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Abstract 36 

We present an analysis of annual and seasonal mean characteristics of the Indian Ocean 37 

circulation and water masses from 16 global ocean-sea-ice model simulations that follow the 38 

Coordinated Ocean-ice Reference Experiments (CORE) interannual protocol (CORE-II).All 39 

simulations show a similar large-scale tropical current system, but with differences in the 40 

Equatorial Undercurrent. Most CORE-II models simulate the structure of the Cross Equatorial 41 

Cell (CEC) in the Indian Ocean. We uncover a previously unidentified secondary pathway of 42 

northward cross-equatorial transport along 75 °E, thus complementing the pathway near the 43 

Somali Coast. This secondary pathway is most prominent in the models which represent 44 

topography realistically, thus suggesting a need for realistic bathymetry in climate models. When 45 

probing the water mass structure in the upper ocean, we find that the salinity profiles are closer 46 

to observations in geopotential (level) models than in isopycnal models. More generally, we find 47 

that biases are model dependent, thus suggesting a grouping into model lineage, formulation of 48 

the surface boundary, vertical coordinate and surface salinity restoring. Refinement in model 49 

horizontal resolution (one degree versus ¼ degree) does not significantly improve simulations, 50 

though there are some marginal improvements in the salinity and barrier layer results. The results 51 

in turn suggest that a focus on improving physical parameterizations (e.g. boundary layer 52 

processes) may offer more near-term advances in Indian Ocean simulations than refined grid 53 

resolution. 54 

 55 

 56 

 57 
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1. Introduction 64 

 The tropical Indian Ocean covers the largest part of the warm pool in the global ocean 65 

apart from the west Pacific. It is a key ingredient in the Asian monsoons, which are a lifeline for 66 

billions of people in the rim countries (Webster et al., 1998). The Indian Ocean has unique 67 

features compared to the Pacific and Atlantic Oceans. Most notably, it is bounded to the north by 68 

the Asian continent, thus preventing the northward export of heat into the extratropical region 69 

(between 30 and 60 °N). This geographical constraint leads to a basin-wide meridional 70 

overturning circulation (MOC) (a full list of abbreviations is presented in the appendix) and a 71 

corresponding transport of heat and mass that play a distinctive role in variability of the global 72 

climate system (Chirokova and Webster, 2006). Schott and McCreary (2001) and then Schott et 73 

al. (2009) provided systematic reviews of Indian Ocean circulation. In particular, Schott et al. 74 

(2009) noted that much of the literature pertaining to simulations of the Indian Ocean is focused 75 

on specific aspects rather than unifying across the range of features. They also pointed out that 76 

one hindrance to progress is that existing models are deficient in a number of ways, such as the 77 

existence of spurious convective overturning, enhanced numerical mixing, and unrealistic 78 

horizontal diffusion. If subsurface mixing is not adequately parameterized, the simulated 79 

thermocline becomes too diffuse. This error affects the temperature of the water that upwells and 80 

hence the sea surface temperature (SST). 81 

 82 

 During recent years, increases in observational data have been available under the Indian 83 

Ocean observing system IndOOS program (http://www.clivar.org/clivar-panels/indian/IndOOS). 84 

This is a sustained observing system operated and supported by various national agencies and 85 

coordinated internationally through the Climate Variability and Predictability 86 

(CLIVAR)/Intergovernmental Oceanographic Commission (IOC)-Global Ocean Observing 87 

System (GOOS) Indian Ocean Regional Panel. Unlike for the observations, a comprehensive 88 

analysis of the basin-scale oceanographic features from a suite of ocean models for the Indian 89 

Ocean has not been documented. The historical simulations using a suite of 16 global ocean-ice 90 

models forced by the Coordinated Ocean Reference Experiments (CORE-II) provide an 91 

opportunity to study the dynamics of Indian Ocean under a coordinated modeling framework. 92  Jo
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This manuscript endeavors to describe and evaluate the mean state and seasonal variations of 93 

important oceanographic features such as the SST, Sea Surface Salinity (SSS), currents, 94 

thermocline and barrier layer (BL). We do so with a suite of 16 state-of-the-art global ocean/sea-95 

ice model simulations with bulk formula based boundary forcing generated from the same 96 

atmospheric state. There are examples of a number of successful inter-comparison activities for 97 

the Pacific, Atlantic, Arctic, and Southern Oceans (Tseng et al., 2017; Danabasoglu et al., 2014, 98 

2016; Farneti et al., 2015; Ilicak et al., 2016). However, such coordinated modeling efforts have 99 

generally been lacking for the Indian Ocean. We therefore aim here at assessing the simulations 100 

from forced global ocean models for the Indian Ocean. 101 

 102 

SST is one of the most important parameters for the evolution and prediction of the 103 

