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Abstract— The past few decades have seen an explosion
of satellite remote sensing techniques for the monitoring of
volcanic thermal features. Here, we propose an artificial neural
network approach for improving the cloud detection through
imperfect multispectral satellite images analysis. The cloud
detection algorithm has been tested on a data set of MSG-
SEVIRI images acquired over the area of Etna volcano in Sicily
(Italy) before and during the 2008 eruption. Results show that
this approach is robust in terms of percentage of correctly
classified pixels.

I. INTRODUCTION

Advances in satellite remote sensing techniques in the
past decade have greatly assisted the observations of high-
temperature volcanic features improving our understanding
of volcanic phenomena and our ability to identify renewed
volcanic activity [1], [2], [3]. Multispectral infrared ob-
servations carried out by satellite-based sensors have been
proved particularly suited for the detection of the onset of
volcanic eruptions [4], [5], [6], [7], [3] and for the mapping
of total thermal flux and volcanic deposits from active lava
flows with high refresh rates [8], [9], [10], [11], [12], [13].
Moreover, satellite-derived estimates of lava eruption rates
have recently been employed to drive numerical simulations
of lava flow paths [14], [15], [16], [17].

Although remote sensing techniques are fundamental for
thermal monitoring of volcanic activity, the presence of
clouds makes satellite images hard to analyze. In fact,
cloud coverage could generate false alarms such as missing
identifications and, whenever an eruption occurs, it may
cause underestimation of the effusion rate computed from
the radiative power retrieved by satellite data analysis [17].

Several techniques have been proposed for cloud classifi-
cation. In particular, the most commonly used one is based
on fixed threshold tests on multispectral satellite radiances,
reflectance and brightness temperature or their combina-
tions [18],[19]. However, because of the great variability
in reflectance of both clouds and surface depending on
solar zenith angle, seasonal effect, cloud type, presence of
snow and many other variables, these simple thereshold-
based techniques fail to rightly classify pixels in satellite
images. Moreover, an optimal setting of thresholds is dif-
ficult to achieve since it requires several types of ancillary
data. Statistical methods have been proposed as alternatives
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techniques for cloud detection. In particular, the variable
threshold method based on the OCA (One-channel Cloudy-
radiance detection Approach [20]; and principal component
analysis (PCA) and independent component analysis (ICA)
introduced by [21]; Support Vector Machines (SVM) de-
scribed by [22]; a multicategory support vector machine
classifier (MSVM) has been investigated with good results
by [23].
Other techniques such as self-organizing map (SOM), back
propagation (BPNN) and probabilistic (PNN) neural net-
works [24] are focused on recognizing the spectral features
of clouds. Furthermore, the textural properties of clouds (i.e.
the pattern of distribution of radiances) are often distinct
and tend to be less sensitive to the effect of atmospheric
attenuation or detector noise [25] thus being a suitable feature
to be used for cloud detection [26].

Neural networks have been widely adopted as pattern
recognition tool. In fact, much interests have been devoted
to adopt artificial neural network models (ANNs) in order to
classify complex data. ANNs mimic complex pattern of neu-
ron interconnections in the brain. These have demonstrated
excellent performance in tasks such as pattern recognition
in digital image analysis. Among the wide scope of appli-
cations, ANNs have been used in a variety of fields such
as medicine [28], nuclear fusion technology [29] and remote
sensing [30]. In the latter case, ANNs have been used to
classify multispectral remote sensing data; in particular, an
ANNs-based pattern classification system for remote sensing
data is described when using indipendent components (ICs)
extracted from LANDSAT TM. ANNs have already been
investigated for cloud detection in [31], [33] showing good
performances.
Moreover, ANNs have to be flexible enough to model
complex behaviours and this may result in ”overfitting”. In
fact, an ANN may not be able to generalize well enough and,
in these cases, it learns to well classify the training data but
failing to generalize new input data. Thus, different methods
have been proposed to avoid overfitting improving the robust-
ness of ANNs [32]. One of the approaches that have been
investigated is considering the effects of imperfections in the
input data on the ANN performance. In particular, it is known
that noisy training data helps improving ANN generalization
capability. In [33] noise has been injected into the ANNs
in order to improve ANN robustness and to prevent ANN
over-fitting.

