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the ionospheric irregularities 
climatology over svalbard from 
solar cycle 23
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Claudio Cesaroni  1 & Ingrid Hunstad  1

the paper presents an unprecedented description of the climatology of ionospheric irregularities over 
the Arctic derived from the longest Global Navigation satellite systems data series ever collected for 
this specific aim. Two TEC and scintillation receivers are working at Ny-Ålesund (Svalbard, NO), the 
first of which has been installed in late September 2003. They sample the L1 and L2 signals at 50 Hz 
from all the GPS satellites in view. The receivers monitor an area of about 600 km radius that includes 
the auroral and cusp/cap regions in the European longitudinal sector. The length of the data series and 
the privileged site of observation allow describing the Arctic ionosphere along about two solar cycles, 
from the descending phase of cycle 23 to almost the end of cycle 24. Our analysis results into a detailed 
assessment of the long-term behaviour of the ionosphere under solar maximum and solar minimum 
conditions, including several periods of perturbed ionospheric weather caused by unfavourable helio-
geophysical conditions. Since November 2015, a multi-constellation GNSS receiver has been deployed 
in Ny-Ålesund, providing the opportunity to perform the ionospheric climatology from Galileo signals. 
The results offer realistic features of the high latitude ionosphere that can substantially contribute 
to the necessary improvements of forecasting models, providing a broad spectrum of ionospheric 
reactions to different space weather conditions.

The interest about the impact of the ionosphere on the propagation of Global Navigation Satellite Systems (GNSS) 
signals is continuously increasing mainly because of the high demand of precise positioning (with positioning 
error under one meter). The ionosphere induces two effects on the received signals: a delay due to the presence 
of free electrons, and diffraction and refraction caused by the uneven distribution of the electron density and by 
the plasma velocity changes. The latter effect causes fluctuations on the phase and the amplitude of the received 
signals. The fluctuations due to diffractive effects are termed scintillations. The scintillation occurrence is highly 
variable in space and time and depends on local time, season, solar and magnetic activity. Scintillations are fre-
quent at low latitudes, where, generally, they occur daily during the post-sunset hours, and at high latitudes where 
they can appear at any time, often associated with the geomagnetic storms1–3, but happening also at quiet times4,5. 
Differently from phase scintillation, the amplitude scintillation is biased by irregularities probing size (on L band) 
of hundreds meters6,7. The first literature on the scintillation climatology at high latitudes reported a prevalence 
of phase scintillations4. Such results derived from the data analysis made applying a filter with a fixed cut-off 
frequency at 0.1 Hz to compute σΦ, the phase scintillation index. The σΦ is derived from the standard deviation of 
the detrended carrier phase8. After the papers by Forte9,10, Forte and Radicella11 and Beach12, some more recent 
papers13,14 report that this choice of cut-off frequency is not always able to remove the refractive (determinis-
tic) effects at high latitude. This issue opened a debate: do we have to revise the use of the term scintillation in 
the existing literature? Considering the scintillation a stochastic process we have to call scintillations only those 
amplitude and phase fluctuations due to diffractive (stochastic) effects (not removable from the data). The idea 
to investigate only the scintillations is surely acceptable in a space weather context, in which the scintillation is 
seen as an effect of degradation of the received signal. In this frame, in fact, the scope is to nowcast, forecast and, 
possibly, mitigate the scintillations. Nevertheless, the determination of the optimal choice of the cut-off frequency 
to be adopted to describe the scintillation climatology is challenging. In the next section, we demonstrate how 
difficult is to choose the “best” cut-off frequency to remove the refractive effects on a long-term data set. On the 
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other hand, if the scope of the analysis is to retrieve information on the dynamics and fragmentation of the iono-
spheric plasma causing phase and amplitude fluctuations on the received signals, we think that it is worth keeping 
the refractive effects in the climatology description. In this framework, hereafter we refer to scintillations when 
the events of high σΦ are accompanied by high amplitude scintillation index, S4. S4 is the standard deviation of 
the received power normalized by its mean value. When the enhancement is recorded only on the occurrence of 
σΦ above a fixed threshold, we refer to refractive effects identifying changes in the ionospheric plasma velocity 
and presence of irregularities with scale sizes larger than the first Fresnel’s radius. We consider this information 
crucial to understand the physics ruling the extremely dynamical and complex environment resulting from the 
plasma response to the electric fields of magnetospheric origin15. At high latitudes, the formation and the dynam-
ics of the ionospheric irregularities is strictly linked to the configuration assumed by the convection pattern of 
the ionosphere as a result of the interplay between the geomagnetic field and the Interplanetary Magnetic Field 
(IMF)15,16. The solar activity further affects this interplay by modulating the compression of the solar wind (in 
which the IMF is considered frozen in) on the dayside Earth’s magnetic field. The mapping of the Earth’s magnetic 
field lines describes the auroral oval17 that, under stormy conditions, shows a different configuration from the one 
assumed in quiet times. The whole phenomenology is translated in a fast moving plasma (with typical velocities 
up to 1000 m/s and more), characterized by acceleration, deceleration and stagnation18 and by highly variable 
electron density structuring. Such conditions can, indeed, give rise to refractive effects on GNSS signals recorded 
at auroral and polar latitudes.