Indian Summer Monsoon Rainfall (ISMR) as it represents the integrated ocean response to the 104 

atmosphere in terms of various feedbacks (Sahai et al., 2007; Rajeevan et al., 2007, 2012; Yang 105 

et al., 2007). Accurate simulations of Indian Ocean SST are challenging given the wide variety 106 

of intraseasonal, seasonal and interannual variability (Schott et al., 2001, 2009). In addition to 107 

variability intrinsic to the Indian Ocean, there are impacts from El Niño Southern Oscillation 108 

(ENSO) that connect from the Pacific Ocean (Annamalai et al., 2005). In the North Indian Ocean 109 

(NIO hereafter) , ENSO affects SST variability through an atmospheric bridge that changes 110 

cloud cover and thus modifies surface heat fluxes (e.g., Klein et al., 1999; Murtugudde and 111 

Busalacchi, 1999). Over the southwestern Indian Ocean, ENSO forced SST variability arises 112 

from oceanic Rossby waves generated by anomalous easterly winds that propagate from the east 113 

(e.g.Xie et al., 2002; Huang and Kinter, 2002). Errors in simulated Indian Ocean SST adversely 114 

affect the ability of coupled prediction models to accurately forecast ISMR (Chowdary et al., 115 

2015, 2016; Chaudhari et al., 2013; Levine and Turner, 2012). The CORE-II simulations do not 116 

use explicit relaxation to observed SST. However, since air temperature is specified as part of the 117 

CORE-II atmospheric state, there is an effective restoring flux (Haney, 1971; Murtugudde and 118 

Busalacchi, 1999; Griffies et al., 2009). Hence, the CORE-II simulations are more constrained 119 

than coupled climate models. Our analysis of CORE-II SST biases thus offers a means to 120 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

5 

 

determine that portion of the coupled climate model errors that can be attributed to ocean 121 

components.  122 

 123 

SSS and subsurface salinities strongly affect the surface buoyancy and hence the surface 124 

and subsurface water mass structures (Weller and Anderson, 1988; Murtugudde et al., 1998). 125 

Salinity can thus have a strong influence on the thermodynamic structure of the mixed layer, 126 

thermocline and their interactions (Mignot, et al., 2007). Apart from rainfall, salinity 127 

distributions in the Indian Ocean are driven by river inflows, especially in the Bay of Bengal 128 

(BoB) which receives nearly as much riverine input as rainfall (e.g., Shetye et al., 1996; Howden 129 

and Murtugudde 2001; Vinayachandran et al., 2002; Sengupta et al., 2006). The influx of 130 

freshwater (FW) through the Indonesian through flow (ITF), and the influx of saltier water from 131 

the Persian Gulf and Red Sea also imprint clear signatures on the dynamics and thermodynamics 132 

of the Indian Ocean (Murtugudde et al., 1998; Gordon et al., 2010; Gordon and Fine, 1996; 133 

McCreary et al., 2001; McCreary et al., 1993; Bray et al., 1997). Many Indian Ocean modelling 134 

studies use regional configurations with closed (sponge) boundaries at the east and south (Kurian 135 

and Vinayachandran, 2007; Han et al., 2001; Han and McCreary, 2001), often leading to 136 

unrealistic salinity properties. Similarly, better representation of BoB freshwater influx is 137 

essential for studying the salinity distribution (Sitz et al., 2017). The near surface salinity 138 

distribution study by Zhang and Marotzke (1999) using a model configured with open 139 

boundaries showed an unrealistic local minimum of salinity in the north- western BoB due to the 140 

lack of inclusion of runoff from Ganges and Brahmaputra. The freshwater forcing affects mixed 141 

layer depths and surface currents which can advect the freshwater input away from the rivers 142 

(Howden and Murtugudde, 2001; Sengupta et al., 2006; Han et al., 2001). Rahaman et al. (2014) 143 

showed an improvement in SSS simulations with a nested regional model with salinity bias less 144 

than 1 psu in the northern BoB. However, coupled models still show large biases (~1.5 psu) over 145 

the BoB as well as the NIO (Vinayachandran and Nanjundiah, 2009; Fathrio et al., 2017b). In 146 

general, the subsurface salinity bias in models is not documented for the Indian Ocean from a 147 

suite of global model simulations. In this study apart from surface salinity we also evaluated the 148 

subsurface salinity from the suite of 16 model simulations.  149  Jo
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The Indian Ocean circulation is dominated by the dramatic seasonally reversing monsoon 150 

winds (e.g. Webster et al., 1998). The low-latitude landmass of the Indian subcontinent drives 151 

the strong monsoon, thus causing ocean currents and winds to seasonally reverse in the north 152 