In this contribution, we propose a neural network pattern
recognition approach for clouds detection based on imperfect
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satellite images. In particular, the effects of imperfections in
the training input data are investigated as a mean to enhance
the performance of the proposed ANN clouds classifier. The
cloud detection algorithm has been trained and tested on a
data set of MSG-SEVIRI images acquired over the area of
Etna volcano in Sicily (Italy). We analyzed satellite images
acquired before (in February) and during (in August) the
Etna eruption began on 13 May 2008. This approach has
been proved to be robust and effective both in terms of
classification accuracy and generalization capability.

The paper is organized as follows: in Section II the data
preparation stage is described; in Section III the proposed
ANN-based approach for cloud detection is shown; in Sec-
tion IV numerical results are presented and in Section V the
conclusions are reported.

II. DATA

The SEVIRI radiometer is a geostationary imager pro-
viding high-quality data (10-bit quantization) in 12 narrow
channels: 4 visible (VIS) and near-infrared (NIR), 8 infrared
(IR), and one additional high-resolution visible (HRV). The
sampling distance is 1 km for the HRV channel, while all
other channels are designed to scan the Earth with a 3-
km sampling distance at subsatellite point. The temporal
resolution is very high, either 5 or 15 minutes.
However, instrumental data quantization limits the radiomet-
ric performance, thus radiometric noise values characterize
each channel, i.e. 0.37K for 12um channel.

In order to apply the ANN-based method to MSG-SEVIRI
data (downloaded by EUMESAT, http://www.eumetsat.int),
we first divided nighttime and daytime images and selected
those channels mainly involved in cloud discrimination as
described in [26]. Consequently, the chosen data sets are
daytime images of February and August 2008: VIS 0.6, VIS
0.8, NIR 1.6, IR 3.9, IR 10.8 channels.
In particular, the dataset is made by images from each of
the first eleven days of August and February, starting with
the one acquired at 7:00 on the first day and selecting the
following ones 1 hour later on each subsequent day. In Fig.1
these five channels are shown.

Fig. 1. MSG-SEVIRI data: VIS 0.6, VIS 0.8, NIR 1.6, IR 3.9, IR 10.8
channels.

As a pre-processing step, data are normalized between its
minimum and maximum. As stated in the previous section,

imperfect satellite images will be used, thus random noise
is injected in the original satellite images. Different levels
of noise have been explored; higher than 1%, performance
starts getting worse. The noise level should be enough to
improve neural network robustness while keeping the input
data features. 1% could be considered the optimal noise level
for this case of study.

Sicily (Italy) is the geographic area taken into account
since the main goal of this procedure is to be able to
recognize clouds from satellite images, especially during
Etna volcanic activity.

As a consequence, the 189x110 pixels, 398N 118E, 358S
178W was selected from the full disk of 3712x3712 pixels
shown in Fig.2.
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Fig. 2. Full-disk cloud mask

Apart from the daytime and nighttime division, these data
sets were further split into two parts: one for the learning step
(training set) and the other to test the performance (testing
set).

A land mask provided by EUMETSAT is used to process
separately land and sea pixels and the ”ground truth” used
to train and test the ANN is the cloud mask provided on
EUMETCast. In particular, this mask is made by 4 values
corresponding to the four classes that a pixel can belong to:
(0-clear sky over sea, 1- clear sky over land, 2- cloudy and
3-no data). The class numbered 3 is related to the pixels out
of the hemisphere, since we will consider just the selected
local area, class 3 won’t be taken into account. It is worth to
notice that low clouds and dust clouds may be not detected in
case of low solar elevation; dust clouds are not well detected
if they are too thin.

In the adopted cloud mask, the ”cloudy” class has been
split in ”cloudy over sea” and cloudy over land” by appro-
priately using the land mask. Thus, the adopted cloud mask
will be made by four classes, namely, ”0-clear over sea”, ”1-
clear over land”, ”2-cloudy over land” and ”3-cloudy over
sea” as it is shown in Fig. 3.
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Fig. 3. Post-processed cloud mask of Sicily

Thus, a land-mask will be used to split MSG-Seviri and
Cloud mask data in two groups, ”land pixels” and ”sea pix-
els” that will be separately treated. The ”land pixels” group
is made by all the daytime pixels opportunely selected and
”1-clear over land”, ”2-cloudy over land” classes; the ”sea
pixels” group is made by all the daytime pixels opportunely
selected and ”0-clear over sea” and ”3-cloudy over sea”.

III. METHODS

A supervised classifier based on ANN is investigated
in order to develop a cloud detection algorithm able to
discriminate clouds over sea and land in satellite images.

