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SUMMARY

Numerical simulations of earthquake ground motions are used both to anticipate the effects
of hypothetical earthquakes by forward simulation and to infer the behaviour of the real
earthquake source ruptures by the inversion of recorded ground motions. In either application
it is necessary to assume some Earth structure that is necessarily inaccurate and to use a
computational method that is also inaccurate for simulating the wavefield Green’s functions.
We refer to these two sources of error as ‘propagation inaccuracies’, which might be considered
to be epistemic. We show that the variance of the Fourier spectrum of the synthetic earthquake
seismograms caused by propagation inaccuracies is related to the spatial covariance on the
rupture surface of errors in the computed Green’s functions, which we estimate for the case
of the 2009 L’ Aquila, Italy, earthquake by comparing erroneous computed Green’s functions
with observed L’Aquila aftershock seismograms (empirical Green’s functions). We further
show that the variance of the synthetic seismograms caused by the rupture variability (aleatory
uncertainty) is related to the spatial covariance on the rupture surface of aleatory variations in
the rupture model, and we investigate the effect of correlated variations in Green’s function
errors and variations in rupture models. Thus, we completely characterize the variability of
synthetic earthquake seismograms induced by errors in propagation and variability in the
rupture behaviour. We calculate the spectra of the variance of the ground motions of the
L’ Aquila main shock caused by propagation inaccuracies for two specific broad-band stations,
the AQU and the FIAM stations. These variances are distressingly large, being comparable or
in some cases exceeding the data amplitudes, suggesting that the best-fitting I’ Aquila rupture
model significantly overfits the data and might be seriously in error. If these computed variances
are typical, the accuracy of many other rupture models for past earthquakes may need to be
reconsidered. The results of this work might be useful in seismic hazard estimation because
the variability of the computed ground motion, caused both by propagation inaccuracies and
variations in the rupture model, can be computed directly, not requiring laborious consideration
of multiple Earth structures.

Key words: Earthquake ground motions; Earthquake hazards; Earthquake source observa-
tions.

the wavefield Green’s functions. Presently, there is no method for

1 INTROD TION . o . .
ODUCTIO making quantitative estimates of the errors, caused by the errors in
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Numerical simulations of earthquake ground motions are used both
to anticipate the effects of hypothetical earthquakes (e.g. Graves
& Pitarka 2014) by forward simulation and to infer the behaviour
of the real earthquake source ruptures by the inversion of recorded
ground motions (e.g. Olson & Apsel 1982). In either application
it is necessary to assume some Earth structure, represented as a
seismic velocity, density and anelastic attenuation structure, which
is necessarily inaccurate, and to use a computational method like ray
theory or finite differences which is also inaccurate for simulating

the assumed Earth structure and the inaccurate calculation method,
in the simulated Green’s functions for either type of study.

Typically in seismic hazard studies using synthetic seismograms
(e.g. Wang & Jordan 2014; Villani & Abrahamson 2015) the error
in the synthetic earthquake seismograms caused by inaccuracies
in the Earth structure and in the computational methods is not
considered.

Recently, however, attention has turned to the inclusion of Green’s
function errors (‘theory errors’) in inversions of observed ground
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Figure 1. Three covariance functions for heterogeneous velocity structure models. Normalizations are somewhat arbitrary. Only the shapes of the curves are

significant.

motions to infer the rupture process. In a very important paper Yagi
& Fukahata (2011) presented a method to include the uncertain-
ties in Green’s functions into an inversion for earthquake rupture
behaviour. Other significant works that look at theory errors in a
Bayesian inversion context are papers by Bodin ez al. (2012), Du-
putel et al. (2012), Dettmer et al. (2014), Minson et al. (2014)
and Ragon er al. (2018). In all these papers the estimates of the-
ory error were obtained from theoretical considerations. None of
the investigators actually measured Green’s function errors. Large
earthquakes typically have aftershocks, which, if their rupture sur-
faces are physically small enough, can be considered to be point
evaluations of the real Green’s functions of the Earth. In our work
we simulate small aftershock ground motions with (erroneous) the-
oretical Green’s functions. The differences between the aftershock
ground motions and the simulated motions are taken to be the
‘theory error’, and we develop a statistical model of the sources of
discrepancies between the calculated and the real Green’s functions.
We use this with a frequency-domain version of the time-domain
Yagi & Fukahata (2011) theory to derive the expected variance y>
caused by Green’s function error in the Fourier amplitude spectra of
ground motions from a larger (non-point) earthquake that we seek
to model. This variance might possibly be useful both in ground
motion inversions and in seismic hazard studies.

We also investigate the total variability of a synthetic seismo-
gram for a large earthquake, which is caused by errors in the wave
propagation model and by the natural variability of the earthquake
source. We will show that the total variability of the ground motion
is given by an equation with three terms. One term is controlled by
errors in the Green’s function, which are epistemic errors, one term

is controlled by variations in the rupture source, which are aleatory
variations, and a third term that is new to seismic hazard studies and
quantifies the effects of correlated variations in the rupture models
and the errors in the Green’s functions.

2 A DISCRETIZED
FREQUENCY-DOMAIN DERIVATION OF
THE Yagi & Fukahata (2011) THEORY,
WITH ADDITIONS AND COMMENTS

In their insightful paper Yagi & Fukahata (2011) (henceforth YF)
presented a time-domain theory in which they derived the effect
of Green’s function errors on the covariance matrix of predicted
large earthquake ground motions and they included this covariance
matrix in a ground motion inversion. However, their theory did not
measure the errors in the Green’s functions themselves. We derive a
frequency-domain version of the YF theory, and we also add some
terms which they have neglected, with comments.

Our notation varies somewhat from YF. Let the true traction on a
fault at point x caused by a point force in the j-direction at the ob-
serveraty be g(x, ;y) = [¢V(x, w;y) g (x, w;y)]", where
1- and 2-directions are orthogonal directions tangent to the fault at
the point x , let its numerical approximation be §)(x, w; y), and the
error in §) be §gV)(x, w; y), with expectation E[5gV)(x, w;y)] = 0,
so we have

g’ (x, w;y) = 8V (x, w;y) + 8gY) (x, w3 y). (1)

Similarly, let the relation between the true slip velocity distribution
at x, the assumed slip velocity distribution and the variation in slip
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Figure 2. Map of the fault geometry and stations used to retrieve the rupture model of the 2009 L’ Aquila earthquake, Italy, by Cirella ef al. (2012). The red
box is the vertical projection of the assumed fault rupture area. The red star is the epicentre. Black triangles are selected permanent strong motion stations,
open circles are broad-band stations, blue dots are GPS stations, and white dots are continuous GPS stations. The rupture surface dips 54° to the southwest.

velocity be
s (X, w) =§(x, w) + 85 (x, ) (2)

with expectation E[ds(X, w)] = 0. We also have that the observed
ground velocity in the j-direction d;(w,y) equals the noise-free
velocity v;(w,y) plus the ground noise 7 ;(, y),

The noise-free ground velocity is given by
vj (w,y) = fA s(x, 0) . gV (x, w;y)d4 4)
Xe

= [§5.89d4+ [ 8s . g0dA+ f § . 8gVd4

xeAd xed xed

+ f 8s . sg¥d4. (3)
xeAd
Here, A is the rupture surface, the dot operator is the usual vector
dot product of two vectors, and we have suppressed all the arguments
for clarity. Eq. (5) is very important: it shows how variations in the
rupture model and errors in the Green’s functions contribute to the
total motion. Discussing the terms individually, we define

ﬁ;g = [§.89d4, (6)
xeA

Svi = [ 8s . gVd4, (7)
xeA

sv¥ = [ s.58gVd4, ()

xed

SV = [ 8s . 884 = [ (851 8&Y + 852 6g,))dA. (9)

xed xed

Eq. (6) is just the usual finite-fault synthetic seismogram calcu-
lated using an approximate numerical method for an assumed rup-
ture model in an erroneous assumed geologic structure. The ground
velocity dv} is caused by the variation és in the rupture source.
The variance pjz. of v} is a measure of the aleatory variability in the
ground velocity caused by the rupture source variability. The ground
velocity 8ng. is caused by the error g in the assumed Green’s func-
tion. The variance yjz of 6ng. is a measure of the epistemic variability
in the ground velocity because errors in the geologic structure and
the computational method can both be reduced with the addition
of more information. Finally, Bv;g is the ground velocity caused by
the interaction of §s and §g, and we denote its variance E}. This
term has not been recognized in the seismic hazard literature and
might not be negligible depending on the amplitudes of §s and 5g.
This term takes into account the possibility that variations in the
geologic structure might cause correlated variations in the rupture
behaviour, although this term will be nonzero even if §s and §g are
uncorrelated. We will comment later on the meanings of §(x, w) and
Ss(x, w).

