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S U M M A R Y
Time-series of VP/VS ratio have been used to track local changes in elastic properties of rock
volumes. Identifying such variations can provide information on the geophysical processes
taking place inside a rock volume during the seismic cycle. A value of VP/VS ratio can
be computed from traveltime of P and S waves generated from a single local event and it is
representative of the value of the VP/VS ratio for the rocks traversed by the seismic ray, between
the source and the receiver. It is straightforward, during a seismic sequence, to generate time-
series of VP/VS ratio for events located close together and a single station. Such time-series
should be able to monitor temporal variations of elastic parameters in the rock volume. Due
to the very small nature of the expected changes in P- and S-wave velocity, the evaluation
of VP/VS ratio time-series has been problematic in the past, and subjective choices about,
for example the time-averaging scheme applied or event selection for constructing the time-
series, have been proven to strongly affect the outcomes of the analysis. In this contribution, we
present the application of a new methodology for a statistical evaluation of changes in VP/VS

ratio time-series. The new methodology belongs to the wide class of ‘change-point analysis’
algorithms and is developed in the framework of Bayesian inference. The posterior probability
distribution (PPD) of the change-point locations is obtained using a trans-dimensional Markov
chain Monte Carlo (trans-D McMC) algorithm, where the existence and number of change-
points is directly dictated by the data themselves. We apply the new algorithm to the seismic
catalogue produced by the Alto Tiberina Near Fault Observatory seismic network (Northern
Apennines, Italy). Here the high rate of background seismic release and the dense seismic
network allow for a robust statistical analysis. The occurrence of change-points in VP/VS time-
series identified with the proposed procedure is represented in space and time. The space–time
distributions of change-points in the study area shows a clear peak of change-points following
the occurrence of local main events, clustered along the main fault system activated. The
robustness of the proposed approach makes it appropriate as an automatic, real-time tool for
monitoring rock property changes related to seismic activity.

Key words: Probability distributions; Statistical methods; Time-series analysis; Seismicity
and tectonics; Statistical seismology.

1 I N T RO D U C T I O N

By means of repeated velocity measurements over time, it has been
possible to identify variations giving indications of the geophysical
processes taking place inside a rock volume and having as a con-
sequence elastic properties change, during the pre- (Ripepe et al.
2000; Lucente et al. 2010) co- and post-seismic phase (Li et al.

1998; Schaff & Beroza 2004). Among the studied quantities, the
ratio between P- and S-wave velocity, so called VP/VS ratio, is a
common and informative one giving insights into rock properties
such as fluid content and porosity.

A value of VP/VS ratio can be computed from traveltime of P and
S waves generated from a single local event and it is representative
of the value of the VP/VS ratio for the rocks traversed by the seismic
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rays, moving from the source to the receiver, in the approximation
of identical ray paths. It is straightforward, during a seismic se-
quence or a swarm, to generate VP/VS ratio time-series for clusters
of colocated events and a single station. Such time-series would be
able to monitor the temporal variations of elastic parameters in the
rock volume (Gritto & Jarpe 2014).

To search for variations in this kind of data set, two factors must
be addressed. First, we have to consider how to build a time-series
such that all the measurements contributing to the same time-series
sample the same rock volume. This avoids misinterpretation of
VP/VS ratio time-changes given by the migration of the seismicity,
thus sampling different rocks volumes in different times. Obtaining
such time-series is challenging and implies a preliminary analysis
of the available data.

The second matter is related to the method we apply to identify
statistically robust VP/VS ratio variations. The task of identifying
timing of the variation in the analysed time-series and the number of
such variations, falls into the category of ‘change-point problems’,
that is to search for changes in data trends in a statistical way. Tra-
ditional algorithms for dealing with change-point problems mostly
rely on moving averages (Lucente et al. 2010) or similar techniques.
Their weakness concerns the necessity of fixing some aspects of how
the algorithm works, such as defining in advance a window length
or the number of change points that will be detected when such
assumptions could severely affect the results.

Regarding the set up of time-series, we propose a data partition
strategy based on hypocentre locations to select only seismic events
with comparable ray paths and, at the same time, to keep as many
data as possible for the sake of statistical robustness. For the actual
change-point detection step we follow a Bayesian inversion ap-
proach. More specifically we use a Reversible Jump Markov chain
Monte Carlo (RJ-McMC, Green 1995) algorithm. The RJ-McMC
approach is very well suited for change-point problems, because the
number of parameters is an unknown variable itself to be estimated
along with the model parameters. There are many examples of suc-
cessful applications of such techniques to geophysical problems
(e.g. Bodin et al. 2012; Dettmer & Dosso 2012; Piana Agostinetti
et al. 2015; Mandolesi et al. 2018) and, in particular, to the change-
point analysis framework: borehole temperature data (Hopcroft
et al. 2007, 2009), geochemical data (Gallagher et al. 2011), ther-
mochronology (Gallagher 2012). We rely on the ‘natural parsimony’
inherent in this Bayesian approach to find the models with the least
complexity necessary to explain the data (Denison et al. 2002; Mal-
inverno 2002). In this specific case ‘least complexity’ means to place
no more than the number of change-points supported by data (no
overfitting). Furthermore, a scale factor for noise values is also esti-
mated, following the ‘hierarchical Bayes’ methodology (Malinverno
& Briggs 2004). This allows the algorithm to vary the noise level
of the data set and limit the influence of fixed assumptions (under-
estimated or overestimated) on noise values, that otherwise would
affect the number of change-points detected (Piana Agostinetti &
Malinverno 2010).