Indian Ocean (Gadgil et al., 2005; Gadgil, 2003; Schott et al., 2009). Seasonally reversing 153 

monsoon winds (southwesterly during summer and northeasterly during winter) give rise to 154 

seasonally reversing current systems in the NIO. The semi-annual cycle in the Indian Ocean is 155 

also related to the seasonally reversing monsoonal winds. Figure 1a provides a schematic of the 156 

horizontal circulation patterns in the Indian Ocean, including the circulations forced by the Asian 157 

monsoon. The major NIO current systems exhibiting a reversal in direction with the monsoons 158 

(see Figure 1a) include the Somali current (SC), Southwest and Northeast Monsoon Currents 159 

(SMC and NMC), West India Coastal current (WICC), and East India Coastal current (EICC). 160 

Though the Indian Ocean does not possess an equatorial upwelling system similar to the Pacific 161 

or Atlantic, major upwelling regions do occur off the coast of Somalia and Sumatra in the north 162 

and southeastern equatorial Indian Ocean, respectively (green shaded portions of Figure 1a). 163 

Another unique feature is the open ocean upwelling dome or Seychelles Dome in the southwest 164 

of the Indian Ocean. Satellite color images clearly reveal the existence of an open ocean 165 

upwelling zone between 5 °S to 12 °S over the southwest Indian Ocean (Xie et al. 2002). The 166 

north and south current systems are separated around 10–12 °S by a nearly zonal annually 167 

prevailing South Equatorial Current (SEC). The zonal structure of the SEC is maintained by the 168 

zero-wind stress curl around 10 °S, which is a consequence of the annually prevailing 169 

southeasterly winds to the south of 10 °S and the seasonally reversing monsoon winds to the 170 

north. This SEC plays a fundamental role in transporting warm and fresh western Pacific waters 171 

westward across the Indian Ocean through ITF. The SEC after reaching to the northern tip of 172 

Madagascar bifurcates into the Northeast and Southeast Madagascar Current (SEMC and 173 

NEMC) (e.g. Chen et al. (2014) and Yamagami and Tozuka (2015). The SEMC feeds into the 174 

Agulhas Current (AC), which is part of the anticyclonic subtropical gyre similar to those in other 175 

ocean basins. However, unlike other basins, this western boundary current overshoots the 176 

southern extent of the African continent, with a portion extending westward into the South 177 

Atlantic Ocean (a.k.a. Agulhas leakage), and a portion retroflecting and flowing eastward along 178  Jo
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the equatorward edge of the Antarctic Circumpolar Current (Lutjeharms, 2006). The Leeuwin 179 

Current (Waite et al., 2007) is an eastern boundary current along the west coast of Australia. 180 

Interestingly, its southward flow is counter to what is expected from the predominant winds. 181 

Along the eastern boundary at low latitudes, the Indian Ocean receives additional heat and mass 182 

from the Pacific Ocean through the ITF (Godfrey, 1996; Gordon and Fine 1996; Murtugudde et 183 

al., 1998). The ITF allows the water from the Pacific Ocean to reach the Indian Ocean. These 184 

waters are then transported westward across the Indian Ocean by the westward-flowing SEC. In 185 

the southern tip of Madagascar, the SEMC breaks into a series of dipole eddies that propagate 186 

downstream into the Agulhas Current system and enters the Atlantic Ocean south of South 187 

Africa (Han et al., 2014; Durgadoo et al., 2017; Nauw et al., 2008; Palastanga et al., 2006; 188 

Ponsoni et al., 2016; Ridderinkhof et al., 2013).  Some part of this water then retroflects eastward 189 

back into the Southern Indian Ocean (SIO) to feed the South Indian Ocean Counter Current 190 

(SICC) (Palastanga et al., 2007; Siedler et al., 2009). In this study we show how the CORE-II 191 

models are able to simulate these circulation features with respect to observations. 192 

 193 

In addition to the annual monsoonal cycle, the circulation varies semiannually along the 194 

equator with a strong surface eastward current named Wyrtki jet (WJ;Wyrtki, 1973). WJ appears 195 

as a narrow band trapped within 2 º- 3 º of the equator during the two transition periods of 196 

monsoons (April-May and October-November) driven by the equatorial westerly winds. This WJ 197 

plays an important role in the large-scale heat and freshwater transports in the tropical Indian 198 

Ocean (Wyrtki, 1973; Reverdin, 1985; Schott and McCreary, 2001; Schott et al., 2009). The 199 

subsurface currents also show seasonal variations in the equatorial Indian Ocean. Observations 200 

show the presence of subsurface Equatorial Undercurrent (EUC), which is reported in various 201 

studies (e.g., Knox, 1976, 1981; Reppin et al., 1999; Schott and McCreary, 2001; Iskandar et al., 202 

2009). In the Pacific and Atlantic Oceans the EUC is a quasi-permanent feature because of the 203 

prevailing easterly trade winds (Philander, 1973; Philander and Pacanowski, 1980; McPhaden, 204 