In the last decade, several authors investigated the high latitude L-band scintillation under severe stormy 
conditions, thanks to the increased capability to monitor the high latitude ionosphere offered by ground based 
GNSS receivers, also combined with optical and radio experimental observations. These investigations discussed 
the temporal and spatial occurrence of the typical enhanced scintillations due to the most effective storms in the 
solar cycles 23 (e.g. the Halloween storms18) and 24 (e.g. the Saint Patrick’s day storm19). The main outcome refers 
to the tongue of ionization, and to storm enhanced density plume as the cause of enhanced phase scintillation. 
Climatological studies on L band scintillations at high latitude started to appear later on5,20–23 limited to few years 
of data availability. The high degree of unpredictability of the polar and auroral scintillations by global models24 
makes a detailed climatological description of the ionosphere at L-band over at least one solar cycle very challeng-
ing. In turn, the availability of continuous monitoring of the high latitude scintillations provides information that 
can be used as input, e.g., to improve the global models’ performance, particularly under severe space weather 
conditions25.

Bearing this in mind, we use the longest series of data from two GSV4004 GPS Ionospheric Scintillation Total 
Electron Monitors (GISTMs8) ever collected. The first unit was deployed at Ny-Ålesund, Dirigibile Italia Station 
(78.923°N, 11.925°E), in September 200326. A second GISTM was installed in November 2006 in the Statens 
Kartverk (78.929°N, 11.864°E), about 1 km apart. Here we present a climatology of ionospheric irregularities and 
scintillations based on the data collected from September 2003 to December 2016 by both receivers. The time 
interval includes the descending phase of the 23rd solar cycle and the 24th solar cycle. The data availability during 
the considered period is good, although a few gaps between 2009 and 2010 (during the solar minimum) and in 
2013 (during the solar maximum). Taking the opportunity offered by a PolaRxS receiver deployed in Ny-Ålesund, 
Dirigibile Italia station, in November 2015, we compare the irregularities and the scintillation scenario as derived 
from GPS and Galileo data acquired during the entire 2016. We refer to the same interval to investigate the impact 
of the cut off frequency choice on the determination of scintillation occurrence.

As from Fig. 1, the field of view of the two receivers includes the auroral and polar cap regions, identified by 
a climatological description of the poleward and equatorward boundaries of the Feldestein auroral oval27,28 for 
quiet (IQ = 0, black lines) and disturbed conditions (IQ = 6, red lines). The observing site, in fact, includes the 
regions inside the ovals and inside the cap, depending on the Magnetic Local Time (MLT) and the disturbance 
level4,27. The difference between MLT and Universal Time at Svalbard is 3 hours, as indicated also in the figure, 
while the geometry of the modelled auroral oval depends on the coupling among solar wind, magnetosphere and 
high-latitude ionosphere. This peculiar position of the observing site allows looking at ionospheric irregularities 
caused by particle precipitation into the ionosphere and by polar cap patches18. The next section is dedicated to 
the data and the adopted method of analysis. The last section deals with the presentation and discussion of the 
results achieved so far.

Data and Methods
Scintillation and TEC data. The GSV4004 GISTM8 consists of a NovAtel OEM4 dual‐frequency receiver 
with a special firmware that provides in near real time, from 50 Hz sampling, the amplitude and the phase scintil-
lation from the GPS L1 (1575.42 MHz) frequency signal, and the ionospheric Total Electron Content (TEC) from 
the GPS L1 and L2 (1227.6 MHz) carrier phase signals. The device includes a firmware that provides the ampli-
tude and phase scintillation indices, S4 and σΦ. In our analysis, we consider the scintillation indices computed 
over 60 s. The occurrence of ionospheric scintillation is associated with the presence of plasma irregularities, 
which are regions where the electrons concentration is significantly different from the surrounding areas. The 
TEC gradients reveal the presence of ionospheric irregularities and their spatial and temporal variation highlights 
the plasma dynamics18. Thus, besides the analysis of the long-term variation of the scintillation indices, we con-
sider also the climatology of the Rate Of TEC change (ROT).