Thus, the aim of the work is to find, if any, temporal and spatial
variations in VP/VS ratio starting from raw data consisting of VP/VS

ratio time-series automatically generated by a modular procedure
able to take in continuous seismic waveforms and output earthquake
locations and magnitude (Di Stefano et al. 2014). The time-series
are not revised because the proposed methodology could contribute
to innovative and heterogeneous warning systems for monitoring
tectonically active regions or industrial sites potentially inducing
seismic activity.

We apply our algorithm to a data set provided by the Italian
National Institute of Geophysics and Volcanology (INGV) through
The Altotiberina Near Fault Observatory (TABOO) research in-
frastructure (Chiaraluce et al. 2014). The study area is located
in the Northern Apennines Fig. 1, where the high rate of back-
ground seismic release occurring all along a detailed normal fault
system, together with the presence of a dense seismic network, ful-
fil the necessary conditions for a sufficient amount of data and
a good spatial sampling over the area. More than 4000 time-
series, spanning 4 yr, are built and analysed with RJ-McMC al-
gorithm to highlight the occurrence of any variations in VP/VS

ratio.
We validate retrieved change-points with an automatized method

that keeps only change-points passing defined criteria and rep-
resents them in space and time, to highlight source-regions and
time-intervals where VP/VS ratio variations are more likely to
have occurred. To this end we will show how we represent
the results obtained from the analysis of each single VP/VS ra-
tio time-series: gathered together and represented on maps in
an informative way. Finally, we discuss advantages and draw-
backs of the proposed algorithm, together with new potential
applications.

2 DATA

The data set used in this work comprises VP/VS ratios and associated
error values related to 126 520 earthquakes recorded at about 79
TABOO seismic stations and occurred between April 2010 and
March 2015 (Fig. 1). Such VP/VS ratios are calculated as VP/VS =
(tS − tP)/tP + 1 as in (Wadati & Oki 1933) from P and S traveltimes:
tP and tS, respectively. Detailed information regarding the seismic
network can be found in Chiaraluce et al. (2014).

The mean VP/VS ratio of the whole data set is as high as 1.9: a
pretty regular value for an upper crust mainly composed by car-
bonate rocks pervasively traversed by fluids related to meteorolog-
ical phenomena as well as released from the subducted Adriatic
Plate (Chiodini et al. 2004; Piana Agostinetti et al. 2011; Piana
Agostinetti et al. 2017). The values vary considerably in reason
of hypocentral location quality derived by the number of stations
recording the earthquake. As mentioned in the previous paragraph
we did not edit the data set, that is we kept outliers of VP/VS ratio
as large as 100+, in order to test the robustness of the proposed
approach.

In the raw data sets each VP/VS value has an associated error
value which is derived from an estimated P and S traveltime errors
based on the original location analysis. In our work these errors on
VP/VS values are used directly without further processing. The only
exception is where unacceptable error values (i.e. error values equal
to zero) are found. In such cases, we substitute zero values with the
modal error value of the best-located events.

The event origin time was changed from standard date-time
format to decimal days starting from January 2008. We show in
Fig. 1(b) the result of this conversion reporting the occurrence of
the events versus their magnitude. From Figs 1(a) and (b) we can
appreciate the high rate of microseismic release characterizing such
a small area (about 40 km x 30 km), with main episodes not ex-
ceeding ML = 3.8. Due to the high detection capability of TABOO
seismic network, Valoroso et al. (2017) showed that for the study
area each event with ML > 2.9 starts a seismic sequence activating
a well defined normal fault segment.
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Figure 1. (a) Map of the study area. Coloured dots indicate epicentres (colours refer to origin time, see panel (b). Grey triangles show seismic stations used
in this study. Numbered circles indicate the position of the cluster of seismicity cited in the text. The dashed box represents the area shown in the following
figures. (b) Time-distribution of ML > =2.0 seismic events in the study area.

2.1 Data partitioning

Preparation of data involved some minor processing and, most im-
portantly, choosing a reasonable data partition strategy to build
time-series for inversion. Building VP/VS ratio time-series for this

kind of analysis requires to arrange the data in a way such that every
measurement in the same time-series is representative of the same
rock volume, that is aiming to have, as much as possible, similar
ray paths. If this condition is not fulfilled, changes in VP/VS value
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Figure 2. Simplified description of the observed data. (a) VP/VS ratio time-
series associated with a cluster-station couple: each dot represents a mea-
surement of VP/VS ratio at a given time T, different colours show different
uncertainties in the measurements. T1 and T2 are the origin time of the
events in panel (b). (b) For each event within a pre-defined sphere (i.e. clus-
ter), P and S traveltimes recorded at a single seismic station (red triangle)
are used to compute the measurement of VP/VS ratio. Such measurement is
associated with the origin time of the event, here T1 and T2.

observed in a time-series could be dictated by the spatial migration
of hypocentres, which leads to a change of ray paths and, thus, the
sampling of different rocks (likely, with different elastic properties).
Therefore we followed a selection strategy based on hypocentre po-
sitions. For each chosen station, we build a time-series selecting
earthquakes originating from a volume as tiny as possible to ensure
that ray paths are almost the same (see Fig. 2 for an illustrative
sketch). At the same time, for robustness and reliability of the in-
version process, a sufficient amount of data are needed in every
time-series.