1986; Seidel and Giese, 1999). In the equatorial Indian Ocean, however, it is transient and 205 

depends on winds and pressure gradient variations associated with the distinct seasonal cycle due 206 

to the Asian monsoon. It is most pronounced in Northern Hemisphere winter (Iskandar et al., 207  Jo
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2009), with its presence and absence mainly determined by the weaker and stronger easterlies in 208 

late winter and early spring (Cane, 1980; Reppin et al., 1999). The EUC is also present during 209 

the southwest monsoon (Reppin et al., 1999). It is associated with equatorial waves driven by the 210 

strong seasonally varying surface winds (Schott and McCreary, 2001). The core of this eastward 211 

undercurrent is located in the thermocline region above 300 m, beneath which a weak westward 212 

counter-flow exists and can last for at least a month during winter and spring. Observations show 213 

that the magnitude of the eastward undercurrent can exceed 1.2 m/s during March-June and is 214 

comparable to the Pacific Ocean undercurrent magnitude (Swallow, 1964, 1967). Previous 215 

studies show that forced model simulations are able to capture the undercurrent reasonably well 216 

(Iskandar et al., 2009; Chen et al., 2015). A comprehensive evaluation of how WJ and EUC are 217 

represented in global models is still lacking. In this study, we also assessed in detail about how 218 

the CORE-II models perform in simulating them.   219 

 220 
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 221 

Figure 1a: Schematic representation of identified current branches over north Indian Ocean 222 

during summer (JJA:pink) ,winter (DJF:orange) and as annual mean (cyan). Current branches  223 

are the South Equatorial Current (SEC), South Equatorial Countercurrent (SECC), Northeast and 224 

Southeast Madagascar Current (NEMC and SEMC), East African Coastal Current (EACC), 225 

Somali Current (SC), Ras-al-Hadd Jet (RHJ),East India Coastal Current (EICC), West India 226 

Coastal Current (WICC),Southwest and Northeast Monsoon Currents (SMC and NMC), the 227 

Wyrtki Jet (WJ), Leeuwin Current (LC),Agulhas Current (AC),South Indian Ocean Counter 228 

Current (SICC),  Eastern Gyral Current (EGC), South Java Current (SJC) and Indonesian 229 

Through Flow (ITF). Upwelling and subduction zones are shown in green and blue shades, 230 

respectively. The buoy location at 94 °E and 10.5 °N is shown as a red dot in the Bay of Bengal. 231 

The different sub-regions used for the time series comparison are evidenced  as light-yellow 232 
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color boxes, and they corresponds to Arabian Sea (AS), Bay of Bengal, South Eastern Arabian 233 

Sea, Eastern Equatorial Indian Ocean, Thermocline Ridge and Southern Indian Ocean.  234 

 235 

 236 

 237 
 238 

Figure 1b: Conceptual illustration of the time-mean meridional overturning circulation of the 239 

upper Indian Ocean (first 500 m) consisting of a southern and a cross-equatorial cell (Based on 240 

Lee, 2004). 241 

 242 

Apart from the surface circulations and equatorial currents discussed in the previous 243 

paragraphs, two cells are active in the Indian Ocean: the cross-equatorial cell (CEC) and the 244 

southern subtropical cell (SSTC) (Lee, 2004; Schott et al., 2004). The CEC is a shallow (~500 245 

m) meridional overturning circulation, consisting of the northward flow of southern-hemisphere 246 

thermocline water, upwelling in the northern hemisphere, and a return flow of surface water 247  Jo
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(Miyama et al., 2003). A schematic of the meridional circulation of the Indian Ocean in the 248 

upper ocean (0-500 m) is given in Figure 1b (from Lee, 2004). The upper Indian Ocean heat 249 

balance is achieved by CEC and SSTC (Miyama et al., 2003; Schott et al., 2004). The CEC 250 

connects upwelling zones in the NIO to subduction zones in the southeastern Indian Ocean via a 251 

southward, cross-equatorial branch concentrated in the upper 50 m and a northward bulk-flow of 252 

cooler thermocline water. Miyama et al. (2003) have shown that the sources of water for the 253 

subsurface branch of the cross equatorial cell are the subduction zones in the southeastern Indian 254 

Ocean, the ITF, and flow into the basin across the southern boundary. This subduction seems to 255 

occur predominantly in the southern subtropical Indian Ocean as shown in Figure 1a (blue 256 

shading). A small subduction site also exists in the AS. However, the exact location of this 257 

northward thermocline flow is not yet known. Both poor sampling of deeper layers of the Indian 258 

Ocean and relatively coarse resolution models used to study the dynamics of Indian Ocean have 259 

contributed to poor understanding of the subsurface thermocline northward flow in the Indian 260 