The receiver firmware provides the indices obtained by: (1) a high‐pass filter for the detrending of the raw 
power and phase measurements, and (2) a Butterworth filter with a default choice of a constant cut-off fre-
quency at 0.1 Hz11,12,28. Recent studies28 demonstrate that the large variety of plasma drift velocity occurring 
at high-latitudes may require adaptive values of the cut-off frequency to disentangle diffractive (stochastic) 
phase variations from refractive (deterministic) phase variations. The known effect of this is a reduction of the 
“phase-without-amplitude scintillation occurrence28,29”. However, a standard approach has not yet been identified 



3Scientific RepoRts |          (2019) 9:9232  | https://doi.org/10.1038/s41598-019-44829-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

and an optimum detrending has not yet been implemented in the firmware of commercial receivers for scintil-
lation monitoring. To date, different choices of cut-off frequency have been proposed on the base of some case 
studies13,14,28, hardly transferrable on long-term statistics.

In this work, we concentrate on the information that can be derived by comparing amplitude and phase scin-
tillation indices. In fact, the amplitude and phase response of an electromagnetic wave to structure is determined 
by Fresnel filtering, which strongly suppresses the amplitude contribution for scales larger than the Fresnel scale4. 
Moreover, σΦ is very sensitive to plasma dynamics and it is useful in estimating the signal fluctuations caused by 
ionospheric irregularities larger than the Fresnel scale, which may even lead to signal loss of lock9. Thus, when 
comparing the different behavior of S4 and σΦ occurrences it is possible to speculate about the scales of the irregu-
larities involved in the resulted scintillation patterns and on the different velocity regimes assumed by the plasma.

The PolaRxS receiver extends the capability of the GSV4004 providing, among the other features, the 
multi-constellation tracking ability. In fact, PolaRxS is able to track simultaneously GPS L1CA, L1P, L2C, L2P, 
L5; GLONASS L1CA, L2CA; Galileo E1, E5a, E5b, E5AltBoc; COMPASS B1, B2; SBAS L130. It provides the same 
quantities given by the GSV4004, but for all the frequencies and constellations, and the measure of the spectral 
parameters: spectral slope of the phase Power Spectral Density (p) in the 0.1 to 25 Hz range and the spectral 
strength of the phase PSD (T) at 1 Hz (60 s).

The Ground Based Scintillation Climatology. The climatology of the expected features of ROT, of its 
standard deviation (ROT SD) and of the percentage occurrence of σΦ and of S4 as a function of MLT and MLAT 
is obtained by applying the well-established GBSC (Ground Based Scintillation Climatology) technique4,23,31,32. 
GBSC takes in input the measurements of different kind of GNSS receivers, by ingesting scintillation as well 
as TEC/ROT data. In this work, the considered outputs of the GBSC are maps in MLT and Altitude Adjusted 
Corrected Geomagnetic33 Latitude (AACGMLat) (bin size: 1° × 1 hour) of the following quantities:

•	 Percentage occurrence of S4 and σΦ above the weak (0.1), moderate (0.25) and strong (0.7) regime thresholds 
(units are radians for σΦ). The percentage occurrence O is evaluated in each bin (iMLT,jMLAT) as 

=O i j( , )MLT MLAT
N i j

N i j

( , )

( , )
thr MLT MLAT

tot MLT MLAT
, in which Nthr(iMLT,jMLAT) is the total number of the considered scintillation indi-

ces above the considered threshold and Ntot(iMLT,jMLAT) is the total number of observation available in the bin;
•	 Mean and standard deviation of ROT in each bin (iMLT,jMLAT).

Figure 1. Position of the poleward and equatorward boundaries of the Feldestein auroral oval for quiet (IQ = 0, 
black lines) and disturbed conditions (IQ = 6, red lines) at 12 MLT (top), 6 MLT (right), 00 MLT (bottom) and 
18 MLT (left). The corresponding UT time is also reported in the figure. Dashed lines indicate the field of view at 
350 km spanned by the receivers located in Ny-Ålesund (black dot) considering an elevation angle mask of 30°.
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To give a representation of the scintillation conditions as independent as possible of the relative geometry 
between the satellites and the receiver, the scintillation indices have been both projected to the vertical (σΦ

