage recordings. We address the challenge of
making provenance pervasive, where technical details must be
conveyed to the developers, while facilitating its exploitation
by workflow users.

The benefits of combining domain and application specific
metadata in the lineage recording are identified in recent
works [15], [21]. More specifically, WMSs such as Wings
[22] and SciCumulus [11], [12] show that lineage enriched
with domain information increases the quality and relevance of
the provenance records. The former demonstrates this guiding
semantic-driven workflow composition, while the latter shows
this enabling effective run-time monitoring. More recently,
Deelman et al. [17] highlight the importance of keeping a
human-in-the-loop and the crucial role of provenance for in-
teractive analysis of the results produced by the new generation
of HPC workflows. We show how users and developers contex-
tualise the lineage with control over inclusion and activation.
A preliminary version is actively used in an HPC context [7],
where run-time validation and visualisation were essential re-
quirements. To meet requirements we have added mechanisms
to include in provenance traces, system- and user-specified
properties about the data and the computation. We made these
easy to specify using configurable provenance types, semantic
attribution and selectivity controls. Configuration is decoupled
from the workflow’s computational logic so that types can

1http://www.verce.eu
2http://www.clipc.eu
3http://www.project-dare.eu

be changed to switch between different lineage requirements,
fostering cooperation between different experts by ensuring
the information collected meets each of their needs and is
correlated via the lineage data.

Recent work undertakes ways to capture more precisely
dependencies of results and parameters. Dependencies become
ambiguous when processing components merge or combine
multiple input sources or results depend on accumulated state.
By identifying these critical steps, workflow systems may
facilitate Factorial Design techniques [6] to help developers
disambiguate such dependencies. In our work we provide
control over the precision of the traces and disambiguate
when requested. This possibility is reflected in our provenance
model, thanks to explicit representation of the process state,
which makes possible to model stateful dataflow programs that
perform complex multi-step computations. This is managed
by the provenance type capturing a particular lineage pattern,
thereby removing the need to change the workflow’s logic.

Many WMSs adopt a database to store lineage data [24].
Other work emphasises queries over the stored data, while
these are generated [30]. We present details about storage
and access of lineage information in a separate paper. In
our Active framework lineage is captured by each processing
element and sent at a tuneable rate to a remote API [31]
accessing a database as persistent storage, or saved on a local
file store. The information is represented in a way that, while
still compliant with the underlying model, services and tools
can make it available to users at run time for rapid exploitation.

III. S-PROV: RESOURCE MAPPING AND STATEFUL
OPERATORS

In this section we introduce a model (S-PROV) to repre-
sent the provenance of a Data-Intensive application, which
is implemented by composing a set of streaming operators
within an abstract workflow definition. Such applications can
be executed at scale by different types of enactment en-
gines seamlessly [19]. They implement a computational model
where data streams transmit a sequence of data units and each
operator, or processing element (PE), takes data from zero
or more input streams and yields data on zero or more output
streams. From the perspective of a provenance model, the input
and output data of a PE are related in a Derivation, while the
invocation of a PE to consume and produce data is interpreted
as a provenance Activity. S-PROV imports and further extends
these and other concepts from the PROV [4] and ProvONE
[2] models. PROV is intended as a conceptual framework
offering machine understandable descriptions of records that
describe with contextual metadata people, institutions, entities,
and activities involved in producing data. ProvONE offers an
extension to more precisely characterise workflow processes.

ProvONE represents the structure of a provone:Workflow as
a graph of interconnected entities of type provone:Program.
To add specificity, in S-PROV we revise the description of
the abstract workflow by introducing a new class, Compo-
nent (the abstract workflow step), which extends the basic



Fig. 1. S-PROV: The graph shows the provenance relationships captured by the S-PROV model between the entities, agents and activities involved in the
generation of an output (DataOut). The prov:type property of each element specifies the name of the class. The two wasDerivedFrom relationships have a
different prov:type FlowDerivation and StateDerivation depending on the stateless or stateful nature of the operation, as described in Table I