Ocean. The suite of global ocean circulation models including relatively fine resolution models 261 

that participated in the CORE-II simulations (Danabasoglu et al., 2014) used in this paper made 262 

it possible to document simulated pathways of the thermocline water into the NIO. The CEC 263 

variability accounts for a significant portion of Indian Ocean cross-equatorial heat transport, 264 

which is hypothesized to be associated with the Asian monsoon (Chirakova and Webster, 2006; 265 

Swapna et al., 2017).   266 

 267 

The Indian Ocean circulation is mainly driven by the seasonal reversal of the monsoon 268 

wind. Thus, the mean and variability of wind forcing has a large impact on Indian Ocean 269 

simulations (Parekh et al., 2011). More generally, the heat, water, and momentum balances are 270 

affected by uncertainties in turbulent and radiative heat fluxes. These uncertainties in the forcing 271 

fields can have a major role in the fidelity of OGCM simulations on intra-seasonal, seasonal, 272 

inter-annual and longer time-scales (McWilliams, 1996). Hence, accurate near-surface 273 

atmospheric fields are essential for realistic simulations in a forced ocean model. Here, we offer 274 

a brief overview of how the CORE-II atmospheric state compares to observational based 275 

measures. However, a full assessment of these impacts requires comparisons to simulations run 276  Jo
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with other atmospheric products such as Japanese 55-year atmospheric reanalysis (JRA-55) 277 

based surface dataset for driving ocean–sea-ice models (JRA55-do:Tsujino et al., 2018) and 278 

DRAKKAR (Brodeau et al., 2010) forcing. The analysis presented in this paper provides a 279 

necessary starting point for that assessment. 280 

 281 

Our study is motivated by the important role of the Indian Ocean in regional and global 282 

climate variability, especially in the tropics. This role in turn prompts the need for improved 283 

understanding of Indian Ocean circulation dynamics, including its mean state and variability, in 284 

support of improved simulations of regional and global climate (e.g., Swapna et al., 2014). We 285 

are motivated to perform systematic assessments of Indian Ocean features found in global 286 

climate model simulations. Increased awareness of the role of the Indian Ocean for regional and 287 

global climate, including its importance for the billions of humans living along its coasts and 288 

nearby regions, prompts the need to systematically articulate the problems and prospects with 289 

global model simulations for this region.  290 

 291 

The paper is organized as follows. Section 2 describes the CORE-II simulations and the 292 

main goal of the study. Section 3 describes models and observational datasets. Section 4 contains 293 

main results and discussions organized as: (i) the evaluation of CORE-II wind speed with in-situ 294 

observation (Section 4.1);(ii) the time mean features of SST and its seasonal  cycle over the   key 295 

regions of the Indian Ocean, including the AS, BoB, Eastern Equatorial Indian Ocean (EEIO) 296 

and Thermocline Ridge (TR) region (Section 4.2); (iii) surface salinity and BL (Section 4.3); 297 

(iv)subsurface features of temperature and salinity over AS, south eastern AS (SEAS), BoB, 298 

EEIO(Section 4.4); (v)surface and subsurface equatorial currents in CORE-II models and 299 

observations (Section 4.5); (vi)Indian Ocean meridional overturning circulation (Section 300 

4.6).The impact of increased model resolutions is described in section 5. Major findings from our 301 

analysis and its future implications are finally summarized in Section 6.  302 

 303 

 304 

 305  Jo
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2. CORE-II simulations and the goals of this paper  306 

The first phase of the Coordinated Ocean-ice Reference Experiments (CORE) project 307 

(CORE-I) made use of a synthetically constructed normal year forcing (NYF; Large and Yeager, 308 

2009) with seven modeling groups participated in the study of Griffies et al. (2009). An 309 

underlying question pursued with CORE is whether models using the same atmospheric state 310 

(atmospheric state is prescribed over a fixed annual cycle) will produce broadly similar 311 

simulation features. However analyses showed many differences in the simulated results. For 312 

example models are unable to simulate the realistic MOC; also models are unable to reach an 313 

equilibrium state after a transient phase that in turn prompted further model development and 314 

improvement (see more details in Griffies et al., 2009). The second phase (CORE-II) makes use 315 

of the interannually varying atmospheric forcing (IAF) of Large and Yeager (2009) over the 60-316 

year period from 1948 to 2007. Details of the CORE-II protocol are given by Danabasoglu et al. 317 

(2014). The CORE-II project is the largest coordinated effort to assess the scientific integrity of 318 

global ocean/sea-ice simulations.  It is now included as Phase-I of the Ocean Model Inter-319 

comparison Project (OMIP), a part of the World Climate Research Programme Coupled Model 320 

Inter-comparison Project-phase 6 (CMIP6; Eyring et al., 2016), as documented by Griffies et al. 321 