vert, 
S4vert) according to the following formulae4,23,31,32:
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in which σΦ
slant and S4slant are the 1-minute indices as measured by the receiver along the slant path. Hereafter, 

the values of the scintillation indices (σΦ, S4) refer to their vertical values. The verticalization process does not 
apply to ROT. In formulae (1) and (2), p is the spectral slope of the phase Power Spectral Density and F(αelev) is 
the obliquity factor34, which is function of the elevation angle αelev at which the observation is made, of the Earth’s 
radius (RE) and of the altitude of the Ionospheric Pierce Point (HIPP):
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− α
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Two assumptions are implicit in the verticalization32: (i) the ionosphere is treated as a single layer (assumed to be 

located at HIPP = 350 km), which allows to write the exponent of F(αelev) in Eq. (2) as 
+p 1
4  and (ii) the scintillation 

regime is weak, which allows to write the verticalization in the form of Eqs (1) and (2)35. All the caveat in applying 
such approximation of statistical studies about scintillation are critically discussed in section 3 of the work by 
Spogli and co-authors (2013)32. Here we remind that such approximation may lead to an underestimation of the 
scintillation occurrence, affecting mainly the values close to the threshold between weak and moderate scintilla-
tion. The assumptions may not hold during extreme events, nevertheless for climatology purposes it suffices. The 
assumption of locating the HIPP at 350 km supposes that the bulk of the ionospheric variations come from the F 
region. Unfortunately, in the considered area there are not ancillary instruments (e.g. ionosonde) useful to resolve 
the altitude on long-term basis, hence supporting the height discrimination. At climatology level we do not expect 
a significant effect of such a choice on our mapping.

While the exponent 
+p 1
4  can be directly estimated by the p measurements provided by PolaRxS, for GSV4004 

a fixed value of p = 2.6 has been adopted22. To remove the effect of the multipath due to the environment sur-
rounding the receiver, possibly leading to mis-identification of the scintillation events, an elevation angle mask of 
30° is applied on the data.

The considered GSV4004 data runs from 1 October 2003 to 31 September 2016 (with some data gaps in 2009 
and 2013), while the PolaRxS data refers to the whole year 2016, without meaningful data gaps. However, we do 
not expect significant impact of such gaps in a very long data series.

IMF and Kp conditions. The maps obtained by means of the GBSC technique are sorted according to the 
geomagnetic storm intensity (according to the Kp index) and according to the solar wind conditions (according 
to the IMF Bz and By components). The Kp, expressed here in terms of NOAA G scale, allows identifying the 
dependence on the geomagnetic field disturbance level in the sub-auroral regions of the globe due to the solar 
particle radiation35,36 (www.swpc.noaa.gov/noaa-scales-explanation). The G scale ranges from 1 to 5, i.e. from 
minor to extreme storm, identified by Kp = 5 and Kp = 9, respectively. Figure 2a reports the time profile of the 
Kp index (3-hourly value) along the considered period, highlighting in green, yellow and red the periods in 
which the conditions were quiet (G0), minor/moderate (G1/G2) and strong/severe/extreme (G3/G4/G5), respec-
tively. As expected, the most disturbed conditions occurred during the maximum and the ascending/descending 
phases of the solar cycle. Figure 2b,c report the time profile of the IMF conditions along the considered period, 

Figure 2. Time profile of Kp (a), IMF-By (b) and IMF-Bz (c). Different colors indicate different ranges of each 
values according to the legend reported in the right part of each plot.
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characterized on the base of the measurements provided by the Advanced Composition Explorer (ACE) space-
craft, orbiting around the Lagrangian L1 point. The data are part of the OMNI_HRO_1MIN dataset provided by 
Coordinated Data Analysis Web site and include 1-minute values of the IMF components plus total field shifted to 
the nose of the Earth’s bow shock. Panels b and c of Fig. 3 report the time profile of IMF-By and IMF-Bz, respec-
tively. The colours indicate different ranges of the total field Btot, inspired to those suggested by the Super Dual 
Auroral Radar Network (SuperDARN) community37.

Kp data are available from the website of the World Data Center for Geoagnetism, Kyoto (http://wdc.kugi.
kyoto-u.ac.jp). IMF data are available at Coordinated Data Analysis Web site (cdaweb.sci.gsfc.nasa.gov). All the 
scintillation and ROT data are downloadable from the eSWua website (electronic Space Weather upper atmos-
phere, www.eswua.ingv.it).