With this consideration in mind, the building of VP/VS ratio time-
series has been made aiming to obtain the largest amount of data
within the smallest source volume. The procedure for data parti-
tioning is illustrated in Fig. 3 and detailed as follows:

(i) the whole area is gridded with grid cells size equal to 500 x
500 x 500 m;

(ii) a sphere of 1 km3 in volume (i.e. radius of about 600 m) is
centred on each node of the grid;

(iii) for each node-station pair, the number of earthquakes orig-
inating inside the sphere is counted and time-series are built from
node-station pairs with a minimum number of data equal to 100.

Following these selection criteria we obtained 4200 node-station
couples, of which a representation of ray coverage is visible in map
in Fig. 4 (ray paths being the segments connecting each node-station
pair). A time-series containing origin times (OT), VP/VS ratios and
measurement errors is associated with each node-station couple.

Looking at the VP/VS values (sometimes larger than 100) and
their dispersion, we are aware of the fact that the inferred loca-
tion could be not optimal for all the events included in the starting
catalogue (comprising more than 120 000 events), and, thus, the
selection of the events belonging to a node-station couple could
include some mislocated events. The choices we made for the algo-
rithm, for example in terms of likelihood function, outliers inclusion
and automatic change-point validation, are all together able to over-
come this expected limitation when using automatically generated
data.

3 M E T H O D

We organized our work-flow for data analysis in two main pro-
cedures: the first consist of applying the RJ-McMC algorithm to
each time-series to obtain a change-points distribution in time for
each node-station couple considered. After that, each distribution
is examined to validate only change-points that are considered sig-
nificant based on a list of criteria to be fulfilled. Thus, the ensemble
of significant change-points is analysed considering maps of spatial
and temporal density of validated change-points.

3.1 RJ-McMC implementation

3.1.1 Bayesian inference

Bayesian inference (Bayes 1763) is based on a probabilistic frame-
work which aims to sample a posterior probability distribution
(PPD) of model parameters linked to the data by means of a likeli-
hood measure using Bayes theorem (Mosegaard & Tarantola 1995;
Tarantola 2005). This relation can be written as

p(m|d) ∝ p(m)p(d|m),

where p(m|d) is the posterior pdf of the model m given the data d;
p(m) is the prior pdf on the model parameters (how the model should
be based on our previous knowledge) and p(d|m) is the likelihood
function, which measures the probability of obtaining the data d
given the model m. This measure, quantifies the fit between data
and model m. Thus the posterior probability distribution describes
the distribution of model parameters conditioned on data and prior
information. Using a Bayesian approach to model parameter esti-
mation is an effective way of dealing with the non-uniqueness that
affects most geophysical inverse problems (Backus 1988). In this
probabilistic framework, the resulting PPD is a much more com-
plete and informative solution than any kind of search for the best
fitting model (Mosegaard & Tarantola 1995).

A numerical approximation of the PPD can be obtained in an effi-
cient way adopting a Markov chain Monte Carlo (McMC) method:
a random walk is used to produce a sequence of models sampled
from the PPD and such ensemble is analysed in a post-processing
phase. This is a Markov process in the sense that every new model is
generated conditional on the current one but accepted (or rejected)
independently of any previous models. So, the basis of McMC is
that starting from a point in the model parameter space, we propose
a new model, candidate model, conditional on the current model.
Different McMC implementations can be designed to control the
generation of the new model and to sample efficiently a probability
distribution.

The key feature of a RJ-McMC is that model complexity is in-
ferred from the data. Thus, there is no need to impose a regular-
ization on the solution nor to compare the results obtained with
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Figure 3. Example of data partitioning using cubes instead of spheres for explanatory purposes. Depth range is between 2.5 and 3.0 km. (a) number of events
in a 0.5 x 0.5 x 0.5 km cube. (b) Cubes with more than 100 events that are considered in the analysis.

Figure 4. Total ray coverage for all the 4200 station-cluster couples selected.

different parametrizations (Sambridge et al. 2006). In change-point
problems the ability of such techniques to treat the number of un-
knowns as a parameter to be estimated, is a feature of even greater
importance because the number of change-points is an unknown of

major interest. It could be zero if data do not support any change in
time of the investigated parameters.

3.1.2 Model and priors

In our case the model is a simple step function for which we want to
infer VP/VS values, endpoints for every partition and number of such
partitions. Thus, VP/VS ratio time-series model is here described as
a step function (left continuous) with partitions having a constant
VP/VS ratio between change-points. The unknown model parameters
are the number of change-points k, their location in time t, the VP/VS

value for each partition and an estimated noise scale factor ω. As
our step function is left continuous, each VP/VSi is the value from
tk − 1 (or tmin) to tk. So an additional VP/VS value is needed from tk to
tmax. With this parametrization t is a vector of length k and VP/VS

is a vector of length k + 1. So a model vector can be written as:
m = (k, ω, t, VP/VS).