PROV class prov:Agent. A Component delegates the exe-
cution of a program to multiple instances of the program
itself. We represent the instances in S-PROV by introducing
the class ComponentInstance that extends the PROV class
prov:SoftwareAgent. Making these semantics explicit enables
us to represent detailed information about the execution of
concurrent operators, which act on behalf of the same abstract
Component. Information includes the location of the execu-
tion and the parametrisation (ComponentParameters) of each
instance. The latter may change asynchronously at runtime, for
instance as a consequence of a steering action [25]. ProvONE,
through the concept of provone:Workflow, which is also a
program, and the relationship provone:hasSubProgram, offers
support for workflow encapsulation, which is an important
and reusable feature of the model. Here the activity class
of provone:Execution applies to workflows, as well as their
sub-processes. We refine this concept in order to differentiate
between the execution of a complete workflow and a sub-
process. The former is described by the class WFExecution,
the latter by the Invocation of an ComponentInstance. During

an invocation the relationships between the input and output
Data are established. The StateCollection contains references
to the Data retained in the instance’s internal state across
multiple invocations. For instance, these can be represented
by accumulated values and intermediate results. When stateful
data contribute to new output, the data dependency is repre-
sented by a StateDerivation. This has the effect of obtaining a
more precise lineage record, where also the component logic
is made more explicit. Figure 1 shows S-PROV in its graphical
representation. Finally, in S-PROV we combine system-level
provenance with contextual information and metadata that
are relevant to the users’ interests and to the workflow’s
application domain, making provenance useful for the sci-
entists, as well as for the workflow developer and system
experts. The capture of such detail is partly automated, partly
programmatically specified by the developer or offered as a set
of configurable and reusable types – see Sections IV and V.
S-PROV is available with an ontology4 for evaluation and use.

4https://github.com/aspinuso/s-provenance/blob/master/resources/s-prov-o.
owl



S-PROV Classes Description
Component The processing operator of the workflow in its abstract definition. Components are of type prov:Agent,

they delegate to their instances the execution of a provone:Program, which may change at runtime.
ComponentInstance This is a prov:SoftwareAgent that acts on behalf of the a Component. A Component delegates to multiple

ComponentInstances as a result of the mapping of the workflow to the underlying resource for its
execution. Its location is described by system process pid and worker node.

ComponentParameters The set of parameters used by a ComponentInstance.
Invocation The prov:Activity performed by a ComponentInstance over incoming data.
WFExecution A provone:Execution describing a workflow run. From this activity associations to agents such as users

and abstract components are established. It links to details about deployment and execution mode.
StateCollection The internal state of a ComponentInstance. Contains references to Data items involved in stateful

operations.
Data Any self-contained collection of data produced or used by an Invocation.
DataGranule A DataGranule is part of a Data collection and is described by domain-metadata.
FlowDerivation A prov:wasDerivedFrom relationship between output and input data.
StateDerivation A prov:wasDerivedFrom relationship between output data and a data product in the StateCollection.

TABLE I
OVERVIEW AND DESCRIPTION OF THE PROVENANCE ENTITIES OF THE S-PROV MODEL.

IV. PROGRAMMABLE PROVENANCE TYPES

Understanding and debugging DISC systems and the large-
scale analytics they perform is a major challenge. It is helped
by using lineage tracing mechanisms as an instrument to
examine what has happened in standard terms [14]. Lineage
metadata volume and scope are highly dependant on the
requirements – why data-lineage is being recorded. This
motivates our conceptual design and a technical realisation
of a framework enabling the modular and customisable spec-
ification of the provenance produced by a Data-Intensive
workflow application. We address use cases where users and
developers want to tune the level of detail and precision of the
traces and extract metadata from the workflow steps, adopting
vocabularies that match their domain and current research.
Details include a baseline of technical metadata about the
single operations or steps, which are captured by the S-PROV
model, but can also involve data quality test results, reference
data values, according to specified controls.