Most of this paper will concentrate on estimating the variance yj2
of § vf given real-world measurements of Green’s function errors.
However, we will show that the variance ,ojz. of dv} is given by
a nearly identical result, and we will give an expression for the
variance &; of §v'%.
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Figure 3. (a) Focal mechanisms of 41 selected aftershocks. (b) Event sequence numbers of aftershocks (see Table 1). Red triangles indicate the broadband
stations used in this work.
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Table 1. Aftershock identification codes, origin times, mechanisms and seismic moments.

AF_ID Origin time Strike [°] Rake [°] Dip [] M, [dyn cm]
AFO01 2009/04/06 12:54:12 345 —80 60 1.065e 4 21
AF02 2009/04/07 00:40:53 0 -50 40 1.159%¢ + 20
AF03 2009/04/07 10:28:13 160 =75 60 I.1le + 21

AF04 2009/04/07 16:14:34 105 —80 70 5.698e + 19
AF05 2009/04/07 19:45:55 110 —100 60 1.064e + 20
AF06 2009/04/07 23:38:23 130 —110 60 1.447e + 20
AF07 2009/04/08 02:59:44 0 —50 25 4.944e + 21
AF08 2009/04/08 18:35:20 145 —80 35 9.322e + 19
AF09 2009/04/08 23:17:14 350 —60 40 1.71e 4+ 21

AF10 2009/04/09 05:44:19 125 —100 70 9.63% + 19
AF11 2009/04/10 19:06:30 130 —100 40 9.294e + 20
AF12 2009/04/11 05:48:26 160 -90 55 7.566e + 19
AF13 2009/04/12 18:08:53 160 —80 70 3.738e + 20
AF14 2009/04/13 07:07:40 140 =75 55 6.849¢ + 20
AF15 2009/04/13 19:08:50 10 —50 40 2919 + 21
AF16 2009/04/13 20:07:35 350 -50 35 5.402e + 20
AF17 2009/04/15 11:43:52 15 —40 25 9.815¢ + 20
AF18 2009/04/16 19:33:41 160 -90 50 1.437e 4+ 20
AF19 2009/04/19 14:23:23 160 —70 60 2.671e + 20
AF20 2009/04/19 22:24:49 145 —70 65 4.445¢ + 19
AF21 2009/04/20 07:39:46 140 —100 50 1.142e + 20
AF22 2009/04/20 17:02:12 120 —100 65 1.882e + 20
AF23 2009/04/21 08:16:20 145 -70 60 2.64e + 20

AF24 2009/04/21 15:05:20 155 =70 60 1.152e 4+ 20
AF25 2009/04/21 15:43:44 0 —60 40 1.816e + 21
AF26 2009/04/24 15:52:53 350 —55 25 6.4%¢ + 20

AF27 2009/04/25 02:07:33 5 —45 25 1.073e + 21
AF28 2009/04/25 13:16:42 145 =75 50 5.73¢ + 20

AF29 2009/04/26 15:50:58 110 —110 60 1.028e + 20
AF30 2009/05/03 05:13:40 345 =70 35 7.906e + 20
AF31 2009/05/10 15:59:15 335 -90 45 1.847e + 21
AF32 2009/05/30 02:54:06 5 —50 40 1.792e 4+ 21
AF33 2009/06/19 19:46:20 160 —80 40 1.062e + 21
AF34 2009/06/20 05:40:27 -10 -70 35 4.233e + 20
AF35 2009/06/25 20:16:24 140 —100 50 1.569¢ + 20
AF36 2009/07/03 01:13:17 355 -70 40 2.014e 421
AF37 2009/07/03 09:43:04 350 —65 40 1.417e + 21
AF38 2009/07/12 08:40:44 140 —110 35 3.347e + 19
AF39 2009/07/12 22:22:51 120 —80 55 1.227e + 20
AF40 2009/07/21 07:41:30 110 —100 65 8.407¢ + 19
AF41 2009/07/22 03:08:39 110 —110 35 1.258e + 20

We note that our y? is identical to YF’s 2. We have changed
notation to avoid confusion with the measure of interevent (between-
event) variability v used widely in the seismic hazard literature
(Al-Atik et al. 2010).

YF do not explicitly write eq. (5). They make an important as-
sumption. They assume that when their inversion converges, it con-
verges to the true slip velocity model, so ds(x, w) = 0. This enables
them to drop the terms in s above, yielding:

di(y)= [ixw.g"xwvydd+ [§xo).
xeAd xeA

5gV (x, 0;y)d4 +n; (0, ). (10)

We can de-clutter this equation by letting the index j refer to the
jth channel of data, j =1, 2, ---, J where a channel is meant to
be a single component of motion at a single observation location y
and there are J total channels. Then observer location y is subsumed
into index j and we have

d; (w) = fA§ [8V +8g"]dA +n; (). 1n

YF assemble their slip model from K constant-slip-velocity sub-
faults:

2

K
Sxw) =Y Y au T(w) e X (x) (12)

g=1 k=1

where a, is the total (final) slip of the kth subfault in the orthogonal
q = 1 and ¢ = 2 directions on the fault, 7(w) is the Fourier spec-
trum of the slip-velocity time function normalized to unit total slip,
assumed constant over each subfault, # is the rupture time of the
kth subfault, assumed constant over the subfault, and X (x) := 1 if
x is in the kth subfault, := 0 otherwise. In eq. (12) we omit YF’s
sum over source-time functions without loss of generality.

Let the integral of a single component ¢ of the approximate
Green’s functions over the kth subfault be

Gy () = fAéf,j) (x, ) X (x) dA, (13)

XxXe

with a similar equation for the integral of 6g{/’ (note - this latter
integral is never evaluated). Combining these last two relations into
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Figure 4. Observed aftershock ground velocity (red) and synthetic velocity (blue), plotted at the same scale as the observations, for the RF velocity structure
at AQU. Numbers are peak velocities of data seismogram in cm s~!. First 40 s of total 60 s seismograms are shown. Code AFnn is the aftershock number

shown in Fig. 3(b) and Table 1.

the preceding one gives

di(@) =Y Y auT (@)e ™ [Guy (@) + G (@)] +n; ().
q k

(14)

Further, assume that the data are filtered with some bandpass
filter B(w). Then the filtered data are

bi(@) = B(@d; (@)=Y > auT (@)e " B(w)
k

q
[Gyis (@) + G iy (@)] + B(@)n; (). (15)

Define Hyj(0) = T(w)e ™ B(w) Guj(w) and Agp(w) =
ayT(w) e " B(w) .