Results
Study of the cut-off frequency for phase detrending. To look for the “optimal” phase detrending on 
long-term data series we have compared the occurrence of σΦ, computed adopting different cut-off frequencies, 
with the occurrence of S4, by analysing the GPS raw data provided by the PolaRxS along the entire 2016. The results 
are described in the GBSC maps given in Fig. 3. The figure is composed by climatology maps of occurrence of 
σΦ ≥ 0.25 radians obtained by using different choices of the cut-off frequency νc to filter the Power Spectral Density 
of the phase spectrum, namely 0.1 Hz (panel a), 0.25 Hz (panel c), 0.4 Hz (panel b) and 1.0 Hz (panel d). Over these 
maps, and over all other maps in this paper, we superimpose the auroral oval boundaries given by the Feldstein, 
Holzworth and Meng model35,36 for quiet and disturbed magnetic activity levels (IQ = 0 and IQ = 6, respectively), 
to indicate the approximate position of the oval and its modelled displacement due to geospace forcing.

The comparison is made with the climatology map of occurrence of S4 ≥ 0.25 (Panel e) to look for the mod-
erate to strong scintillation regimes. The effect of choosing a greater cut-off frequency results in a significant 
decrease of the phase scintillation occurrence (visible in the different occurrence scales). Comparing the σΦ 
occurrence at different cut-off frequencies with the S4 occurrence, it seems that the choice of νc at 0.25 and at 
0.4 Hz maximize the similarity with the S4 occurrence map. The regions highlighted both in the σΦ and the S4 
maps identify the events of phase scintillation accompanied by amplitude scintillation, mainly concentrated in 
the MLT afternoon/evening sector. Nevertheless, the S4 occurrence and the σΦ occurrence are still substantially 
different, regardless the νc choice. The exercise shows well how difficult is to choose the “best” cut-off frequency 
to remove the phase without amplitude scintillation events at a climatological level. Ideally, this would be pos-
sible only having a simultaneous information of the plasma relative velocity and on the irregularities scale sizes 
through actual measurements from ground-based stations (e.g. SuperDARN) and/or from in-situ satellites (e.g. 
Swarm). Unfortunately, this is not possible because of the scarce temporal and spatial coverage of the desired data, 
on the limitation of the devices (e.g., HF absorption during storms affecting SuperDARN radars) and the peculiar 
geometry of the observation needed. So the most promising way to provide a detailed long-term description up 
to now of the ionospheric irregularities over Ny-Ålesund is to keep a fixed cut-off frequency, bearing in mind the 

Figure 3. Climatology maps of occurrence of σΦ ≥ 0.25 radians obtained by using a cutoff frequency νc 
of 0.1 Hz (panel a), 0.25 Hz (panel c), 0.4 Hz (panel b) and 1.0 Hz (panel d). (Panel e) Climatology map of 
occurrence of S4 ≥ 0.25. All maps refers to GPS observations on 2016.
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perils of such a choice. For the remainder of the paper, we deliberately adopt a fixed cut-off frequency at 0.1 Hz. 
Hereafter, we will refer to scintillations when they appear simultaneously on the phase and on the amplitude of 
the GNSS signals and we refer to electron density fluctuations due to refractive effects when they appear only on 
the phase of the received signals. Such approach allows describing the physics ruling the ionospheric irregularities 
origin, formation and dynamics at Svalbard from solar cycle 23 to 24.

Overall irregularities climatology. The ionospheric climatology derived from the entire dataset collected 
at Ny-Ålesund is presented in form of polar maps, MLT vs. AACGMLat. Independently on the helio-geophysical 
conditions, Fig. 4 gives a full panorama of the resulting percentage occurrence of σΦ (panels a,d) and S4 (panels 
b,e) above two selected thresholds: 0.1 (given in rad for σΦ and unit-less for S4) and 0.25 (given in rad for σΦ and 
unit-less for S4), to account for weak-to-strong and moderate-to-strong scattering condition, respectively. Panels 
c and f report the maps of the mean ROT and its standard deviation (ROT SD), respectively.

As expected, the percentage occurrence of S4 is significantly lower than that one of σΦ, from weak to strong 
scattering regime (Fig. 4 panels a,b and b,c). Their maxima (yellow in the colour bar) are differently distributed 
in space: S4 shows a scattered spatial distribution while σΦ results to bulk clearly in the cusp region around the 
magnetic noon. Such discrepancy is surely linked to the choice of keeping a fixed cut-off frequency at 0.1 Hz, 
but allows to identify the scintillations in the regions where σΦ, and S4 occurrences increase simultaneously and 
ionospheric conditions producing refractive effects where only the σΦ occurrence enhances. The latter testifies the 
setup of physical conditions in which the ionosphere is highly dynamic, characterized by large scale size irregu-
larities moving at different velocities with respect to the ambient ionosphere.