Our approach considers a workflow processing element
defined by a class, according to the Object-Oriented paradigm.
The class defines the behaviour of its instances as their
type, which specifies what an instance will do in terms of
a set of methods. We introduce the Provenance Type and its
specialisations, as the type that augments the basic behaviour
of the processing element class with the capabilities that
deliver provenance data. Different types capture specific lin-
eage patterns, increasing specificity of dependencies between
output and input data of each processor, and extract data
properties according to established vocabularies or schemas.
They enhance the workflow’s process making it provenance-
aware. This approach, as indicated in previous works [20],
[27], tries to balance between automation, transparency and
explicit intervention of the developer of a Data-Intensive
tool, who can tune provenance-awareness through easy-to-use
extensions. In order to reduce the coding efforts of the expert,
we used these extensions to create a library of ready-made
variants. Our conceptual framework gives to the provenance
types the following characteristics.

Preserve native methods: types retain the original naming

scheme for methods keeping their parameters and products
unchanged.

Offer programmable extensions: extended signatures and
optionally embeddable methods deliver control over lineage
precision and granularity, for a provenance-aware representa-
tion of stateful operations and the implementation of reusable
lineage patterns by research developers.

Handle the extraction of domain-metadata: types handle the
automated extraction of metadata according to controlled vo-
cabularies and community standards, as well as experimental
and user-driven annotations.

Regulate selectivity, destination and rate of the lineage
traces: types store traces at tuneable rates, connecting to
different storage systems or remote lineage services. Lineage
volume can be regulated selectively by specifying filters, e.g.
on metadata-value ranges.

Trigger operations on data: types may embed metadata-
driven messages within the traces. These are used by the
workflow management mechanisms to trigger operations on
the data concurrently to enactment. For instance, to transfer
the data to remote locations or to cache locally for rapid re-
use.

Finally, since the type approach focuses on the processing-
element abstractions, it provides the foundation to automat-
ically handle input and output traceability; it enables time-
stamping and captures contextual information seamlessly,
across different implementations and mappings to target ex-
ecution engines. Although not imposed by the framework, we
may distinguish between provenance Pattern and Contextu-
alisation Types and use them in combination. The former
capture lineage patterns by applying rules associated with
the events triggered by the ingestion and production of data-
streams within components. The latter are used to extract
domain metadata from each new output produced, represented
as a collection of DataGranules in S-PROV. Domain contex-
tualisation can comply with a well-defined schema provided
by an external ontology [22], but is not limited to that. New
terms can be supported and injected into the provenance traces,
serving the need of adding more experimental annotations.



Lineage Pattern Types Description
SingleInvocationFlow A workflow component that performs stateless operations; e.g. the processing element of a simple

streaming pipeline where output data depends exclusively on the last received.
AccumulateFlow A component whose output depends on a sequence of input data; e.g. computation of periodic average.
SlideFlow A component whose output depends on computations over sliding-windows of input data; e.g. computation

of rolling sums.
Nby1Flow A component whose output depends on the data received on all its input ports in lock-step; e.g. combined

analysis of multiple variables.
ASTGrouped (Accumulate State Trace Grouped) This type manages accumulation operations in a stateful operator with grouping rules. It makes sure that

data derivations are established between outputs and inputs related to same grouping index.
Contextualisation Types Description
NetCDFType Extracts metadata from data streams represented in NetCDF [1]. It guarantees consistency between the

ids of the ingested data and the lineage entities by reusing the unique identifiers already contained in the
format. This links lineage across multiple workflows.

SeismoType Works on seismic data consisting of multiple time-series and represented in any of the formats supported
by the ObsPy library [28]. Metadata match an experimental schema for seismology, SEIS-PROV [3].

TABLE II
PROVENANCE TYPES: A SELECTION OF EXISTING TYPES THAT SUPPORT COMMON LINEAGE PATTERNS AND METADATA EXTRACTION FOR

SEISMOLOGICAL AND CLIMATE RESEARCH WORKFLOW APPLICATIONS

Provenance Configuration options Description
Attribution Information General information about the run, such as username, runId, description, workflowName, and its semantic

characterisation workflowType.
Assign Provenance Types One or more types can be namely assigned to each workflow component.
Assign Semantic Clusters Components can be grouped into clusters (s-prov:prov-cluster), represented by a semantic class, to declare

their participation to conceptual activities.
Selectivity-rules A dictionary of metadata rules associated with a specific workflow component to selectively enable the

recording of lineage information based on the data properties of its outputs.
Namespaces Namespaces of the vocabularies or ontologies used in the provenance trace.
Provenance Storage mode Users can choose if the provenance can be stored as files or sent to a remote service.