(2016). 322 

 323 

CORE-II simulations are readily comparable to historical observations given their 324 

historical forcing. Hence, CORE-II experiments facilitate the assessment of global ocean/sea-ice 325 

simulations and allow one to mechanistically probe ocean processes active on sub-seasonal to 326 

decadal time scales (e.g., Danabasoglu et al., 2014, 2016; Griffies et al., 2014). At present, there 327 

are nine CORE-II assessment papers published in the journal Ocean Modelling that provide 328 

detailed analyses over the Pacific, Atlantic, Southern and Arctic Oceans. We here focus on the 329 

Indian Ocean. Since the ISMR prediction is dependent on the mean oceanic and atmospheric 330 

conditions, the central question addressed in this paper is: how well do global ocean/sea-ice 331 

models capture the mean state and seasonal cycle of the Indian Ocean? Most models employ one 332 

to two degrees horizontal grid spacing, though there are two that use finer spacing (~0.25 333  Jo
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degree), thus admitting mesoscale eddies in the low latitudes and correspondingly fine scale 334 

currents.  335 

 336 

 337 

3. Model and observational data used in this study 338 

 339 

3.1 Models 340 

We provide a summary of 16 global ocean/sea-ice model configurations in Table 1, with further 341 

details provided in the CORE-II papers of Danabasoglu et al. (2014) and Farneti et al. (2015). 342 

We focus on the 5th CORE-II forcing cycle and use model years corresponding to years of 343 

available observations for 1982-2007.The surface fluxes of heat, freshwater/salt, and momentum 344 

are determined using the CORE-II inter-annual forcing (IAF) atmospheric data sets, the model’s 345 

prognostic SST and surface currents, and the bulk formulae described in Large and Yeager 346 

(2004) and Large and Yeager (2009). There is no restoring term applied to SST. SSS restoring is 347 

used to prevent unbounded salinity trends in all the model simulations used for this study. The 348 

NEMO-based models convert SSS restoring to a freshwater flux. All the other models apply SSS 349 

restoring as a salt flux. The restoring time scales vary considerably by days to years between the 350 

groups. Weak restoring with time scales of about 4 years were used in FSU, KIEL and NCAR, 351 

moderate restoring with time scales of 9–12 months were used in AWI, BERGEN, CERFACS, 352 

CMCC, CNRM, GFDL-MOM, ICTP and MRI, strong restoring with time scales of 50–150 days 353 

were used in ACCESS and GFDL-GOLD (see Appendix C in Danabasoglu et al.,(2014) for 354 

more details on  SSS restoring technique). The vertical mixing scheme used in different models 355 

is detailed in Appendix A of Danabasoglu et al. (2014).  356 

 357 

For SST, we also make use of nine corresponding climate models (Table 2) from the 358 

Coupled Model Inter-comparison Project Phase 5(CMIP5; Taylor et al., 2012), utilizing 359 

historical runs forced with natural and anthropogenic radiative gases to simulate climate over 360 

years 1850–2005. We use CMIP5 simulations from January 1982 to December 2005 for 361 

generating a monthly climatology. There are many studies which show that ISMR variability is 362  Jo
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mainly governed by the mean state SST in the Indian Ocean (Lee et al., 2010; Li et al., 2001). 363 

Most of the coupled models show large cold biases in SST in the Indian Ocean, especially in the 364 

AS. The cold bias will have large impacts on the coupled feedbacks and thus the monsoon. Sujith 365 

et al. (2019) showed that improvements in mean state of SST in coupled model (CFSv2) has led 366 

to realistic simulation of Oceanic modes of variability over IO, Pacific (i.e. ENSO, Indian Ocean 367 

Dipole(IOD)) and that   lead to improve simulation of ISMR. The very purpose of CORE-II 368 

experiments is to see how the ocean models perform with a prescribed atmospheric state. In the 369 

coupled models the exact cause of the SST bias is not yet known hence we used SST simulations 370 

from both the forced and coupled model with same ocean configuration to delineate the probable 371 

source of the SST bias. The comparison between CORE-II and CMIP5 SST patterns offers a 372 

means to expose the role of atmosphere-ocean coupling with a dynamical atmospheric model on 373 

SST patterns. A more complete comparison of CORE-II and CMIP5 simulations is beyond our 374 

scope.  375 

 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 
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Table 1: List of models and their configurations used for the CORE-II inter-annual simulations 385 

following Danabasoglu et al (2014). Note that z* represents the stretched geopotential vertical 386 

coordinate that absorbs motion of the free surface (see Adcroft and Campin, 2004 for details).  387 