Combining all these relations gives YF’s eq. (7) in different
notation:

bi@)= Y3 ag Hyg (@) + Y Y Ay (@) 8Gyp; ()
q k q k
+ B(w)n;(w). (16)

Here the term A4,4(w) is YF’s term qu(t) * B(t). The first term
on the right-hand side of the equal sign is just the slip-velocity
model ‘convolved’ with the erroneous numerical Green’s function,
in other words it is the usual finite-fault forward synthetic in this
type of inversion. Another way to write eq. (16) is

P
bi(@)= Y 4,(@) G, @)+ B@)n; (), amn
P

where the double sum over slip-direction index ¢ and subfault index
khas been replaced by a single sum over p, with P = 2K and where

G, (@) = G, (0)+8G,; (w). (18)

Denoting the first term on the right-hand side of eq. (17) as u ;(w)
and using the multidimensional delta method, the variance of u ;(w)
for a single frequency w is (Spudich ez al. 2017; see the Appendix)

y; = Vu,'C; Vu, (19)

where the dagger connotes complex-conjugate transpose, where we
suppress the @ argument to avoid clutter and where

ou j ou Jj ou Jj r T
Vu; = =[4, 45 --- 4p]" .(20)
G, 0Gy; G p;

We have used the transpose notation for typographical conve-
nience to denote a column vector. Note that the right-hand side of
eq. (20) contains only source terms; the data channel dependence j
drops out. The pr element of the P x P complex covariance matrix
C;, again with the frequency argument suppressed, is

Cprj=E [(Gpj —Gp) (G — G,,-)] = E[8G},8G,], (1)

where r =1, 2,---, P is a dummy index, where the asterisk de-
notes complex conjugation and where the expectation is taken over
many realizations of G. The covariance matrix C ; has the dimen-
sion P x P, which is related to the gridding of the source on the
rupture surface. In this frequency-domain derivation C; describes
the covariance of Green’s function errors on the rupture surface; it
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Figure 5. More data-synthetic comparisons at AQU for RF structure. Observed aftershock ground velocity (red) and synthetic velocity (blue), plotted at the
same scale as the observations. Numbers are peak velocities of data seismogram in cm s~!. First 40 s of total 60 s seismograms are shown. Code AFnn is the
aftershock number shown in Fig. 3(b). Data seismograms omitted from analysis owing to excessive noise or processing glitches are haloed in grey.

is not a data covariance matrix. We then have

P P
vl =YY A5C,A,. (22)
P r

where the w dependence is implicit. Because the covariance matrix
is Hermitian, yjz(w) is real. To show that our derivation is correct,
we reproduce the form of YF’s result (their eq. 16, omitting the
ground noise contribution) in the frequency domain by following
them and letting

Cprj (w) = 5pr'ag2 (w) S127j (@), @)

where 8, is the Kroeneker delta, ag (w)isascaling factor and S; (@)
is the maximum amplitude of the theoretical Green’s function for
slip component p and data channel ;. Eq. (23) makes the reasonable
guess that the covariance matrix is diagonal and its elements are
proportional to the maximum amplitude of the theoretical Green’s
function. Inserting eqs (20) and (23) into eq. (19) gives

P
7//'2 = Za;|’4p|2 Sﬁf’ (24)
p=1

where again we suppress the w argument to avoid clutter. Note that
eq. (24) lacks YF’s Toeplitz matrix P,;; which contains the time-
shifted source functions and is used in the time domain convolutions
not needed in the frequency domain. While it is reasonable to guess
that the Green’s function error is proportional to the maximum value
of the theoretical Green’s function, it is preferable to measure the
actual error, which we do later in this paper.

3 THE CONTINUOUS INTEGRAL CASE

YF pose their result in terms of constant-slip subfaults. The gen-
eralization to a continuous spatial variation of the slip function is
straightforward. From eq. (11) we have

dj(w)= [§

xed

gdA+n; (), (25)

where the 2 x 2 covariance matrix of the Green’s function error for
the jth data channel is

C’ (x, X, a)) =F [(Sg(f)* (x,w) T sg¥ (x’, a))]

_ sgi (%) ’ D) (o 50U (v
=E |:|:8g£j) (x)j| [8g1] (X) agzj (X)] - (26)

This result is obtained because the mean of the Green’s function
errors is assumed to be zero (the theoretical Green’s functions are
assumed to not have long-wavelength or frequency-domain biases),
and inspection of the actual data show them to have a mean that is
essentially zero, as we will see later. It should be noted that in the
discrete case C;(w) (with the lowered index) was a P x P matrix,
where P was the number of grid points on the rupture and the
covariance was taken between pairs of grid points, and C/(x, X', @)
(with a raised index) in the continuous case is a 2 X 2 matrix,
where the covariance between points x and x’ on the rupture will
be given below by a continuous function. The use of a continuous
function is one of the ways in which our work goes beyond YF.
The raised and lowered indices are not meant to indicate covariant
or contravariant components. Then, for a particular rupture model
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Figure 6. Observed aftershock ground velocity (red) and synthetic velocity (blue,) plotted at the same scale as the observations, for the CIA velocity structure
at FIAM. Numbers are peak velocities of data seismogram in cm s~!. First 40 s of total 60 s seismograms are shown. Code AFnn is the aftershock number
shown in Fig. 3(b) and Table 1. Data seismograms omitted from analysis owing to excessive noise or processing glitches are haloed in grey. This figure corrects
the erroneous fig. 6 of Spudich et al. (2017).
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Figure 7. Remainder of the observed aftershock ground velocity (red) and synthetic velocity (blue,) plotted at the same scale as the observations, for the CIA
velocity structure at FIAM. Numbers are peak velocities of data seismogram in cm s~!. First 40 s of total 60 s seismograms are shown. Code AFnn is the
aftershock number shown in Table 1 and Fig. 3(b). Data seismograms omitted from the analysis owing to excessive noise or processing glitches are haloed in
grey. This figure corrects the erroneous fig. 7 of Spudich et al. (2017).
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Figure 8. The Argand plot of the scaled complex differences between real and synthetic AQU ground velocities using the CIA model as a function of frequency.
Datum colour is proportional to frequency. Lines connect complex difference data for an individual aftershock.
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Figure 9. The Argand plot of the scaled complex differences between real and synthetic AQU ground velocities using the RF model. Datum colour is
proportional to frequency. Lines connect complex difference data for an individual aftershock.
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Re(cov) for f=0.26672-0.30006 Hz, data from three components merged
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Figure 10. Blue plus signs are real part of the covariance data formed from rigidity- and moment-scaled data for all three components of motion at station
AQU using the RF velocity model for the 0.26672—0.30006 Hz frequency band. Vertical positions of red plus signs indicate the median value of the covariance

data in each distance bin, horizontal position is the centre of each distance bin.

§(x, w), the variance of the ground motion caused by errors in the
Green’s functions is

¥} (@) = / / §'(x, 0) €7 (x, X, @) §(x, ) dxdx. 27

xed x'ed

Physically we might expect two different functional forms for
the spatial covariance. If it is dominated by finite-frequency effects,
we might expect that an element of the covariance of the Green’s
function errors might be of the form

C/ (x, x/,a)) o f(|x — x’| a)/ﬂ) (28)

where S is the shear wave speed of the medium and f is some
decreasing function like a Gaussian centred at the origin. We expect
scaling to be related to the shear wave speed because the S wave
is typically much stronger than the P wave in finite-source seismo-
grams. In such a model the errors in the Green’s functions would be
correlated at progressively longer distances as the wavelengths of
the shear wave increased. On the other hand, if errors in the Green’s
functions are related to unmodelled spatial variations in the rigid-
ity along the fault surface, this function might have no frequency
dependence and would have the same form as the covariance of
rigidity along the fault.
Expanding eq. (27), we have

HOE f / [5:(0 3 (0] ¢/ (x,x) [Z;&] dx dx, (29)

XCAx'CcA4

where

. , S () (X) S ()] (X/) S () (X) S ()] (X/)
C (xx,0) = E |5, 208 L s T 60)
8gy " (x)8g) (x) 8gy (x)8gy” (X))