An ANN resembles the networked structure of neurons in
the brain, with layers of connected nodes whose links are
weighted such as the synapses in the brain. These weights
are automatically adjusted during training according to a
specified learning rule until the neural network performs the
desired task correctly. In the proposed ANN, the network
training function that updates weight and bias values, follows
the scaled conjugate gradient method described in [35].

ANN architecture consists of 3 units: the first layer is
the input layer and the number of its nodes is determined
by the input parameters; the last layer is the output layer
and the number of its nodes is given by the desired output;
the layer(s) between the input and output layers are called
the hidden layer(s) where non-linear activation functions are
used for processing the data.

In particular, each input of the proposed ANN will be an
array made of the appropriate satellite channels components
as described in the previous section. As a consequence, the
ANN input will be an array 5x1. The ANN target and output
are made by 4 components with only two feasible values, 0
and 1. If i is the class of a pixel, the ANN output for that
pixel will have the component at the i-th position equal to 1
and the others set to zero.

The hidden layer is made up by 10 neurons with sigmoid
function; the output layer use four softmax output neurons
providing as final ANN output an array made by 4 compo-
nents (one for each class).

The proposed ANN structure will be trained and tested for
the following cases:

• Land pixels during daytime
• Sea pixels during daytime

After the training phase, each ANN will be tested and
once the final architecture is settled down, the map re-
construction is performed. In fact, the ANN gives as output a
matrix of dimension [number of classes] x [number of pixels]
corresponding to a matrix of inputs of dimension [number of
channels] x [number of pixels]. Thus, the overall area needs
to be rearranged by mean of the provided ANNs outputs.

IV. RESULTS

The dataset for training and testing the ANN is made
of MSG images recorded in 2008 as described in Section
II. February and August 2008 day-time images have been
considered for this preliminary study. In particular, almost
330330 pixels have been taken as training set and almost
440440 pixels as testing set.

The two groups of data, ”land” and ”sea” are separately
processed and just during the Map Reconstruction phase,
two groups will be opportunely merged again. Thus, after
the training phase performed separately on each group, the
trained ANNs are tested for both ”land” and ”sea” pixels.
In Fig. 4 the ANNs responses are shown after the Map
reconstruction phase, showing a good match between the
target and the output.

Fig. 4. Left: ANNs output; Right: Cloud mask target

The performance of the ANNs trained and tested with
the imperfect satellite images performance are compared
with the ANNs trained and tested with the original satellite
images in Fig.5 and Fig.6. It is worth to notice that some
improvements in terms of performance are obtained when
imperfect satellite images are used.

One of the measures able to show ANNs performances is
considering whether the algorithm correctly predict a positive
result (true positive, tp), correctly specified a negative result
(true negative, tn), or got the response wrong, returning
a false negative (fn) or false positive (fp). This must be
done with respect to a ground truth dataset that contains
the desired output. Given these preliminary metrics, we can
construct more complex ones, namely accuracy, precision
and recall. These are defined as follow:
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Fig. 5. a) ANNs output: ideal case, b) cloud mask corresponding target,
c)ANNs output: imperfect case, d) corresponding target
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Fig. 6. a) ANNs output: ideal case, b) cloud mask corresponding target,
c)ANNs output: imperfect case, d) corresponding target

Accuracy =
t p+ tn

t p+ f p+ tn+ f n
(1)

Precision =
t p

t p+ f p
(2)

Recall =
t p

t p+ f n
(3)

Thus, in Table I, these measures are reported for both
ideal and imperfect cases and interesting conclusions can be
drawn.

V. CONCLUSIONS
The measures in table I and the results in Fig. 5 show

that imperfection enhances ANNs performance in terms of
accuracy and recall. Thus, imperfection plays an important
role in this ANN-based cloud detection approach that can
help improving the existing cloud detection techniques. In
particular, these preliminary results show that such approach

TABLE I
IDEAL VS IMPERFECT

Accuracy Precision Recall
Ideal 0.8895 0.9005 0.7411

Imperfect 0.8945 0.8831 0.7776

make the cloud detection tool more robust preventing over-
fitting.
Under this perspective, it could be interesting to start from
these preliminary results for characterizing the range of noise
that should be used. In fact, under a certain level, noise can
be useful to improve ANN performance but, on the other
hand, over a certain level it degrades its performances.
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