The scale factor ω is introduced to follow the ‘hierarchical Bayes’
approach described in Malinverno & Briggs (2004). Here a common
scale factor for the whole data set is estimated in a way such that σ =
(σ1, ..., σn) = σ 010ω, with σ 0 = (σ0,1, ..., σ0,n) the original noise
estimates and n number of data points. Clearly, candidate error
values σ also depend on the original noise level of the data set which
is estimated directly from the data; in this context the original values
of errors on the measurements retain only their relative importance
to each other.

In Bayesian formulation prior knowledge on every parameter is
expressed by means of probability distributions: typically uniform
or normal distributions are used to define reasonable values that
the parameters can assume. However, more complex implicit prior
information can be inserted in the form of pre-selected values for
some physical parameters (e.g. regional average VP/VS ratio) or
strongly constrained parametrization (e.g. setting the same number
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Table 1. Prior distributions of model parameters in vector m.

Model parameter
Prior dis-
tribution Minimum Maximum

Logaritmic value of scale factor
for data errors ω

Uniform –1 3

Number of change-points k Uniform 0 100
Temporal coordinate for the
change-points ti in days

Uniform 800 2700

VP/VS ratio associated to each
change-point

Uniform 1.5 2.5

of changepoints across different time-series). Such prior informa-
tion must be carefully investigates, as clearly described in Roy &
Romanowicz (2017) and Gao & Lekić (2018). To avoid any sub-
jective choice, in our case we used uniform distributions of which
minimum and maximum values for every parameter are listed in
Table 1, and we invert indipendently all time-series. Uniform dis-
tributions guarantee simplicity and can be assumed from empirical
obervations and field measurements. Moreover, different strategies
can be easily implemented to sample uniform priors (e.g. Mosegaard
& Tarantola 1995).

3.1.3 Likelihood and acceptance probability

For the likelihood function we adopt a sum of absolute differences
measure (l1-norm). This choice is justified by the presence of out-
liers in the data set: (e.g. measurements exhibiting unreasonably
high VP/VS ratios). One choice would have been to eliminate these
values imposing a subjective threshold above which the measure is
considered ‘unreasonable’ but as discussed earlier we decided to
include all the available data exploring the possibility of creating a
tool for real time automatic monitoring. In addition to this, choosing
a threshold would have not been a useful choice due to the need to
tune thresholds for different time-series. Furthermore an l1-norm
is less influenced by underestimated error values that could even-
tually lead to unnecessary increase of the solution complexity (i.e.
adding change-points not supported by data). The l1-norm solves
these problems in an effective way and is easily implemented in the
likelihood function:

L = 1

2
∏n

i=1 10ωσi
exp

(
−

n∑
i=1

∣∣VP/VS
obs
i − VP/VS

sim
i

∣∣
10ωσi

)
.

This kind of likelihood describes experimental uncertainties using
a Laplacian function instead of a Gaussian function, as explained
in Mosegaard & Tarantola (1995).

The crucial aspect of McMC is how we decide to accept the
new model, which in this case substitute the current one, or reject
it. This is the fundamental criterium that guides the sampling of
the model space. Like many fixed dimension McMC algorithms,
our implementation of the RJ-McMC (introduced by Green 1995)
is based on Metropolis–Hastings algorithm: a model is proposed,
based only on a perturbation of the current one (Markov chain), and
then accepted or rejected following the acceptance probability. More
specifically the probability α of a candidate model to be accepted
follows the Metropolis rule:

α = min

[
1,

q(mcurr |mcand )

q(mcand |mcurr )

p(mcand )

p(mcurr )

L(mcand )

L(mcurr )
|J|

]
,

where p(m) is the prior distribution, q(m) is the proposal distribu-
tion, J is the determinant of the Jacobian matrix of the transforma-
tion from mcurr to mcand , and L(m) is a likelihood function which

measures the fit between the observed data and the data predicted
by model m.

In this study, we adopt the approach developed in Mosegaard
& Tarantola (1995), where two steps are considered for sampling
solutions to geophysical inverse problems according to the PPD. In
the first step, the current model is modified and the candidate model
is proposed from the prior probability distributions (e.g. replacing
one of the parameter in the current model with a value extracted from
the prior probability distribution for such parameter, see Mosegaard
& Tarantola (1995) for details on different sampling strategies). In
the second step, the candidate model is accepted with a probability
proportional to the ratio of the likelihood values of the candidate
and current models. It can be proven that if the candidate models
are generated by sampling the prior distribution, the Metropolis
rule results in a random walk that samples the PPD. In this case, the
expression for α reduces to

α = min

[
1,

L(mcand )

L(mcurr )

]

because the proposal ratio equals the prior ratio and the Jacobian
term can be unity, adopting specific transformations, as showed in
Piana Agostinetti & Malinverno (2010). If L(mcandidate) ≥ L(mcurrent)
the candidate is always accepted; otherwise the random walk moves
to the candidate model with probability equal to L(mcand )/L(mcurr ).

3.1.4 Algorithm

Our implementation of RJ-McMC falls in the so called birth–death
class of algorithms, where the model dimensionality can increase or
decrease only by one. More specifically the algorithm used in this
work is based on Piana Agostinetti & Malinverno (2010), which
in turn uses the same sampling strategy described in Mosegaard &
Tarantola (1995).