TABLE III
PROVENANCE CONFIGURATION: USERS CONFIGURE ANY OF THE OPTIONS IN THE TABLE TO CUSTOMISE THE LINEAGE CAPTURING OF A WORKFLOW

EXECUTION.

A. Contextualisation and Precision API

Combining Pattern Types and Contextualisation Types
gives the opportunity of capturing lineage patterns while
handling the automated extraction of domain metadata to the
traces, with no modification to the implementation of the
processing element’s class. Developers may create types that
fit the components they implemented and record them, e.g.
as components’ properties in a catalogue. These could be
suggested to users together with alternatives that capture lin-
eage with less granularity, but that can still collect information
and attributes of interest at a reduced overhead, making users
aware of the implications. A Provenance Type exposes an
abstract interface. In the following list we introduce a list
of abstract methods whose implementation characterises the
specific behaviour of a Contextualisation Type.

makeUniqueId: generates and returns the id assigned to
every output of a processing element. An implementation of
this method could adhere, for instance, to the ids generation
policies of a particular data management plan.

extractDataSourceId: processes may ingest data produced
by other workflows as their initial input, and the id of the input
data could be reused by a provenance type when tracing the
data derivation associated with a new output. This of course
requires the input data to be represented by self-contained and
structured formats carrying the data id as relevant metadata,

e.g. the NetCDF Attribute Convention5. Depending on the
format, the implementation of this method reads and returns
the id, which is then reused by the PE, with the effect of
linking the lineage across different workflow executions.

extractItemMetadata: This function is called automatically
by a provenance type every time the data is written on an
output port. It extracts metadata from the data written on a
component’s specific output port, according to a particular vo-
cabulary. Metadata will be used to describe the DataGranules
associated with the output.

addNamespacePrefix: making a provenance type aware of
different namespaces allows developers to qualify the meta-
data terms extracted by the PE. The prefixes will be used
consistently when exporting the lineage traces to semantic-
web formats, such as RDF.

Besides domain contextualisation, our framework offers to
developers additional methods to record accurate dependencies
between output and input data. These are used to describe
FlowDerivations, as well as StateDerivations, depending on
the interaction of the PE’s instance with its input channels
and StateCollection, thereby implementing a reusable Pattern
Type.

applyDerivationRule: This method is called automatically
by a provenance type every time the data is written on an
output port and every time an invocation ends. Its implemen-

5http://wiki.esipfed.org/index.php/Attribute Convention for Data\
Discovery 1-3



tation captures the data derivations between the output and the
ingested data stream within stateless or stateful operations. It is
used to record provenance that follows a specific and reusable
lineage pattern. The events it reacts to are the following:
write-event: occurs when a component “writes” data on any

of its output ports. Before the actual writing, it triggers
a rule that captures the provenance derivations associated
with the new output.

end-invocation-event: occurs at the end of an invocation, just
before the process starts reading again. It also provides
indications whether the invocation had previously pro-
duced any data, for instance, by setting a boolean value
to a void-invocation variable. This event is used to trace
intermediate data dependencies and stateful derivations
across invocations.