In these equations the @ dependence of the right-hand side terms
is implied. Eq. (27) is the general result, but we can simplify for
the common case that the rake in an earthquake rupture is primarily
unidirectional. We can simplify by choosing the €; unit vector to
be directed along the dominant slip direction and assuming that the
other component of slip is negligible, which is true for the L Aquila
earthquake. We further simplify by assuming that the &, component
of Green’s function error is uncorrelated with the €, component, so
C’/ becomes diagonal and we finally have

y}(w)zf fs,*(x,w) Cl(x.x,w) 5 (X, 0) dxdx.  (31)
xedx'ed

‘We have verified numerically that the estimates of y/.z (w) obtained
from eq. (31) agree very well with the variance of an ensemble of
ground motions calculated from an ensemble of §g having a given
covariance function. In considering the differences between true
Green'’s traction function g¥)(x, ) and its theoretical approxima-
tion 8Y)(x, w), we expect that the theoretical approximation is devel-
oped in some simplified Earth model that is on the whole unbiased,
and that the real Earth structure is equal to the theoretical structure
plus some random heterogeneities. If a main-shock fault zone has
an extensive low velocity zone, we assume that this feature is in-
cluded in the theoretical traction functions §)(x, w). The position
vector X is a vector in 3-space, meaning that we are not assuming
that our main-shock rupture is located on a 2-D surface (although
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IM(cov) for f=0.26672-0.30006 Hz, data from three components merged
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Figure 11. Blue plus signs are the imaginary part of the covariance data formed from rigidity- and moment-scaled data for all three components of motion
at station AQU using the RF velocity mode for the 0.26672—0.30006 Hz frequency band. Vertical positions of red plus signs indicate the median value of the
covariance data in each distance bin, horizontal position is the centre of each distance bin. The median of the imaginary part of the covariance data at small

separation is approximately zero, as expected.

the aftershocks we use define a fairly planar structure). We are ex-
amining the variation in the traction wavefield in the main-shock
source volume.

Following Frankel & Clayton (1986), the covariance function
may be derived from observed teleseismic traveltime and ampli-
tude variations between g')(x, @) and §)(x, w) that will depend on
the wavenumber spectrum of the heterogeneities. Frankel & Clayton
(1986) studied these variations in spatially stationary random media
with Gaussian and exponential spatial correlation functions and in
a self-similar medium with equal variation of seismic velocity over
a broad range of length scales. Because their assumed random me-
dia were spatially stationary, their covariance functions were func-
tions of spatial separation only. It should be noted that even though
these random media had different spatial correlation functions, the
amplitude distribution of the velocity perturbations was Gaussian.
They concluded that random media with self-similar velocity fluc-
tuations with a correlation length of ¢ = 10 km can explain both
teleseismic traveltime anomalies and the presence of seismic coda
at high frequencies. Each of the three types of media has its own
correlation function, shown in Fig. 1. The exponential and Gaus-
sian covariance functions are normalized to unit amplitude at zero
separation; the Von Karman correlation function is proportional to
the Bessel function K(r /a), where r is separation and is arbitrar-
ily normalized to K((1/10) =1 in Fig. 1 (K,(0) = 00). Even for
the self-similar heterogeneity spectrum, some nonzero covariance
is expected at 10 km separation. Given a particular heterogeneity
spectrum, we expect that there will be some spatially correlated
traveltime and amplitude variations in the Green’s functions. If we

consider the covariance of true Green’s traction function gV (x, w)
and its theoretical approximation §/)(x, w), we expect that there
will be some nonzero covariance between different frequencies to
account for traveltime errors. Some evidence of this appears in the
next sections.

An important distinction to note is that Frankel & Clayton (1986)
specified the covariance of their random seismic velocity struc-
tures, and their variations in wave amplitude were the result of the
random structures. We, on the other hand, are using observations
of aftershock seismograms to look directly at the random varia-
tion of the traction wavefield §g)(x, w) = gV (x, w) — gV (x, w),
without the intervening mechanism of a random velocity struc-
ture. Our model is that the wavefield §g')(x, w) is spatially sta-
tionary (meaning that spatial covariance is a function of separation
|x — x'| between 8gV)(x, ) and gV (x’, w)), and has zero mean,
averaged over either many realizations or averaged over many cor-
relation lengths. Consequently, the results of Frankel & Clayton
(1986) are not directly applicable to our problem. What is needed
now are finite-difference studies of the covariance of wavefields
in three-dimensionally varying media. It might be that such co-
variance functions might have fundamentally different characteris-
tics, such as having an oscillatory behaviour with the covariance
function, being positive at some separations and negative at other
separations.

YF’s eq. (16) and our result (31) have implications for an im-
portant practical problem, namely, the problem of estimating the
variability in a deterministic forward synthesis of ground motions
from a hypothetical earthquake. When performing such a synthesis
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Figure 12. Median covariance as a function of separation distance in 10 frequency bands for station AQU using RF velocity model lumping data from all

components of motion together.

for a site-specific prediction of ground motion, the result has an
uncertainty caused by ignorance of the exact seismic velocity struc-
ture of the region and an uncertainty caused by the variability of the
rupture source behaviour. The YF result and the continuous integral
form eq. (31) are important results because they quantify the errors
caused by inability to calculate accurate Green’s functions, both be-
cause of inadequate computational methods (e.g. ray theory versus
elastic finite differences) and poor knowledge of Earth’s structure.

Both of these sources of error can easily be better quantified af-
ter an earthquake by addition of more information, for example,
a more accurate computational method or a better Earth structure
model, and are therefore epistemic. Moreover, regardless of our
state of knowledge of Earth’s structure, some informed estimate
of Green’s function error covariance function can be made using
Frankel & Clayton’s method, even if there are no recordings of
small local earthquakes that can be considered empirical Green’s
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Normalized distance-binned median RE(covariance) in 10 frequency bands

T T T T
- == == average of 10 frequency bands
0.8 - -
f = 0.46676-0.5001 Hz
f = 0.41675-0.45009 Hz
f = 0.36674-0.40008 Hz
f = 0.31673-0.35007 Hz
0.6 |- f = 0.26672-0.30006 Hz —
—_ f=0.21671-0.25005 Hz
8 f=0.1667-0.20004 Hz
g f=0.11669-0.15003 Hz
§ f = 0.06668-0.10002 Hz
8 04 f=0.01667-0.05001 Hz -
(]
oc
©
]
N
©
£ 02 -
S
o]
P
0+ -
-0.2 - -
04 | | | |
0 5 10 15 20 25

separation distance, km

Figure 13. Solid lines: median covariance at AQU as a function of separation distance for 10 frequency bands lumping all components of motion together and
normalizing to unit amplitude at the smallest separation. Dashed line: average of all the solid lines.

functions. The second part of estimating the variability of a de-
terministic ground motion synthesis is the rupture variability. The
aleatory part of the error in ground motion prediction is caused
by the variability of the characteristics of the earthquake source. It
could be that inclusion of a statistical representation of the source
such as that by Mai & Beroza (2002) could yield the total variability
of a Green’s-function-based prediction of ground motion including
both aleatoric and epistemic uncertainties. We comment more on
this later in the paper.

4 ESTIMATING THE COVARIANCE
MATRIX OF GREEN’S FUNCTION
ERRORS

In order to measure the errors in theoretical Green’s functions, we
are assuming that recordings of ground motions from small af-
tershocks are true point-dislocation Green’s functions (after some
scaling to be discussed below). The error in the theoretical Green’s
function is related to the difference between the aftershock seismo-
grams and theoretical point source simulations of the aftershocks.
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Figure 14. Solid lines: median covariance at FIAM as a function of separation distance for 10 frequency bands lumping all components of motion together
and normalizing to unit amplitude at the smallest separation. Dashed line: average of all the solid lines.