After choosing a random starting model from the prior distribu-
tions of parameters, the algorithm iteratively executes the following
operations to sample the PPD:

(i) pick a candidate model mcand by applying one of the following
variations (moves) on the current model mcurr :

(a) perturb VP/VS values
(b) move a change-point in time
(c) birth move: add a new change-point
(d) death move: delete a change-point
(e) perturb noise scale value

(ii) compute the likelihood of mcand

(iii) accept or reject the candidate model according to Metropolis
rule. If mcand is accepted, then mcurr = mcand ; otherwise mcurr is
left unchanged

(iv) save mcurr and restart from step (i)

Each of the different moves applied needs to be tuned to pro-
duce candidate models that lead to a reasonable acceptance ratio
(ratio of accepted models to proposed models). More specifically:
if perturbations are too large, we have an extensive model space
exploration, but most of the proposed models would be rejected; on
the contrary, if perturbations are too small, exploration is slow, but
the acceptance ratio is high. In both cases sampling efficiency is
compromised. Rules for tuning model perturbations applied in this
work are based on acceptance ratio, considered to have ‘optimal
values’ between 0.25 and 0.50 (Mosegaard 2006), but it can be less
for trans-dimensional moves like moves (c) and (d), see Rosenthal
(2011).
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For every time-series the algorithm is iterated in 10 independent
chains of 10 million iterations each. The first 5000 000 iterations of
each run are discarded as a burn-in phase and every 100th model
is stored. Thus, the PPD is numerically reconstructed from 500 000
models.

3.2 Automatic change-points validation

The next step of our analysis automates the check for the presence
of a change-point from posterior distributions of each node-station
pair. We choose an automatic way for the validation of change-
points to limit the subjectivity of decisions. For a change-point to
be accepted in each time window, it has to fulfil the following three
criteria:

(i) Its probability in the PPD for the distribution of change-point
position in time must be equal or larger than four times the prior
probability (which in our case, is uniform over all the time-window).
The selected change-point not only must be a peak in the posterior
distribution, but it has to be a robust one, that is the position of that
change-point in time is validated by many models.

(ii) Number of data before and after change-point must be larger
or equal to 10 per cent of total number of data in time-series. This
is to prevent a change-point being validated only because has poor
constraints (few data) on one side of the time axis.

(iii) The overlapping area of the 1-D marginal PPDs for VP/VS ra-
tio, calculated before (from tk − 1 to tk) and after (from tk to tk + 1) the
change-point, must be smaller or equal 10 per cent. This is to con-
firm only change-points that mark a significant variation of VP/VS

value. In other words the limited overlapping of the posterior distri-
butions of VP/VS ratio before and after a change-point is an indicator
of a well constrained variation. This is a conservative criterium, as
it could exclude short-term variation of the VP/VS value.

4 R E S U LT S

We first show some applications of the Bayesian algorithm and
examples regarding change-points detection. Then we discuss some
cases of the automatic validation of change-points. The occurrence
of change-points is the represented in space and time with sequential
maps, each of which refers to a different time window.

4.1 Inversion results

The first example (Fig. 5) shows a test where we sample the prior
distributions for events originated in cluster ‘2’ and recorded by
station BAT3. Analyising samples collected from the prior distri-
butions gives the fundamental insight that the algorithm is working
properly. This is a key-point point for algorithms that follow the
approach described in Mosegaard & Tarantola (1995), where the
samples must be extracted from (potentially) complex priors. Lo-
cations of stations and clusters are shown in Fig. 1. More precisely
cluster ‘2’ is an ensemble of events with hypocentres inside one
of the spheres described in Section 2.1; depth of sphere centre is
3.25 km in this case. Sampling from the prior distributions is ob-
tained accepting all candidates (i.e. imposing α = 1). Panels from
(a) to (d) show sampled parameters, respectively: VP/VS ratio vari-
ation with time (a), change-points distribution in time (b), number
of change-points (c), scale factor for data errors (d). For reference,
data are shown as coloured dots in panel (a), with colours associated
with data errors (σ 0).

As shown in Fig. 5, excluding the information contained in the
data causes the algorithm to sample uniform distributions as ex-
pected. In particular models with no change-points or with one
hundred of change-points are both samples with the same prob-
ability, without introducing any bias in the number of change-
points. Moreover, change-points can be inserted at every time step
with the same probability. The grey shade in Fig. 5(a) indicates
that the value of the VP/VS ratio is also uniform within the given
bounds.

In Fig. 6 we present the result of the inversion on the same data set
as in Fig. 5, but sampling the PPD, that is where prior information
are combined with information given by the data to obtain statistical
inference on the model parameters. In panel (a), we show the PPD
for VP/VS values in time, while in panel (b) the PPD for the time-
position of the change-points is presented. We observe that the
distribution in panel (b) presents three local maxima. However,
only the third maximum seems to be associated with a realistic
change-point. In fact, for the first one, the maximum probability
is not significantly different from the prior probability value (also
shown in Fig. 5b), while the VP/VS ratio before and after the second
local maximum has similar 1-D marginal PPD. It is worth noticing
that, in portions of the time-series where data are not present, the
resulting PPDs tend to the prior probability distributions, as seen in
panels (a) and (b) before t = 1900. In panel (c), we present the PPD
for the number of change-points and we can appreciate an example
of the ‘natural parsimony’ (Malinverno 2002) of trans-dimensional
algorithms: the PPD of the number of change-points has a single
maximum at about 8 change-points and the sampled number of
change-points is never above 30, even if the maximum of change-
point is as high as 100 (i.e. no over-fitting is performed). Finally, the
PPD for the log10 value of error scaling factor is presented in panel
(d), with a maximum probability for values slightly larger than 0.0
(which translates to a scaling factor slightly larger than 1.0). Such
results indicates that error values in VP/VS ratio measurements are
moderately underestimated.