The climatology of the weak to moderate scintillations (σΦ ≥ 0.1 rad and S4 ≥ 0.1) evidences the largest occur-
rence in the quiet (IQ = 0) auroral oval and at the cusp around noon (Fig. 4a,b). In the same MLT sector, the 
refractive effects are found at higher latitudes, within the polar cap (within the black inner boundary). They 
are still present even when the σΦ minimum threshold is at 0.25 rad (Fig. 4d). The most severe scintillations 
(σΦ ≥ 0.25 rad and S4 ≥ 0.25) are mainly confined in the pre-midnight polar cap (Fig. 4d,e). While significant 
refractive effects (σΦ ≥ 0.25 rad) are visible at noon.

On the average, the negative TEC gradients (mean ROT, Fig. 4c) occur mainly in the afternoon/evening sec-
tor: from noon, within the quiet auroral oval, to midnight, in the cap. Whilst the positive TEC gradients result 
to characterize principally the auroral and the sub-auroral regions in the morning and the sub-auroral zones 
during night-time. As expected, the ROT standard deviation correlates with the scintillation occurrence and 
with the refractive effects on the signals: it maximizes within the oval around noon-early afternoon, and in the 
pre-midnight sector at all latitudes (Fig. 4f). The ROT standard deviation at noon well correlates with the refrac-
tive effects identified by σΦ and are in agreement with what found by38.

To further detail the distribution of TEC gradients and of scintillations occurrence, we applied the climatol-
ogy to sub-data sets, sorted according to the solar cycle, global geomagnetic storm index Kp and to the different 
conditions of IMF.

Figure 4. Scintillation and ROT climatology maps obtained from the full dataset: maps of occurrence of 
σΦ above 0.1 (a) and 0.25 (d) radians; maps of S4 above 0.1 (b) and 0.25 (e) maps of mean (c) and standard 
deviation of ROT (f).
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Irregularities climatology dependence on solar cycle. To learn more about the dependence of scin-
tillations and of irregularities producing refractive effects on the solar activity, we have sorted the data according 
to the minimum (2007–2009), ascending (2010–2012), maximum (2013–2015) and descending (2003–2006) 
phases of the solar cycle. The results given in Fig. 5 confirm that during the years of solar minimum the scintilla-
tions occur rarely and located around the inner boundary of the quiet auroral oval or within the cap from noon 
to afternoon/evening MLT hours. In the same phase of the cycle, the ionospheric conditions producing refraction 
populate largely the cusp. In the ascending phase, the pre-noon and the evening sectors are the regions hosting 
the scintillations, while the refractive effects appear from (quiet) auroral latitudes to the cap around noon and well 
within the cap during the MLT afternoon. When the solar activity reaches its maximum, the scintillations appear 
at auroral latitudes around noon and in the polar cap from the afternoon to the post-midnight sector. During the 
descending phase of the solar cycle, the occurrence of scintillation maximizes around noon and midnight at the 
(quiet) auroral oval boundaries. Refractive effects are visible during the afternoon in the cap.

Irregularities climatology dependence on geomagnetic storm intensity. For our purpose, we 
sorted the ionospheric data into three classes: quiet conditions (Kp < 5), minor/moderate conditions (5 ≤ Kp ≤ 6), 
strong/severe/extreme conditions (Kp > 6).

Figure 6 shows (from top to bottom) maps of: percentage occurrence of σΦ ≥ 0.1 radians, percentage occur-
rence of S4 ≥ 0.1, percentage occurrence of σΦ ≥ 0.25 radians, percentage occurrence of S4 ≥ 0.25, separately for 
the three classes of geomagnetic storm intensity conditions (quiet, minor/moderate, strong/severe/extreme).

The distribution in MLT of the σΦ occurrence appears dependent on the level of geomagnetic activity especially in 
the midnight sector. Under all the geomagnetic conditions, the hours most affected by scintillations are in the evening/
midnight sector. The refractive effects are mainly visible around noon, regardless the intensity of the storms. With 
increasing geomagnetic storm intensity, these effects shift from the polar and quiet auroral region towards the lower 
latitudes, mainly confined in the disturbed auroral oval (G1, G2) with signatures at higher latitudes in the polar cap 
under strong-extreme conditions (G3, G4, G5). With increasing G, it is worth noticing the enhancement of scintil-
lations in the evening/pre-midnight sector at all latitudes. This is likely due to the nightside reconnection. When the 
indices threshold increase (σΦ ≥ 0.25 rad and S4 ≥ 0.25) the severe scintillations appear in the midnight hours (with a 
preference for the pre-midnight) at the inner boundary of the auroral oval, especially under G3-G5 conditions.