4.1 The 2009 L’ Aquila, central Italy, main shock and
aftershock sequence

We have selected for study the 2009 April 6 M,, 6.1 L’Aquila, Italy,
earthquake and its aftershocks. The main shock and many after-
shocks were well recorded by permanent strong motion instruments
and broad-band sensors deployed in the epicentral area. In addition,
Cirella et al. (2009, 2012) have derived rupture models for the main
shock using the simulated annealing algorithm of Piatanesi et al.
(2007), so considerable preliminary work was already done. A map

of the area is shown in Fig. 2. In this paper we concentrate on af-
tershocks recorded at broad-band stations AQU and FIAM that are
essentially collocated with the strong-motion stations that recorded
the main shock. Note that FIAM was collocated with strong mo-
tion station FMG. We chose to work with a set of 41 aftershocks
recorded at station AQU (Fig. 3) that had focal mechanisms within
30° of the main-shock mechanism and had corner frequencies above
2.68 Hz. We will comment on the possible biasing effects of this
30° mechanism variation later.
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Covariance at min separation for various stations, components, and frequency bands
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Figure 15. Covariance at zero separation for various combinations of component and frequency bands for the three components of motion at AQU and FIAM.
Measured values of Q°“(w) are shown by circles, triangles and crosses. Piecewise linear functions are interpolants.

Best fitting LAquila rupture model

1.5

L
—_

k slip speed, m/s

|
B S

distance down dip, km
5 3

-14 05

\

-16 T y ‘ " T } Sy /T TN

-18

distance along strike, km

Figure 16. Best-fitting I’ Aquila main-shock rupture model. Colours show peak slip velocity (m s~!), solid white contours show rupture time (s), dashed
contours show the parameter ‘acceleration time’ Ty in the Yoffe slip function of Tinti et al. (2005) and black arrows show the direction of slip.

As our highest frequency of interest for the study was 0.5 Hz, frequency—wavenumber integration method (Saikia 1994; imple-
these events were point sources to a good approximation. 33 of mented in the TDMT software of Dreger 2003) for two different
these aftershocks were recorded at station FIAM. Theoretical trac- seismic velocity structures (realizations), the CIA model of Her-

tion Green’s functions have been calculated for them using the rmann et al. (2011), which was used by Cirella ef al. (2012) for
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Y for AQU/RF - frequency dependent covariance functions
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Figure 17. y as a function of frequency for station AQU using RF velocity structure. Sawtooth spectra result from using the individual coloured covariance
functions from Fig. 13 in their respective frequency bands. Red: N133E (strike-parallel) component of motion at AQU; green: N223E (strike-perpendicular)

component of motion; blue: vertical component of motion.

station FMG and the receiver function (RF) model of Bianchi et al.
(2010), which was used for station AQU. The theoretical tractions
were calculated for the fault geometry indicated by each aftershock
moment tensor solution (Table 1) obtained from Herrmann et al.
(2011) and Valoroso et al. (2013). Data-synthetic comparisons for
these stations and aftershocks are shown in Figs 4-7. The moment-
tensor solutions were obtained by fitting lower frequency data at
more distant stations. Thus, fits shown in these figures are not the
result of inversions of the observed aftershock data but rather of
forward modelling of these events. We removed from the analysis
those data for which the observed data had obvious ground noise or
processing glitches. They were events labelled AF31, AF33, AF37
and AF39 for AQU, leaving 37 events, and AF28, AF23, AF20,
AF12, AF11, AF07 and AF04 for FIAM, leaving 27 events.

4.2 Recovering tractions from ground velocity

Our observations in this section are differences between the Fourier
transforms of aftershock ground velocities and synthetic ground
velocities calculated using an assumed seismic velocity structure
and the aftershock’s seismic moment. Specifically, let index i be the
aftershock index, i = 1, 2, - - - n,, where n, is the number of after-
shocks. Let index j indicate the jth realization of a random variable
(the error associated with the jth erroneous velocity structure). For
each frequency and component of motion we form the complex
difference

A{ =v — Si/ (32

where

v = %gf (33)
i

is the observed aftershock datum, which is a product of rigidity at
the aftershock depth, the aftershock’s true moment A; and its true
traction Green’s function g;, and s;./ is the synthetic from the jth er-
roneous velocity structure for the ith aftershock. We also implicitly
assume that the above equations apply separately to the real and
imaginary components of the complex quantities, so that when we
write v; we mean Re(v;) or Im(v;). Let i’ij be our jth incorrect esti-
mate of M; /u; and let g{ be our jth incorrect synthetic traction. The
incorrect moments might come from different sources, for example,
a moment-tensor solution using broad-band data, or a long period
spectral level from a 2 Hz geophone, and the incorrect traction
Green’s functions might come from different velocity structures.
Then our synthetic aftershock seismogram is

si=Fy G4
and (the real or imaginary part of) our complex difference is

A =v —s/ =v — P& 35)

Normalizing by seismic moment, rigidity and a scaling factor
yields a quantity with the units of the traction Green’s function,
namely, the scaled complex difference (or equivalently the empirical
traction error)

A= (cal[P)= (;@-g{)c (36)
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Y for AQU / RF - frequency independent covariance functions
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Figure 18. y as a function of frequency for station AQU using RF velocity structure. Smooth spectra result from using the dashed average covariance function
from Fig. 13. Red: N133E (strike-parallel) component of motion at AQU; green: N223E (strike-perpendicular) component of motion; blue: vertical component

of motion.

where ¢ = 10°m?km ™2 is a constant scaling factor whose only ef-
fect is to remove many decimal places from the plot annotations.
The units of this empirical traction error are km~2 and are identical
to the units of the Fourier transform of the traction Green’s func-
tions and hence identical to the units of the errors in the traction
Green’s functions. For this reason, the units of the covariance of
the errors in Fourier transform of the traction Green’s functions are
km™*.

We can use our empirical traction errors to determine whether
the RF or the CIA model is better at AQU. Plots of the empirical
traction errors differences in the complex plane for station AQU
using the CIA and RF velocity models are shown in Figs 8 and 9,
respectively. They show that the empirical traction errors grow in
magnitude as frequency increases, justifying the appropriateness of
our frequency-domain approach, and they also show that the CIA
model is considerably better than the RF model (smaller complex
differences) at AQU. However, since Cirella et al. (2009, 2012)
used the RF model for station AQU, we continue to use that model
for AQU. The coloured dots showing the empirical traction errors
for a particular aftershock are strung together with a black line.
For many aftershocks the empirical traction errors form expanding
helices, corresponding to progressive phase shifts as a function of
frequency caused by time mismatches between the synthetic and real
seismograms. The progressive phase shifts are evidence of nonzero
covariance of Green’s function errors at differing frequencies. No-
tably, we have not introduced ‘static corrections’ into the theoretical
Green’s functions to remove these time mismatches because time
mismatches are errors in the theoretical Green’s functions, the effect
of which we hope to quantify.