4.2 Selection of significant change-points

To explain how automatic validation of change-points works, in
Fig. 7 we present a collection of results from Rj-McMC inver-
sions for different node-station pairs. Each panel shows the PPD
of VP/VS values and change-points positions in time. All panels
show some special cases to better understand how the method ex-
plained in Section 3.2 works, together with some limitations of such
method.

In panel (a) we present a ‘no-change-points’ case, to demonstrate
that change-points are actually placed only if statistically supported
by data. The Rj-McMC algorithm can easily and effectively deal
with a no-change-points case, unlike other methods where a prede-
fined number of change-points are placed even if there is no need
to. This is a major feature of our approach not to be underestimated
because it makes the output much more reliable, knowing that if a
change-point is placed is due only to the data.

Panel (b) is a zoom the same data set of Fig. 6, specifically from
day 1900 to day 2300. As seen before, three change-points are seen
in the results of Bayesian inversion respectively at t = 2000, t =
2050 and t = 2200. The first and the second are not accepted by
the automatic validation: the first one because of the height of the
histogram being less than four times the prior level, the second one
because of the difference in VP/VS ratio before and after the change-
point. Only the third one is classified as a ‘true’ change-point.
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Figure 5. Results obtained sampling the prior probability distributions, for a given station-cluster couple. In the top right corner, the station and the cluster
are indicated. (a) PPD for the VP/VS ratio. Grey shades indicate probability. A uniform grey shade is retrieved as expected for a uniform prior probability
distribution. The green line indicates the mean value (i.e. the mid-point of the min/max interval for a uniform prior). Coloured dots represent data in the
time-series, where colours refer to uncertainties. (b) PPD for the location of the change-points in time. As expected, a uniform distribution is retrieved. (c) PPD
for the number of change-points. The algorithm uniformly sampled models with 1–100 change-points following the prior probability distribution. (d) PPD for
the log value of the scale factor of the data uncertainties. A uniform distribution is also retrieved here, indicating that errors can be scaled from one-tenth to
ten times.

In panel (c) we show a case where the automatic validation pro-
cedure fails. The change-point about t = 2150 is a false positive. It
passed validation tests, but, after visual inspection we state that it is
probably placed only because of a measurement far from average,
with low error and few neighbouring data (especially on the right
side).

Panel (d) is an example of a double VP/VS ratio variation (in-
creasing at about t = 2410 d, and decreasing at about t = 2450 d)
in which the increasing one is a false negative. This error in auto-
matic selection is explained by the previous change-points (about t
= 2370 and t = 2380 d) being discarded so that VP/VS ratio variation
before and after t = 2410 d is not enough to pass the last criterium
in Section 3.2.

4.3 Mapping change-points distribution

Each one of the 4200 node-station couples is analysed to check
for change-point(s) presence with the procedure described in Sec-
tion 3.2. The result is a list of times of occurrence of change-points

(if any) for every node-station pair. Given the potential pitfalls il-
lustrated in panels (c) and (d) of Fig. 7, in the following we analyse
the results of the inversions as a whole, not focusing on a single
node-station time-series.

First of all, we analyse the complete catalogue of change-points
as a whole, considering the full investigated volume (e.g. Gritto
& Jarpe 2014). Fig. 8 shows the distribution in time of all vali-
dated change-points if all station-cluster pairs are considered. Main
earthquakes (magnitude ≥ 3.5) are marked with stars; distribution
of ‘moderate’ events (magnitude ≥ 3.0) is shown as histograms.
The most relevant observation is the presence of a clear maximum
in the distribution of change-points at about 2200 d (early January
2014), where the distribution shows a relevant degree of positive
skewness (i.e. a longer right-tail), with more than 50 per cent of all
validated change-points occurring between 2150 and 2250 d (ap-
proximately November 2013 to February 2014). The distribution
of both main and moderate earthquakes exhibit a maximum before
2200 d, broadly indicating that moderate and main events occur
ahead of change-points.
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Change-point analysis of VP/VS ratio time-series 1225

Figure 6. Results obtained sampling the posterior probability distributions, for the same station-cluster couple as in Fig. 5. Switching to posterior sampling,
that is considering the data, uniform distributions are no longer obtained. Instead, distributions are shaped by the information contained in the data, so that
local uniform distribution are still retrieved where data are uninformative or absent, see panel (b) between 800 and 1900 d. Details as in Fig. 5.