Group Configuration Ocean Model Sea-ice 
Model 

Vertical Orientation Horizontal Resolution 
nominal 

ACCESS ACCESS-OM MOMp1 CICE4 z* (50) tripolar 360 x 300 1o 

AWI FESOM-
COREII 

FESOM FESIM z (46) displaced 126000 1o 

BERGEN NorESM MICOM CICE4 sigma2 
(51+2) 

tripolar 360 x 384 1o 

CERFACS ORCA1 NEMO3.2 LIM 2 z (42) tripolar 360 x 290 1o 

CMCC ORCA1 NEMO3.3 CICE 4 z (46) tripolar 360 x 290 1o 

CNRM ORCA1 NEMO3.2 Gelato 5 z (42) tripolar 360 x 290 1o 

FSU  HYCOM 2.2 CSIM 5 hybrid (32) tripolar 320 x 384 1o 

FSU-2  HYCOM 2.2 CICE4 hybrid (32) tripolar 500x382 1o 

GFDL-
MOM 

ESM2M-
ocean-ice 

MOM 4p1 SIS z* (50) tripolar 360 x 200 1o 

GFDL-
MOM025 

CM2.5-ocean-
ice 

MOM5 SIS z* (50) tripolar 1440 x 
1070 

0.25o 

GFDL-
GOLD 

ESM2G-ocean-
ice 

GOLD SIS sigma2 
(59+4) 

tripolar 360 x 210 1o 

ICTP  MOM 4p1 SIS z* (30) tripolar 180 x 96 2o 

MRI-F  MRI.COM 3 MK89; 
CICE 

z (50) tripolar 360 x 364 1o x 0.5o 

KIEL ORCA05 
NEMO 3.1.1 

 

LIM 2 

 

z (46) 

 

tripolar 

 

722 x 511 0.5o 

KIEL025 ORCA025 1442 x 
1021 

0.25o 

NCAR   POP 2 CICE4 z (60) displaced 320 x 384 1o Jo
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Table 2:  List of coupled climate models and their configurations used from CMIP5  388 

 389 

 Atmosphere Ocean  Modeling Centre Ocean Resolution  

ACCESS1-0 1.25 0 x 1.8750 L38 ACCESS-OM 
(MOM4p1) 

 

Commonwealth Scientific 
and Industrial 

Research Organization 
(CSIRO) and Bureau 

of Meteorology (BOM), 
Australia 

nominal 1o 

CCSM4  0.940 x 1.250 L26  

 

POP2 National Center for 
Atmospheric Research,USA 

nominal 1o 

CMCC-CM  T159L31 OPA8.2 Centro Euro-Mediterraneo 
per I Cambiamenti 
Climatici, Italy 

nominal 1o 

CNRM-CM5  T127L31 (256 × 
128) 

NEMO Centre National de 
Recherches 

Meteorologiques / Centre 
Europeen de 

Recherche et Formation 
Avancees en Calcul 

Scientifique, France 

nominal 1o 

GFDL-CM3  

 

20 x 2.50 L48 MOM4p1 

 

Geophysical Fluid 
Dynamics Laboratory, 

USA 

nominal 1o 

GFDL-ESM2M  20 x 2.50 L24 nominal 1o 

GFDL-ESM2G  20 x 2.50 L24 GOLD nominal 1o 

MRI-CGCM3  T159L48 MRI.COM3 Meteorological Research 
Institute, Japan 

nominal 1o 

NorESM1-M  1.8750 x 2.50 L26 

 

NorESM-
Ocean 

Norwegian Climate Center, 
Norway 

nominal 1o 
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3.2 Observations and reanalysis data used for the model evaluation 390 

We make use of the following observational and reanalysis data to evaluate the CORE-II 391 

simulations. 392 

 Monthly one degree gridded optimum interpolation (OI) SST product (Reynolds 393 

et al., 2002) for 1982-2007 is taken from the National Oceanic and Atmospheric 394 

Administration (NOAA).   395 

 The subsurface temperature and salinity are taken from the World Ocean Atlas 396 

(WOA09) climatology (Locarnini et al., 2010; Antonov et al., 2010; Boyer et al., 397 

2009).  We also use WOA09 for the SSS. In WOA09, data until 2006 were used 398 

to compute the climatology. However, more Argo profiling data started in 2007 in 399 

the Indian Ocean. Including those years of data in the climatology may represent 400 

different mean state as compared to mean state based on data until 2006. Since the 401 

CORE-II simulations ran until 2007, hence we used WOA09 for this study. 402 

 Surface currents are taken from the Ocean Surface Current Analysis (OSCAR, 403 

Bonjean and Lagerloef, 2002). The OSCAR product is available at 0.33º spatial 404 

resolution and 5 day averaged. For this study, we computed monthly 405 

climatologies from the 5-day averaged data for the period 1993-2007. We also use 406 

ship drift climatology from Cutler and Swallow (1981) as well as the near-surface 407 

current  (0 - 15 m) climatology (version 2.07) from satellite-tracked drogued 408 

drifter velocities gridded at 0.5x0.5º resolution (Lumpkin and Johnson, 2013). All 409 

these data were re-gridded to 1ºx1º conforms to the MOM grid for comparison. 410 

 We employ monthly-mean 1ºx1º zonal and meridional subsurface currents from 411 

the Operational ocean reanalysis system (ORAS4) (Balmaseda et al., 2013) 412 

reanalysis product for 1982-2007. The long-term mean is calculated for this 413 

period. Inter-comparison studies of different reanalysis products over Indian 414 