Depending on the event and the pattern to be recorded,
the rules may update the StateCollection (through the up-
dateProvState method illustrated next), as well as combining
other methods available that allow, for instance, to ignore
the input (ignorePastFlow) or to reset the whole state,
(discardState). For instance, to record the lineage of a process
that computes the average calculation over a stream of input
values we use the AccumulationFlow type, which is listed
among others in Table II. Here data dependencies will be
accumulated across end-invocation-event, until a write-event
occurs. Thus, the output will be described by the complete
set of derivations and the StateCollection will be reset to start
tracing the new computation. In Section VI-A, we will discuss
a more complex case of accumulation which takes into account
grouping rules.

updateProvState: updates the StateCollection with a refer-
ence to a data entity, identified by a lookup tag. The lookup
tag will allow developers to refer to the entity when this is
used to derive new data.

write: this is the native write operation that activates the
transfer of data between adjacent components of a workflow.
Different systems may use different names, or simply use the
return statement of a function. We call it write for clarity.
It triggers the associated write-event, which is then captured
by the applyDerivationRule method. Our framework extends
this action with explicit provenance controls by superimposing
a provenance type. The controls allow to add additional
metadata associated with the output or to capture very specific
lineage scenarios by indicating lookup tags to establish explicit
data derivations between the output and the entities in the
StateCollection.

Summarising, while the implementation of the extractItem-
Metadata is specific of the provenance type, the last two meth-
ods are used by developers and expert users to add metadata
to the Data and DataGranules entities at runtime, allowing for
further contextualisation of the lineage. Workflow practitioners
may indicate details about formats, data location, as well as
free-text messages, for instance, to report anomalies, run-time
errors etc.. Metadata can be anonymous or qualified by the
namespaces that are associated with the addNamespacePrefix
method. Similarly, developers can include the PROV property

Fig. 2. Attribution of Provenance Types: The diagram shows the approach to
the injection of a set of specific provenance types (SeismoType, StatelessType)
for a workflow component. The figure also shows how metaprogramming is
handled in native Python.

prov:type, in order to add further typing information to the
data produced, e.g. a class of an external ontology. Table II
shows a selection of the available pattern and contextualisation
types. These types, intended to meet requirements in the
climate and seismology domains, were co-developed with
their experts. The types are available and documented in
GitLab6, together with the provenance type framework for
dispel4py. We expect this library to be extended to support
additional scenarios and data formats.

V. PROVENANCE CONFIGURATION

Once the workflow is developed, users can separately spec-
ify the attribution of types, assign custom semantics to groups
of components and declare selectivity controls. The options
currently available are described in detail in Table III. In our
implementation, the assignment of the provenance types is
automatically handled by the framework which adopts meta-
programming7 techniques. This design and implementation
choice, explained in Figure 2, allows the attribution of prove-
nance types by declaratively combining different categories
of types. It keeps the independence from the underlying
execution environment. It preserves native methods and han-
dles provenance extraction seamlessly across development and
production setups, where different engines will be used for the
same calculation.

The availability of a configuration profile is of great use at
different stages of a research investigation. Users start with
identifying incrementally the useful types which are relevant
for their findings. They may initially insert few metadata and
use less precision in the the recording of the data derivations,
for the sake of experimentation. Formal metadata and detailed
precision can be applied when the research gets closer to

6https://gitlab.com/project-dare/dispel4py/blob/master/doc/dispel4py.
provenance.rst

7https://en.wikipedia.org/wiki/Metaprogramming



its final results. That is, when the need for outreach to and
reproducibility by other peers becomes increasingly likely
and thereby provenance needs to be complete, precise and
rigorous, as in the case for publication and curation in citable
data repositories. When lineage is adopted in production
systems, for monitoring and validation purposes, the flexible
configuration approach helps data-managers limit the impact
of provenance generation on the infrastructure’s resources and
performance. Especially in near real-time systems, Selectivity-
rules based on metadata value ranges can narrow the focus of
the lineage onto relevant situations, which could also trigger
further operations on the outputs at runtime, i.e. feeding com-
plementary processing tasks performed concurrently within
independent execution context. However, managers can also
mine from accumulated provenance records information for
resource planning and to optimise operational practices. The
decoupled configuration approach permits more generality and
fosters collaboration between developers and domain experts
when preparing and interpreting the lineage information. It
encourages the implementation and the reuse of fundamental
methods across disciplines, accommodating their provenance
requirements.