This feature is further investigated adding the spatial dimension
to the temporal one: multiple maps of the study area have been
produced at intervals of 25 d spanning 50 d, so to have snapshots of
occurrence of change-points in different time windows from April
2010 and March 2015. This visual approach adds reliability to the
study by overcoming the inherent limitations of analysing every
time-series independently of the others. In Fig. 9 four of these time
windows are shown: panels (b) (c) and (d) focus on the periods
before, during and after the maximum change-points occurrence
highlighted in Fig. 8; in panel (a) we show a map of a period, of con-
siderable seismic activity (Pietralunga seismic sequence, occurred
in 2010 Marzorati et al. 2014). All sequential maps are shown as a
movie in the Supplemental On-line Materials.

The presence or absence of change-points is represented with
lines of different colours: grey lines are used to connect all the
analysed node-station couples (4200); black lines are used to mark
those node-station couples that exhibit one (or more) change-point
in that specific time window. This representation shows that not
only change-points are concentrated in time (as seen also in Fig. 8),
but they are also clustered in space (Fig. 9c). For an even more
significant analysis we show Fig. 10, derived from Fig. 9: in this
case the area is gridded and the black lines (change-point present)

crossing each cell are counted and the number is normalized over
the total number of rays (grey lines) crossing each cell and plotted
as a contour map. The grid used as normalization is represented
in Fig. 4. This normalization is used to produce a clearer picture
of the areas where change-points are present by giving the same
importance to highly sampled zones and poorly sampled ones: we
can highlight the greater relevance of, for example a cell in which
10 out of 10 rays exhibit a change-point (100 per cent) rather than a
cell where 10 out of 100 (10 per cent) exhibit a change-point. As in
Fig. 8, main earthquakes are marked with stars if present in those
time windows.

5 D I S C U S S I O N

In this study, we investigated variations in VP/VS ratio by means
of a Bayesian approach. The dense seismic network and the very
high number of earthquakes recorded at the Alto Tiberina Near
Fault Observatory (TABOO) seismic network, along the Northern
Apennines of Italy, allowed us to analyse 4200 individual time-
series related to seismic events occurred between March 2010 and
May 2015.
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Figure 7. Selected examples of inversion results. In each panel, we summarize the results of the inversion overplotting the PPD of the VP/VS ratio and the
PPD of the time-position of change-points, that is panels (a) and (b) in Fig. 6. (a) Example of ‘no change-point’ result. (b) Example of rejected and confirmed
change-points. Change-points at about 2000, 2050 and 2200 d are, respectively: rejected (according to the first criterion described in Section 3.2), rejected
(according to the third criterion described in Section 3.2), accepted. (c) Example of false positive change-point. (d) Example of false negative change-point at
about 2420 d. See main text for more details on such cases and description of the criteria for change-point validation.

The goal is to identify temporal and spatial variations in VP/VS

ratio starting from raw input data automatically generated by a
modular procedure able to take in continuous seismic waveforms
and output P and S waves arrival times, earthquakes locations and
magnitude (Di Stefano et al. 2014). The data are considered raw
because the time-series (VP/VS values versus time, for single event-
station couple) are not filtered based on any criteria, to test the

robustness of the method. In addition to this the choices we made
in terms of likelihood function, outliers inclusion and automatic
checks for change-point validation, limit the influence of subjective
assumptions affecting change-points detection.

Our application confirms that the RJ-McMC algorithm is one of
the most suitable approach to change-point problems. Among main
advantages it is evident how this type of problem benefits from the
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Figure 8. Change-points distribution in time (percent over total number of change-points confirmed). Each bin is 1 week in width. In red the distribution of
ML ≥ 3.0 earthquakes (50 d bin width). Yellow stars mark main events (ML ≥ 3.5).

Figure 9. Node-station couples exhibiting a change-point (black lines) vs. total couples analysed (grey lines), for four different time-windows. When a
change-point occurs in the time-window, the ray path between station and node is drawn with a black line. Otherwise, it is grey coloured.
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Figure 10. Count of ray paths with change-points normalized by total rays count, for four different time-windows. As in Fig. 9, but here the yellow-shade
colours indicate the ratio between the number of ray paths with a change-point in the selected time-window, and the total number of ray paths.

parsimony of the algorithm (e.g. change-points are placed only if
supported by the data), as showed in Fig. 6 where we have shown
that the total number of change-points obtained by sampling the
posterior probability distribution is very limited with respect to the
maximum value (100) allowed by our setting (panel c in Fig. 6.
The algorithm can also naturally deal with both no-data zones, as
seen in Figs 6(a) and (b) where it tends to the prior value, and no-
change-point cases, as seen in Fig. 7(a). This feature is essential in
approaching very large data sets often discontinuous in time and
density of observations.

In our study we find that the distribution in time of the change-
points (Fig. 8), shows a robust and delayed correlation with mod-
erate earthquakes occurrence (i.e. first a peak in frequency of mod-
erate earthquakes and then a peak in frequency of changepoints),
at the end of 2013 (around day 2000). This is the period of time
when swarm like activity possibly triggered by a slow earthquake
near Gubbio (Fig. 1 Gualandi et al. 2017). It is important to note
that these seismic events occurred ahead of the change-points. In
addition to this, we observe spatial directivity in the rock volumes
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affected by the changes in the elastic properties, respect to the lo-
cation of the causative events as showed in Figs 10(a), (b) and (c)
(note that in Fig. 10b the area experiencing the variation is very
minor). In case of fluids in the source-crustal volume, a possible
interpretation for this could be related to the presence of some sort
of barrier for fluids migration (Lees & Wu 2000). There are also
example where the variation occurs remotely respect to the larger
event or possibly without a correlation (Fig. 10d).