4.3 Covariance as a function of separation on the fault

To determine the variance yj.z(w,,) we need the spatial covariance

matrix from (31), Cljl(xi, Xx, w,), where j is the channel number
(a single component of motion at a single station), x;and x;are
two points on the fault (in this work, aftershock locations), and the
11-subscript indicates the covariance of Green’s function error in
the &, direction (taken to be the dominant direction of the main-
shock slip) at x;with the Green’s function error in the €, direction
at x;. Including the index on w, C{l(x,-, X;, @, ) has six indices. For
notational simplicity we suppress some of these indices by defining
new spatial covariance matrix

K (@n) = C, (5, %0 00) = E [3g](xi, )" dg] (30 01)]
=F [Aj(xiv wn)* Aj (X/(’ wn)] (37)

where we omit the slip direction indices entirely as the aftershock
rakes are chosen to be within 30° of the dominant slip direc-
tion. A/(x;, w,) is the rigidity- and moment-scaled complex dif-
ference (or empirical traction) introduced earlier. We have previ-
ously speculated that the covariance would be a function of sep-
aration of the aftershocks, r;; = |x; — x;|. Individual values of
E[Re(A/(x;, w,)* A (X, w,))] (which we will refer to as a co-
variance datum) as a function of r;; are shown by blue plus signs
in Fig. 10, where the expectation is taken by averaging the result
for each i—k pair over three components of motion and three val-
ues of n corresponding to three adjacent Fourier components in the
band 0.2667-0.300 Hz. Because the data and theoretical Green’s
functions have a 60 s duration, there are a total of 30 frequency
components with a frequency interval of 1/60 s = 0.01667 Hz. For
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Figure 19. y as a function of frequency for station FIAM using CIA velocity structure. Red: N133E (strike-parallel) component of motion at FIAM; green:
N223E (strike-perpendicular) component of motion; blue: vertical component of motion

the 37 events recorded at AQU, there are 703 non-redundant i—k
pairs for fixed j and n (including the i = £ pairs) and 703 blue plus
signs in the figure for AQU.

In order to take the expected values we should further average
the covariance data within distance bins. However, the perturbations
of the covariance data values caused by moment errors are skewed
(because a moment error of a factor of 2 doubles some data while
only halving others). Numerical tests of the effect of moment errors
show that the covariance function inferred from the median of the
covariance data is largely unbiased while the mean of the covariance
data is systematically biased high (see the Appendix). The same
argument applies to the effect of a 30 degree mechanism error. For
some take-off angles the ratio of the true radiation pattern to the
assumed radiation pattern will be greater than unity, and for others
the ratio will be less than unity, with a ratio of infinity being possible
in principle. While we have not checked this specifically, we believe
that use of the median ameliorates the effects of mechanism errors.

For both stations AQU and FIAM we divided the distance range
into 10 bins, with each bin width adjusted to hold the same num-
ber (about 70) of covariance data. To estimate the covariance as a
function of separation we used the median of the covariance data in
each distance bin. See the caption of Fig. 10 for more information.

The covariance function at zero separation is expected to be pure
real, meaning that the imaginary part of the covariance data should
be zero, which is shown in Fig. 11. The median of the imaginary
part of the covariance data for all distance ranges and tested stations
was not significantly different from zero, so we have assumed that
it is identically zero for all subsequent computations.

The median covariance function for data from all components of
motion in 10 frequency bands at AQU is shown in Fig. 12.

Surprisingly, if we normalize all these curves to unit amplitude at
zero separation, we see different behaviours with frequency for the
AQUY/RF covariance data and the FIAM/CIA data. For AQU there is
a conspicuous variation of the coherence functions with frequency,
seen as the high-frequency covariance functions lying below the
dashed average and the low-frequency data lying above the dashed
average in Fig. 13, vaguely consistent with the behaviour predicted
in eq. (28). On the other hand, a weak frequency dependence in the
opposite sense of AQU is seen in Fig. 14 for FIAM. As the source
zone for the aftershocks at AQU and FIAM are the same, it is difficult
to identify a physical mechanism that would produce the differing
frequency behaviours. The dashed average covariance functions in
Figs 13 and 14 are similar in shape to Frankel & Clayton’s (1986)
covariance functions for exponential and self-similar media shown
in Fig. 1, although our covariance functions suggest a covariance
distance less than their 10 km. This suggests that the way to approach
the theory-error problem in ground motion inversions is to treat the
problem as one of waves in random media.

4.4 A covariance model

Our work goes beyond YF because we develop a smooth covariance
function to encapsulate all the behaviour noted in the raw observa-
tions (e.g. Fig. 10) and hopefully to inject some theoretical insight
into the smooth covariance function. We have noted empirically
that the covariance functions for the three components of motion at
AQU differ systematically, with the vertical component having the
lowest covariance and the strike-perpendicular component having
the highest covariance at high frequencies, whereas the component
differences are not so strong at FIAM (Fig. 15). As the frequency
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Comparison of data-synthetic misfits with Y for AQU / RF
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Figure 20. The top row shows observed I’ Aquila main-shock ground velocities (red) at station AQU and the synthetic ground velocities (blue) calculated
from the best-fitting slip model shown in Fig. 16. The bottom row shows the Fourier amplitude spectrum of y (w) in black and the spectra of the data residual
(observed minus synthetic) shown in green. Columns show the three components of motion. The expected error (black curve) for the strike-parallel component
is much greater than the spectrum of the data residual, implying that the data for this component of motion are overfit. The expected error (black curve) for the
vertical component is lower in the 0.2-0.4 Hz band than the spectrum of the data residual, implying that the data for this component of motion are underfit.

dependence of the FIAM covariance was weaker and contrary to that
of AQU, we arbitrarily chose to treat it as frequency-independent.
An in-depth study on this is beyond the main goal of this work.
We are developing a continuous empirical covariance function
to insert into eq. (31) in place of the discretized term Ki’)((a),,) in
eq. (37). At this point it is necessary to separate the dependence
on station s from the dependence on component of motion c. We
parametrize the covariance as a continuous function of » and w as

K (r, w) = Q* (w) N* (r) (38)

where N*(r) for FIAM is the frequency-independent dashed average
correlation function of Fig. 14 normalized to unit amplitude at zero
separation, and Q*“(w), ¢ =1,2,0or 3 and s = AQU or FIAM, is
the covariance at minimum separation of the ¢ component of mo-
tion at station s, as a function of frequency. To calculate Q*“(w)
we applied the same analysis as in Fig. 10 to individual compo-
nents of motion, this time in three frequency bands with bandwidth
0.1667 Hz consisting of 10 Fourier components each (Fig. 15).
The centre frequencies of the three bands were 0.0917, 0.2584 and
0.4251 Hz. The piecewise linear curves in Fig. 15 were used to inter-
polate the value of 2*“(w) at frequencies between the frequencies at
which Q°“(w) was measured (the circles, triangles and crosses). For
AQU, because its covariance functions showed a systematic varia-
tion with frequency, which we wanted to preserve, the individual

coloured piecewise linear functions in Fig. 13 were used for N*(r)
(making it frequency-dependent). Unfortunately, we do not have a
smooth theoretical model of the expected behaviour of these curves
N*(r), and each curve is less well defined than the dashed average
curve, so we expect that the ultimate effect of using these frequency-
dependent curves will be to make the frequency dependence of the
resulting y%(w) somewhat irregular.

4.5 Epistemic error of finite-source synthetic seismograms

With this parametrization we now have everything necessary to
estimate the epistemic error of our finite-source synthetic seismo-
grams. Eq. (31) for the variance becomes

Voo (@) = / / 51 (x, 0) K (r, ) § (X, ) dxdx’ (39)

xed x'eAd

where 7 = |x — X|. As a computed example, for the rupture model
51(x, w) we use the (unpublished) best fitting model found by Cirella
et al. (2009), shown in Fig. 16. Because r = |x — X/|, eq. (39) is a
spatial convolution over x (or x), performed using a 2D Fourier
transform, followed by a simple area integral over the other integra-
tion variable. Derived values of standard deviation y,.(w) (calcu-
lated as the square root of real y2(w)) are shown in Figs 17 and 18
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for AQU using the RF velocity structure and Fig. 19 for the station
FIAM (which is collocated with the strong motion station FMG)
using the CIA velocity structure.

The spectrum of standard deviation y seen in Fig. 17 is serrated.
The alternately depressed and elevated spectral levels are caused by
use of the individual coloured piecewise linear median covariance
functions for the ten different frequency bands from Fig. 13. Each
of them is the result of averaging over three adjacent frequencies.
It will be possible to smooth these curves intelligently when some
smooth theoretical model of the covariance function behaviour is
available. For comparison, Fig. 18 shows the result of using the
average covariance function (dashed curve in Fig. 13) for all fre-
quencies. The results in Figs 17 and 19 are therefore used in the next
section to discuss the goodness of fit of the main-shock synthetics
and data.