VI. TEST CASE: SEISMIC RAPID ASSESSMENT

Computational seismology is presently facing the challenge
of harnessing the power of highly accurate and computation-
ally sophisticated seismic simulation tools and of managing
increasing amounts of recorded and simulated data. The pro-
cessing and usage of data requires tools to easily customise
the available methods to keep up with the quickly evolv-
ing scientific community. Robust provenance-driven tools are
needed to smartly organise storage of the data and to allow for
data exploration, combination and reuse. This promotes repro-
ducibility and error detection in scientific experiments. These
needs become critically urgent after large seismic events,
since reliable and rapid estimates of the earthquake impact
are fundamental to coordinate emergency response. In this
context, the rapid assessment of seismic ground motion (RA)
is an application is the key requirement from computational
seismology, embodying all the aforementioned needs.

After a large earthquake it is essential to rapidly simulate
the propagation of seismic waveforms in surrounding areas
in order to asses the earthquake’s impact by quantitatively
estimating specific ground motion parameters that are also
significant for structural engineers. Moreover, comparison and
integration of synthetic information with recorded ground
motion data allows us to improve the characterisation of
earthquake impact on ground behaviour.

The theoretical foundations and applicable procedures are
well established, using the high-level steps represented in
Figure 3. This scenario requires intermediate results to be
properly described by usable metadata and traceable in the
context of the generating process and workflow. This would
foster their retrieval to allow their comparison and reuse and
to diagnose, validate and fine-tune new experimental analyses.

Fig. 3. The Rapid Assessment method analysing the impact of an earthquake
composes re-usable tasks that run at different scales and require human
supervision and intervention. The image highlights its data-analysis steps that
exploit the Active provenance framework.

As a first step, the synthetic waveforms representing the
ground motion are simulated. A seismologist selects the model
and numerical code to solve the seismic-wave equation and
supplies initial conditions. Then, the corresponding recorded
seismograms for the earthquake are gathered from national and
international servers.

At this point, in order to use both synthetics and data for
the following analyses, they undergo typical seismological
processing that has to be as similar as possible to make them
consistent and comparable. This Waveform pre-processing
stage, Figure 4, is fundamental to preparing seismological
data. It is used in many other seismological applications such
as seismic tomography and noise cross-correlation analyses.
The results have associated provenance information about all
the pre-processing steps (with related parameterisations) that
they went through. This includes data properties after each
step. These enable the detection of errors in analyses and
the comparison of different ways of preparing the data. After
pre-processing, the RA analysis requires the extraction of
the ground-motion parameters from both the synthetic and
recorded seismograms for subsequent comparison. In Figure
5 we present the PGM Parameters (Peak Ground Motion)
workflow. The combined analysis is applied in parallel on
both synthetic and observed data. For each considered seismic
station, the horizontal components are processed to obtain
Mean and Max norms, resulting in two outputs. Then, the
workflow calculates the peak values for the two norms and
groups them by station’s name (Match). Eventually, these are
compared and the results are stored in a file. Drawing on
a strong scientific background, the Waveform pre-processing
and PGM Parameters workflows are a valuable test-bed to
demonstrating the benefits and flexibility offered by the Active
provenance framework.

A. Seismic Analysis Workflows: Lineage precision and Meta-
data Extraction

We show in this section how to facilitate metadata cus-
tomisation to track continuously evolving scientific methods.
Moreover, we demonstrate how this combines with lineage



Fig. 4. Rapid Assessment: pre-processing pipeline for observed and synthetic
seismological waveforms. The numbers after the processing elements’ name
are assigned by the dispel4py system to label the abstract workflow
components.

Fig. 5. Rapid Assessment: Workflow for the generation of Peak Ground
Motion Parameters.

precision to reverse engineer a complex workflow’s logic. We
start from the Waveform pre-processing workflow in Figure
4. It is composed of simple stateless PEs receiving and
producing waveform time-series according to a data format
defined in the Obspy software package8 [28]. The provenance
type SeismoType, listed in Table II, can handle such a payload
thanks to the implementation of its extractItemMetadata
method, which uses the Obspy toolkit to access seismic data
and metadata. By assigning such a provenance type to a PE,
as shown in Listing 1, a user specifies that when the process is
activated, it automatically populates the lineage with specified
properties at runtime.