The velocity ratio has been used for many purposes (Nur 1972;
Aggarwal et al. 1973; Chevrot & van der Hilst 2000; Ripepe et al.
2000; Lucente et al. 2010), such as a lithology indicator, determining
degree of consolidation, identifying pore fluid, and predicting veloc-
ities. Variations in the VP/VS ratio are also commonly related to fluid
content and their mobilization (Asada 1982), as well as to the fault-
zone damage evolution (Thurber & Atre 1993; Vidale & Li 2003;
Schaff & Beroza 2004). Along this sector of the Central-Northern
Apennines, studies of the spatial-temporal occurrence of prolonged
foreshocks and aftershock sequences have been linked to dilatancy
diffusional models (Antonioli et al. 2005; Lucente et al. 2010) and
fluid flow occurred in the fractured evaporites layer (Miller et al.
2004; Marzorati et al. 2014). This lithology would act like a reser-
voir (Trippetta et al. 2013) of high CO2 pressure mobilized by
a seismic event and propagating through damaged and fractured
zones, leading the migration of the seismic activity usually along
strike (Miller et al. 2004; Chiaraluce 2012). Thus, a variation in
fluid content is a good candidate for the changes in the ratio we
observed in TABOO area.

As mentioned earlier, it’s important to emphasize that the pro-
cess for defining change-points is weakly influenced by subjective
decisions: Bayesian inversion controls change-points number and
positioning in time and the mapping is statistically robust due to the
high number of independent inversions. Nonetheless a successful
application is determined by a careful choice of the modelling base
function. In our case we have chosen a step function (as explained
in Section 3.1.3) because we expect VP/VS values to maintain a
certain value until a sudden change occurs and then to return to a
new stable value (different from the previous one). This is strictly a
data set specific choice: one can have other kinds of data sets could
be considered, where oscillations or linear trends are expected (e.g.
geochemical and GPS data). The algorithm is versatile and adapt-
able to the expected different situations, for example a sum of
multiple base functions, otherwise the results will not be reliable.
Two examples of this situation are presented in Fig. 7, where slow
variation occurs around day 2000 in panel (b) and between days
2350 and 2400 in panel (d). With our step function modelling, the
way the algorithm can deal with linear trends is by placing many
change-points one close to another, which is clearly not optimal.
Moreover the specific linear trend seen in Fig. 7 d is also the cause
of the false negative as mentioned in Section 4.2.

There are a couple of aspects within the constructed work-flow
that we may want to refine in the future, for increasing the degree of
automatization of the procedure. First, the construction of the time-
series has been done based on our knowledge of the TABOO data
set. Both the dimension of the clusters and the minimum number of
events in each cluster are strictly related to the characteristics of the
seismicity pattern of the study area. A further step forward would
be the introduction of a more general definition of VP/VS ratio time-
series that could account for the ray paths (i.e. a 3-D time-series) to
by-pass the definition of a cluster.

Second, the criteria for validating change-points can be further
developed trying to add statistical analysis of the data-space or
modifying the prior probability distribution including additional

constraints. The McMC methods also give the opportunity to ex-
tract useful information with the analysis of the reconstructed full
PPD, not limiting the results to a single model (best fit or maxi-
mum likelihood model). In our case the PPD is represented as 1-D
marginal PPD for VP/VS to add a criterion in change-points vali-
dation (as explained in Section 3.2. In fact the shape of the 1-D
marginal PPD for VP/VS is a robust indicator for the reliability of a
time-variation because it contains information about the confidence
on the retrieved values before and after the change-point. This fact
is extremely valuable in cases, like ours, where the variations of the
investigated quantity could be limited. For example, in our data set,
variations in values are usually as small as 5 per cent, so an estima-
tion of the confidence allows to rely on multiple criteria to validate
change-points and not only on the mere variation in values.

The identification of transient changes occurring before, during
and after the occurrence of relatively major earthquakes is defini-
tively relevant. To the regard, the positive outcomes we gained with
the proposed methodology show some potential for contributing
to innovative and heterogeneous traffic lights systems monitoring
tectonically active regions or industrial sites potentially inducing
major episodes of seismic activity. Other kind of data sets (e.g.
geochemical and geodetic data) can be integrated in the Bayesian
inversion, to analyse synchronous variations on multiple observ-
ables. The availability of multidisciplinary time-series acquired by
multisensor stations are the ideal data for the implementation of this
new and advanced monitoring technique.

6 C O N C LU S I O N S

We develop a new algorithm for detecting change-points in VP/VS

ratio time-series, based on Bayesian inference. Given the trans-
dimensional nature of the algorithm, the existence and number of
change-points is directly dictated by the data, and not imposed by
the user. Our main findings are:

(i) the Rj-McMC algorithm has been successfully applied to
VP/VS ratio time-series, highlighting a non random distribution of
the located change-points, both in space and time;

(ii) these distributions show a correlation with the occurrence of
‘moderate’ earthquakes (ML ≥ 3.0);

(iii) the proposed procedure has potential in application to moni-
toring tectonically active regions, and can be used as a modular tool
to be integrated with other observables.
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