4.6 Implications for inversion

One of the problems in most inversions for rupture behaviour is that
no estimate of confidence in the resulting rupture models can be
given because the effects of unknown errors in the Green’s func-
tions (‘theory errors’) have not been assessed. In inversion for rup-
ture behaviour, these theory errors are usually bigger than the errors
in data caused by ground noise and instrumental limitations. Con-
sequently, it is probably common for such inversions to overfit the
data, that is, to obtain an excessively good fit to the data consid-
ering the non-negligible theory errors. This meaning differs from
the typical usage in statistics where overfit implies that a model has
been overparametrized and fits noise as well as signal.

In Figs 20 and 21we compare the actual difference between the
main-shock synthetic and observed ground velocities for stations
AQU and FMG calculated using Cirella’s best-fitting rupture model
(shown in Fig. 16) with y (w), the Fourier amplitude spectrum of the
expected standard deviation of the synthetic caused by errors in the
Green’s functions. In Fig. 20 the fact that the error spectrum (black)
exceeds the data residual spectrum (red) for the strike-parallel com-
ponent of motion may be telling us that these data at AQU are overfit
by the inversion. For the strike-normal component the two spectra
are in good agreement, possibly telling us that these data are being
appropriately fit by the inversion. The residual spectrum exceeds the
error spectrum in the 0.2 to 0.4 Hz band for the vertical component,
telling us that these data are possibly under-fit by the inversion. The
situation is different for FMG (Fig. 21), where all components of
motion appear to be overfit.

These error estimates are very disturbing. Most investigators
would consider the waveform fit of the strike-parallel component
at AQU and all components at FMG as being good fits, and they
would consider the strike-normal fit at AQU to be poor. If these
error estimates are correct and representative of typical errors in
rupture inversions using numerical Green’s functions, it implies
that the slip models of the many rupture models derived from past
earthquakes are much less well resolved than currently thought, and
a major reassessment of these models is necessary, a conclusion
which Beresnev (2003) has previously advocated.

4.7 Total variability of synthetic seismograms

We have thus far concentrated on finding yjz(a)), the variance of
Svf , the Fourier amplitude spectrum of the ground velocity caused
by errors in the Green’s functions (eq. 8). Recall that eq. (5) shows
that there are two other sources of variability in earthquake ground
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velocity: eq. (7) for variance p% of §v}, the Fourier amplitude spec-
trum (FAS) of the ground velocity caused by perturbations of the
rupture model and eq. (9) for variance £; of §v}¥, the FAS of the
ground velocity caused by joint perturbations of the rupture model
and errors in the Green’s functions. Considering first pjz., the vari-
ance of ground velocity caused by statistical variation in the rupture
model is easily found, because the exact symmetry between eqs (7)
and (8) implies that the variance is

pi(w) = / / 80 (x, )S(x, X', )89V (x', w)dxdx’ (40)
xCAx'CA
where
, . 857 (x)8s, (x) 8s7 (x)ds, (X')
S(x.x.0)= E [ssé* x) Bs: () asé* x) 852 (x’)] (1)

and the w dependence of the §s; terms on the right-hand side of eq.
(41) is suppressed to reduce clutter. We can simplify eq. (41) by
assuming that §s, is negligible (this assumption is not necessarily
true in all cases), yielding

P} (@)= / / 2 (x,0) 8, (x, X, 0) g (¥,0) dxdx. (42)

xCAx'c4

This shows that the variance pf(w) of the Fourier amplitude
spectrum of the ground velocity, calculated for a specific Green’s
function model, depends on the spatial covariance of perturbations
of'the rupture model. At this point it is helpful to discuss the meaning
of §s in greater detail. We foresee the primary use of eq. (42)
will be in seismic hazard studies to calculate the variability of
synthetic seismograms given an ensemble of rupture models. These
rupture models might be obtained by performing many dynamic
rupture simulations. It might be that in the seismic hazard study
the investigator wants to include the effect of unknown hypocentre
location, and the investigator’s ensemble contains rupture models s
that have many different hypocentres. Then § would be the average
of all the individual rupture models (even though they have differing
hypocentres), and S(x, X', @) would be obtained from the deviations
s from the average.

The approach here differs from the pseudo-dynamic approach
used by Schmedes et al. (2010), Song & Somerville (2010), Song
etal. (2014) and Lee & Song (2017). In these four papers the spatial
correlation of rupture parameters, such as rupture time and peak slip
speed, is determined and then used to generate a family of rupture
parameter models sharing the determined correlation statistics. This
family of parameter models can then be used to generate a family
of ground motions, from which the statistics (like the variance) of
the ground motions can be determined. In eqs (40) and (42) rupture
parameters are not used. The §s terms are variations in the Fourier
spectrum of slip velocity itself. Further, the variance of the ground
motion is determined directly, skipping the step of calculating the
ground motions of many rupture models.

The final contributor to the variability of the ground velocity is
the term given by eq. (9), the interaction between §g and §s. If slip
is only in the &, direction, the variance &7(w) of §v}%, the interaction
term, 1S

£ () :/ / Cov [8s1 (x) 8g1 (X)), 8s1(x) 821 (x)]dx dx'. (43)
xed x'eAd

The derivation of this result is straightforward following the steps
in https:/stats.stackexchange.com//questions/226657/variance-of-
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Figure 21. The top row shows observed L’ Aquila main-shock ground velocities (red) at station FIAM and the synthetic ground velocities (blue) calculated
from the best-fitting slip model shown in Fig. 16. The bottom row shows the Fourier amplitude spectrum of y (w) in black and the spectra of the data residual
(observed minus synthetic) shown in green. Columns show the three components of motion. The expected error (black curve) for all components is much
greater than the spectrum of the data residual, implying that the data for all components of motion are overfit.

the-integral-of-a-stochastic-proceess. We have verified the correct-
ness of eq. (43) by direct calculation of the variance of an en-
semble of § v’;.g calculated from an ensemble of functions ¥/ (x) =
8s(x) 8g(x) having a given covariance as a function of |x — x|. This
expression (43) is new to seismic hazard research. Because |3s|
or |6g| might not be small, g}(w) might be significant, even if the
covariance between |8s| and |§g| is zero. A note of caution: it is
tempting to use the rule that the variance of sum of the individ-
ual variances §v$, §v and §v}® is the variance of the noise free
ground velocity, but correlations between the individual variance
might exist that invalidate the rule in this case.

5 DISCUSSION

There are several unanswered questions left from this research. First,
what is the proper functional form for the covariance of Green’s
function errors? We have previously speculated that it might be
something like C/(x, X', w) o f(]x — x'|w/B), but we have seen
ambiguous evidence of its inverse scaling with shear wavelength
B Jw. It might depend only weakly on spatial variations of material
properties because some components of stress are continuous across

material discontinuities. We also need to determine whether the two
components of Green’s function error are generally uncorrelated
with each other, as we assumed in simplifying eq. (29) to get eq.
(31). These questions could be answered by numerical studies of
Green’s function error in heterogeneous media. Similar questions
apply to the covariance of rupture variations Js.

The possibility of a nonzero covariance between |§s| and [5g|
in the error interaction term opens an interesting line of research.
We can imagine that spatial variations of rigidity in the fault zone
might cause spatial variations of |8g|. These spatial variations of
rigidity might also cause correlated variations in the rupture pro-
cess |8s|. It would be very interesting to look for such correlations
in numerical simulations of spontaneous rupture in heterogeneous
media.