1{ ... ,
2’s-prov:componentsType’ :
3{’PE_ReadData’: {’s-prov:type’:[’SeismoType’],
4’s-prov:prov-cluster’:’seis:DataHandler’},
5
6’PE_taper’: {’s-prov:type’:[’SeismoType’],
7’s-prov:prov-cluster’:’seis:Processor’},
8
9’PE_remove_response’: {’s-prov:type’:[’SeismoType’],
10’s-prov:prov-cluster’:’seis:Processor’},
11
12’PE_pre_filter’: {’s-prov:type’:[’SeismoType’]
13’s-prov:prov-cluster’:’seis:Processor’},
14
15’StoreStream’: {’s-prov:type’:[’SeismoType’],
16’s-prov:prov-cluster’:’seis:DataHandler’}}}

Listing 1. Rapid Assessment: extract of a provenance configuration
json for Waveform pre-processing workflow. It shows the assignment
of Contextualisation Type SeismoPE and the semantic clustering to
relevant processing elements used by the workflow. Abstract components
implemented by the same processing element will automatically assume
the same provenance setup. e.g. StoreStream13 and StoreStream14. Unless
specified otherwise in the s-prov:type list, the default Pattern Type is the
SingleInvocationFlow.

Alternatively, developers can specify additional metadata
information to add to the lineage. In Listing 2 we show
this for a simple plotting function implementing components
PE plot stream4 and PE plot stream9 (Figure 4).

1def plot_stream(stream, output_dir, tag):
2stats = stream[0].stats
3filename = "%s.%s.%s.%s.png" %
4(stats[’network’], stats[’station’],
5stats[’channel’], tag)
6
7path = os.environ[’STAGED_DATA’] + ’/’ + output_dir
8dest = os.path.join(path, filename)
9stream.plot(outfile=dest)
10
11prov = {’location’: "file://" + socket.gethostname() +
12"/" + dest,
13’format’: ’image/png’,
14’metadata’: {’origin’: tag}}
15
16return {’_d4p_prov’: prov, ’_d4p_data’: stream}

Listing 2. Plotting function that ingests a seismic time-series stream, an output
location and a tag describing its synthetic or observed origin. It produces an
image and passes the stream to the next processing element. Lines 11-16 show
the customised metadata that will be added to the lineage upon return. Here
the volatile time-series is associated with its plot whose format and ’origin’
are specified together with its current location for immediate access.

Depending on its position in the graph and its parametrisation,
the function characterises the synthetic or observed “origin” of
the produced image, information not otherwise included in the
metadata captured by the SeismoType. In Figure 6 we provide a

8https://www.obspy.org/



Fig. 6. Lineage Contextualisation: The image shows the derivations (wasDerivedFrom) relationships between data entities (circles) produced by the pre-
processing workflow, from the PE plot backwards to the PE taper step. For visual compression we report in the circles’ labels the name of the processing
element generating the data. The yellow contour indicates that the data is associated with a materialised and accessible resource. In the figure, the data
generated by the PE taper (left) is described by the metadata extracted by the SeismoType, which is the type assigned to the processing element. Instead, the
data labelled PE plot (right) is described by metadata that are captured by combining both inline specifications and configuration.

Fig. 7. Lineage Precision: The image shows the lineage of a file
AQU mean.json (yellow circle) produced by the WriteGeoJSON PE as a
result of the the PGM workflow. The wasDerivedFrom relationships (arrows)
show that the file was correctly derived from the mean norm values of the
observed and synthetic data channels of the same station, respectively EHR
and XHR. The light blue circle indicates a StateDerivation, revealing that the
Match had stored the input data produced by a PeakGroundMotion processing
element in its internal state before matching the data. This precision has been
captured thanks to ASTGrouped pattern type assigned to the Match PE in the
provenance configuration.

visualisation of the lineage recorded for the function’s outputs.
This is generated by the S-ProvFlow system9 [31], which
offers integrated tools and services for lineage analysis.