Irregularities climatology dependence on solar wind conditions. The high latitude ionosphere is 
strongly influenced by the solar wind and IMF conditions that play a role on the occurrence of plasma irreg-
ularities and related scintillation phenomena facilitating, under certain conditions, the particles precipitation 
into the ionosphere and driving the convection pattern configuration. The IMF components Bz, By, and the total 
strength of the field Btot are used for the data sorting, here inspired to that one suggested by the Super Dual 
Auroral Radar Network (SuperDARN) community37. Four intervals of Btot are considered: Btot < 3 nT, 3 < Btot < 5 
nT, 5 < Btot < 10 nT and Btot > 10 nT. For each Btot interval is then considered the possible combination of Bz (nega-
tive/positive) and By (negative/positive), corresponding to four wide clock angle sectors: 45° (Bz > 0/By > 0), −45° 
(Bz > 0/By < 0), −135° (Bz < 0/By < 0) and 135° (Bz < 0/By > 0). The data sorting leads to four climatological maps 
of the percentage occurrence of σΦ >0.1 radians and of S4 > 0.1 for each Btot interval.

Figures 7 and 8 show the resulting climatology under different Btot magnitudes and Bz/By conditions. Figure 7a 
(Btot < 3nT), shows very low σΦ occurrence values, slowly enhancing at noon and post-noon at higher latitudes 
when By < 0. The occurrence raises accordingly to Btot: when this ranges between 3nT and 5 nT, σΦ maximizes at 
noon and post-noon within the cap when By is negative (Fig. 7b). Further increase of Btot (5–10 nT) still highlights 
that the preferred time for refractive effects manifestation is around noon and post noon (when By is negative), 
especially in the cap region within the northward border of the disturbed auroral oval (Fig. 7c). When Btot > 10 nT,  
σΦ occurrence is very high and the interested regions span from auroral to cap region, mainly in the daytime. A 
weaker occurrence stands in the evening and midnight hours within the cap (Fig. 7d).

For what concerns the scintillation on the IMF orientation, the occurrences maximizes with the larger range 
of Btot values (>10 nT, Fig. 8d). The bulk of scintillation occurs in the polar cap, likely triggered by polar cap 
patches, with significant favour of the dusk sector. The intensification of the particle precipitation under negative 
Bz conditions increases the scintillation occurrence in correspondence with the auroral oval, inducing also a more 
pronounced cusp signature. The negative By conditions seem to be more effective in creating small scale irregular-
ities embedded in plasma patches, whose presence maximizes the occurrence of scintillation in the dusk sector of 
the cap. The effect of the auroral blobs, that lead to the formation of small scale irregularities exactly at poleward 
boundary of the auroral oval in noon sector, is visible only when Btot is large (>10 nT).

Scintillation climatology from Galileo. Figure 9 shows the ionospheric climatology along the entire 
2016 derived from the Septentrio PolaRxS multi-frequency and multi-constellation (including Galileo) GNSS 
receiver31, co-located since November 2015 with the NovAtel receiver at Ny-Ålesund, Dirigibile Italia Station. 
Even if the Galileo constellation was not yet complete at that time (https://www.gsc-europa.eu/system-status/
orbital-and-technical-parameters), its geometry of observation allows revealing additional features to the cli-
matology of scintillations. The percentage occurrence of scintillation from weak to severe regime (σΦ ≥ 0.1 rad 
and S4 ≥ 0.1) exhibits differences in the post-noon sector between 14 and 18 MLT depending on the constella-
tion considered (Galileo vs GPS), highlighting signatures in the auroral region, not visible from the climatology 
derived from GPS constellation (Fig. 9a).

If we compare panels e and f, we can appreciate the highest concentration of ROT standard deviation by the 
Galileo constellation around 14 MLT within the poleward boundary of the quiet auroral oval. In addition, the 
negative TEC gradients (ROT) described by the Galileo data appear to be more homogeneously distributed in the 
afternoon and during night-time (Fig. 9h) with respect to the map obtained using the GPS data (Fig. 9g).