A practical difficulty for applying eq. (31) for y jz’ the variance of
ground motions calculated for a particular rupture model, is that the
user has to specify a Green’s function error covariance function. We
have speculated that such a covariance function in regions having
little ambient seismicity might be derived from measurements of
teleseismic traveltime and amplitude anomalies and coda-Q, but
this speculation must be checked in regions where there are ample
small earthquakes that can be used as empirical Green’s functions,
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and direct observation of |§g| and construction of the covariance
function are possible.

If we can determine Green’s function error covariance functions
for several different tectonic regimes, can they be regionalized? One
might imagine that the covariance function for stable continental
interiors might have more long-distance correlations than those for
active tectonic regimes. If regionalization is possible, it would allow
the investigator to use for peninsular India a covariance function
derived for stable North America, for example.

We can offer only a few hints on how to include traveltime errors
(or equivalently, phase errors) in the analysis. As our analysis gives
the Fourier amplitude spectrum of the variance, the phase spectrum
of the error is unspecified. Hence, specific realizations of the error
could be generated from assumed phase spectra, which might be
random or which might be phased to produce pulses at desired
arrival times.

With the definition of covariance in eq. (26) including a complex
conjugate, the resulting variance is real. If the complex conjugation
is omitted, the result leads to complex valued covariances (called
pseudo-covariances) and complex variances (Mandic & Goh 2009),
which might be used in the future to include the effects of traveltime
errors. Another alternative is to attempt to characterize the Green’s
function error covariance matrix in the time domain using empirical
Green’s functions, in other words form real covariance matrix

sg” (x.0)8g) (x'.1") 8 (x, 1) 8gy (x', ') “4)
5gs (x, )8g)” (. 1) 8¢ (x, ) 8g” (X, 1)

from observed empirical Green’s function errors. This is the ap-
proach of Yagi & Fukahata (2011). The resulting difficulty is that
for practical calculations it is necessary to have some smooth, phys-
ically motivated interpolating function, like ours (38).

Finally, are ground motion inversions as corrupted by Green’s
function errors as Figs 20 and 21 seem to imply? There is one deci-
sion that we made that might have led to excessively large y, namely
our decision not to set the covariances to zero at large separations
(see the Appendix). However, we did not have a good theoretical
reason for doing so. One might argue that our comparison of Green’s
functions to aftershock waveforms (Figs 4-7) is quite bad; for ex-
ample, there is no hope of fitting the aftershock codas. However, the
observed main-shock seismograms contain the codas of early rup-
turing parts of the rupture, so it is necessary to consider the codas
in the aftershock modelling. It might be possible to create a time-
variable weighting scheme to reduce the weighting of aftershock
late codas, but that is out of the scope of this paper. One might also
argue that even after our removal of noisy aftershocks there seem
to be some aftershocks left in our data set that have noise before
the first arrival. However, such apparent noise might be actually a
difference in the theoretical and observed first arrival times, which
introduce phase errors which contribute to the covariances. This is
the reason that our ‘data tornadoes’ (Figs 8 and 9) grow with fre-
quency. An objective assessment of errors in source models must
also include error caused by pulse traveltime errors.

It should also be noted that no measurement of Green’s function
error is typically done for crustal earthquakes, so it might be that
rather than being catastrophically bad, our comparison is one of the
best achievable.
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APPENDIX A

In order to determine whether the median of the covariance data was
less biased than the mean when there were errors in the aftershock
seismic moments, we did the following test. We created a test data set
Xij,i=1---n,, j=1---n, of n, = 10 independent realizations

of n, = 37 Gaussian random variables (corresponding to the 37 af-
tershocks used in the AQU/RF data set and the 9 or 10 frequencies
over which averages were taken). To each random variable (simu-
lated aftershock datum) we assigned the corresponding aftershock’s
location, and we calculated the spatial separations r between the lo-
cations. We used the Cholesky factorization method (Song et al.
2014) to modify the random variables to have a spatial covariance
function approximating a Gaussian given by exp(—r?)/(20?). To
simulate the effect of random moment errors, we multiplied all 10
realizations of each random datum by the same random moment
error factor 10'°610@0Ni(0-D where N;(0, 1) is the ith realization of a
Gaussian distributed random variable with zero mean and unit stan-
dard deviation, and i = 1-- - n,. If o)y = 2, then the moment errors
will vary roughly from a factor of % to a factor of 2. For this test
we used o), = 1(no error), 2, 3 and 4. To calculate covariances the
expectations were taken over the n, = 10 independent realizations.
Fig. Al shows that for no moment error the median and the mean
agree quite well, which should be expected because the distribu-
tion is not skewed. Fig. A2 shows that the median for the case of
oy = 4 is much less biased than the mean. Note that the means for
oy = 4 (blue crosses) are biased very high compared to the means
(red crosses) for o), = 1. Blue circles are medians for o), = 4 and
are comparable to the red circles, medians for o), = 1 (no moment
error), justifying our use of the medians. Let the example shown
in Fig. A2 be called a trial. To check the statistics we performed
100 trials and examined the ratio of the median covariance of the
simulated data with o), = 2, 3 or 4 to the median with o), = 1(no
moment error) for the cases of o, = 10 km (Fig. A3) and 0, =3
km (Fig. A4). For the case of 0, = 10 km the median is unbiased
for all tested values of the moment error. However, for the AQU and
FIAM data (see Figs 10, 13 and 14) the case of o, = 3km seems
more appropriate. The median is not biased for separations less than
3 km in Fig. 4, but appears to be biased low (factor of 0.5-0.8) for
greater separations. We do not have a good theoretical model for the
expected variation of covariance as a function of separation at large
separations. We assumed that the imaginary part of the covariance
was identically zero because we had theoretical reasons to believe
that it was everywhere zero, which seemed to be confirmed by the
data (see Fig. 11). We could have assumed that the covariance was
identically zero for separations greater than the apparent o, in the
data, but lacking a theoretical reason we chose not to. We instead
used the inferred medians from the covariance analysis, reasoning
that if they were in fact biased low, the error was not contributing
much as the covariance for separations greater than the apparent o,
in the data were small. It should be noted that if we had instead
‘corrected’ our biased medians by factors of 1/0.5 or 1/0.8, the
inferred y values in (see Figs 20 and 21) would have been even
bigger.
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Figure Al. Test covariance data for the case o, = 10, o)y = 1 (no moment error). Solid black line shows the target covariance function with o, = 10, green
symbols are the approximating simulated covariance data from the Cholesky method. Red crosses are the mean values of the covariance data in 10 distance
bins; red circles are the median values in the same bins. Medians and means are very similar for this level of moment error (none).
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Figure A2. Test covariance data for the cases o, = 10, o3y = | (no moment error) and o, = 10, o3y = 4. Green symbols are the simulated covariance data
from the Cholesky method with moment errors included. Green symbols at ordinates greater than 2 are not shown. Red and blue crosses are the mean values
of the covariance data in 10 distance bins for o)y = 1 and oy = 4 respectively; red and blue circles are the median values for o)y = 1 and o)y = 4 respectively
in the same distance bins. Blue crosses with arrows are mean value data that exceeded the maximum plotting range.
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Figure A3. Test to determine the bias of the median covariance as a function of 7, moment error factors 2 (red), 3 (green) and 4 (blue) for the case o, = 10 km.
Mean ratio and population standard deviation shown at the centres of 10 separation bins containing the same number of covariance data. Blue and green
symbols are shifted left and right slightly to avoid overplotting.
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Figure A4. Test to determine the bias of the median covariance as a function of o)7, moment error factors 2 (red), 3 (green) and 4 (blue) for the case o, = 3 km,
which is roughly the decay distance of the data. Mean ratio and population standard deviation shown at the centres of 10 separation bins containing the same
number of covariance data. Blue and green symbols are shifted left and right slightly to avoid overplotting. Medians for all values of moment error are unbiased
for separations less than o;..
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