Another interesting case is the application of rules regulat-
ing the dependencies within stateful components that com-
bine data from their inputs in various ways. We take as
an explanatory example the Match component of the PGM
Parameters workflow of Figure 5. This streaming operator
matches incoming data based on the station code to extract
ground-motion parameters between synthetic and observed
data. Since many instances of the component are executed

9https://github.com/KNMI/s-provenance

concurrently, a grouping policy ensures that one instance
receives all the data with the same station code, and that
different instances receive distinct subsets of station codes.
The grouping rules are based on the data properties and foster
deterministic matching and merging operations, realising a
stream-oriented implementation of map-reduce [16]. This is
a feature adopted by several systems, for instance Apache
Storm10, which is one of the execution engines supported by
dispel4py. When capturing the lineage of a PE instance
subject to grouping rules, we need to take into account that
the data of different groups arrive without any particular
order. These settings require developing the component to
be a stateful operator, which involves updating and accessing
intermediate stages of the acquired data for the right group.
From the provenance perspective, we capture this lineage
pattern with the ASTGrouped type (Table II) and assign it to
the Match PE, as shown in Listing 3.

1{ ... ,
2’s-prov:componentsType’ :
3{’streamProducerReal’:{’s-prov:type’:[’SeismoType’],
4’s-prov:prov-cluster’:’seis:DataHandler’},
5
6’streamProducerSynth’:{’s-prov:type’:’[SeismoType’],
7’s-prov:prov-cluster’:’seis:DataHandler’},
8
9’Match’:{’s-prov:type’:[’ASTGrouped’],
10’s-prov:prov-cluster’:’seis:DataHandler’}}}

Listing 3. Rapid Assessment: extract of a provenance configuration json for
the PGM Parameters workflow. The s-prov:type list of the Match component
indicates the choice for the ASTGrouped Pattern Type.

The applyDerivationRule method for the ASTGrouped
updates the provenance state with a new entity whenever an
end-invocation-event is triggered and no data was produced.
This is reflected in the lineage with two derivations of the
new entity, respectively with the current input and with the

10https://storm.apache.org/



one previously added to the state on the same grouping key.
The key is computed by a hash function of the grouping
term and its value. Finally, a write-event simply establishes
the derivation of the output with the current input and with
the entity in the provenance state related to the current
grouping. As shown in Figure 7, by recording in the lineage
the updates to a process state, we can precisely trace the data
that contributed to the output, revealing complex logic without
accessing the components’ implementation. Considering the
operator stateless, or capturing less detailed metadata would
have produced incorrect, incomplete and thereby unusable
provenance.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented an approach to provenance
capturing in Data-Intensive workflows that balances between
automation and human contribution. We introduced a con-
ceptual design based on reusable and combinable Provenance
Types that lead to the Provenance Configuration of a work-
flow for its provenance-aware execution. This is backed by
a provenance model S-PROV, that accommodates complex
lineage patterns. It represents details about the mapping of the
abstract workflow to its distributed and concurrent enactment.
Our framework aims at stimulating a versatile and Active
participation of the domain experts and developers to improve
the content and precision of the lineage information early
in the research life-cycle, yielding improved utility. We have
described its functional abstractions and discussed its usage
and benefits through the effective adoption in an application
for seismic rapid assessment. Here, the implementation of
the framework for the dispel4py system demonstrates how
lineage contextualisation is achieved by declaring simple state-
ments directly in the processing element function, or through
a separate configuration that assigns Provenance Types and
semantics to the worklfow’s components.

The incremental improvement of the relevance and useful-
ness of provenance increases confidence in the possibilities
for its exploitation and therefore, promoting awareness of its
importance. Through the Active participation of the expert,
provenance is ready made for validation and results manage-
ment use cases, exploring solutions to be applied to the next
generation of WMSs [17]. Finally, we have adopted services
and tools developed around our framework to demonstrate its
effects (S-ProvFlow) [31]. In future work, we want to explore
the combination of model and tools to tackle the challenges
of lineage exploration for steering actions.
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