8Scientific RepoRts |          (2019) 9:9232  | https://doi.org/10.1038/s41598-019-44829-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

Conclusions
The climatology of ionospheric irregularities and scintillations achieved over more than 13 years of data from 
GPS signals sampled at 50 Hz allows drawing an unprecedented picture of the ionospheric sector observed from 
two GISTM GSV4004 NovAtel receivers deployed at Ny-Ålesund. To contribute to the efforts addressed to dis-
entangle the diffractive (stochastic) from the refractive (deterministic) effects induced by the ionosphere on the 
GNSS signals, we have tested the use of different cut-off frequencies to look for the best choice to achieve similar 
behaviour of the σΦ and S4 indices occurrence over 1 year of data. This exercise demonstrated the difficulty in 

Figure 5. Scintillation and irregularities climatology maps obtained from the full dataset sorted according 
minimum, maximum, ascending and descending phase of the solar cycle: maps of occurrence of σΦ above 0.1 
(a–d) radians; maps of S4 above 0.1 (e–h).
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identifying the most suitable cut-off frequency to minimize the number of phase without amplitude scintillation 
events. Bearing this in mind, our climatology, based on the entire data set, was derived adopting the default 
cut-off frequency of 0.1 Hz to obtain a long-term assessment of the scintillations (when σΦ and S4 enhance simul-
taneously) and of the ionospheric irregularities producing refractive effects (when only σΦ enhances). The overall 
description is supported also by the analysis of the mean and of the standard deviation of ROT over 60 seconds.

Hence, we have provided a long-term scenario of the ionospheric irregularities producing or not producing 
L-band scintillation, giving also an assessment of the plasma dynamics over Svalbard from solar cycle 23 to 24. 

Figure 6. Scintillation (from weak to strong, top plots, and from moderate to strong, bottom plots, scintillation 
occurrence of σΦ and S4) and ROT climatology maps sorted according different level of Kp: quiet (left plots), 
minor/moderate G1-G2 (middle plots) and strong/severe/extreme G3-G4-G5 (right plots).
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Our statistics showed how the magnetic pre-midnight/midnight is the most exposed to scintillations while the 
noon sector is the area in which the fragmentation of the plasma is less stable in space and time, giving rise to 
acceleration and deceleration of the irregularities.

The sorting of the climatological maps according to the different conditions of the geomagnetic field (accord-
ing to Kp index) and of IMF reveals additional features. In particular:

•	 The refractive effects are often present in the magnetic noon, almost independently on the Kp level;

Figure 7. Phase Scintillation climatology under different conditions of the interplanetary magnetic field. Each 
panel reports the occurrence of S4 above the weak to strong scintillation threshold for each combination of By/Bz 
positive and negative values. Maps are sorted for different ranges of the total field |Btot|: |Btot| < 3nT (panel a),  
3 nT < |Btot| 5 nT (panel b), 5 nT < |Btot| < 10 nT (panel c) and |Btot| > 10 nT (panel d).
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•	 Scintillation occurrence at pre-midnight/midnight moves from the cap toward auroral and sub-auroral lat-
itudes when the geomagnetic perturbation enhances, following then the expansion of auroral oval during 
storm conditions;

•	 Under G3/G4/G5 storm levels, the presence of polar cap patches makes the irregularities in the polar cap 
effective in driving scintillation, in the pre and past midnight sector;

•	 A meaningful role of the polar cap patches is suggested in the scintillations occurrence happened under Bz 
negative conditions, particularly when Btot > 5 nT.

•	 The prevalence of substorms in the nightside ionosphere results into an increased occurrence of scintillation 
in the pre- and post-midnight sectors.

Figure 8. Amplitude Scintillation climatology under different conditions of the interplanetary magnetic field. 
Each panel reports the occurrence of S4 above the weak to strong scintillation threshold for each combination 
of By/Bz positive and negative values. Maps are sorted for different ranges of the total field |Btot|: |Btot| < 3nT 
(panel a), 3 nT < |Btot| 5 nT (panel b), 5 nT < |Btot| < 10 nT (panel c) and |Btot| > 10 nT (panel d).



1 2Scientific RepoRts |          (2019) 9:9232  | https://doi.org/10.1038/s41598-019-44829-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

•	 Negative Bz conditions results also into larger scintillation occurrence in correspondence with the auroral 
oval, inducing also a more pronounced cusp signature.

•	 Negative By conditions results in an increased probability of scintillation in the dusk sector of the cap.
•	 The application of the scintillation climatology to one year of data from a multi frequencies and multi con-

stellation receiver deployed at Ny-Ålesund, confirms that the patterns in the occurrence of scintillation and 
irregularities not producing scintillations, and ROT features, obtained from GPS and from Galileo, generally 
agree.

Figure 9. Climatology of PolaRxS data.
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