Ocean show ORAS4 is performing best among most of the widely used products 415 

(Karmakar et al., 2017). 416 

 Observed long-term monthly mean net heat flux (NHF) was used from National 417 

Oceanography Centre Southampton (NOCS; Berry and Kent, 2009) available at 418  Jo
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1ºx1º resolution. We also used monthly-mean TropFlux (Praveen Kumar et al., 419 

2013) NHF for 1982-2007 and computed monthly climatologies for the 420 

comparison.   421 

 422 

  We note that different observation based products differ among each other and this can 423 

adversely affect the assessment of model performance based on single observation. Thereby, by 424 

comparing the model simulations with multiple observational products we may achieve robust 425 

results.  426 

 427 

3.3  Data sets  used for the wind speed evaluation 428 

 429 

We used buoy wind speed observational data at 3 m height provided by National Institute 430 

of Ocean Technology (NIOT) under National Data Buoy Programme (NDBP) of the Ministry of 431 

Earth Sciences, Government of India (Premkumar et al., 2000), to compare the most widely used 432 

forcing fields from CORE-II, JRA55-do (Tsujino et al., 2018) and DRAKKAR (Brodeau et al., 433 

2010). The buoy location is at 94 °E, 10.5 °N in the BoB and shown in Figure 1a as red pin. 434 

Daily wind speed from buoy is used for the comparison. The 3-hourly 55-km horizontal 435 

resolution JRA55-do, and the 6-hourly 75-km resolution DRAKKAR wind speed were used for 436 

the comparison. However, daily averages were computed from these 3-hourly and 6-hourly data 437 

to compare with daily buoy wind speed. These datasets have been corrected relative to reanalysis 438 

product ERA-Interim (Dee et al., 2011) for DRAKKAR and Japanese 55-year Reanalysis 439 

(Kobayashi et al., 2015) for JRA55-do products, analogous to how CORE-II has been corrected.  440 

We also used Cross-Calibrated Multi-Platform (CCMP; available at 441 

http://rda.ucar.edu/datasets/ds745.1/#!access) Surface Wind Vector Analyses (Atlas et al., 2009) 442 

for the spatial wind speed comparison.  Here we provide a comparison of CORE-II with 443 

DRAKKAR and JRA55-do to understand the reliability of these products for the Indian Ocean 444 

simulation. There are notable differences in spatial resolution (CORE-II: 2° and JRA55-do: 0.5°) 445 

as well as differences in temporal resolutions (CORE-II: 6-hourly and JRA55-do: 3-hourly).  Yet 446 

for the comparison we only considered daily averaged data sets from all products.  The corrected 447  Jo
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CORE-II, JRA55-do and DRAKKAR data are available at 10 m height. For comparison, we 448 

interpolate the CORE-II, JRA55-do and DRAKKAR 10 m winds to 3 m using the logarithmic 449 

scale given by Stull (2011).  450 

3.4. Assessment in sub-regions of the Indian Ocean  451 

The Indian Ocean variability is very inhomogeneous (e.g. Schott et al., 2009). Hence, we 452 

find it useful to examine the simulations within sub-regions as shown in Figure 1a. These regions 453 

include the Arabian Sea (AS): 50 - 70 °E and 6 - 25 °N, the Bay of Bengal (BoB): 79.5 – 95.5 °E 454 

and 7.5 – 23.5 °N, the South Eastern Arabian Sea (SEAS): 71 - 77 °E and 7 - 13 °N, the Eastern 455 

Equatorial Indian Ocean (EEIO): 80 - 100 °E and 5 °S - 5 °N,the Thermocline Ridge (TR): 50 - 456 

75 °E and 5 °S - 10 °S and the Southern Indian ocean (SIO): 40 - 100 °E and 15 °S - 30 °S. 457 

4. Results and discussions  458 

 459 

4.1. Evaluation of CORE-II forcing fields 460 

4.1.1 Assessment of the winds and latent heat fluxes 461 

Latent Heat Flux (LHF) is mainly determined by wind speed apart from near-surface air 462 

temperature and humidity. Thus, any error in the computation of LHF due to inconsistencies in 463 

any of these components would reflect in the NHF. Rahaman and Ravichandran (2013) have 464 

documented the evaluation of CORE-II near surface humidity and air temperature. The findings 465 

of Rahaman and Ravichandran (2013) are briefly mentioned in section 4.1.2. In what follows, we 466 

therefore restrict our comparison to the wind speed. 467 

Figure 2 shows the time series comparison of daily wind speed from corrected CORE-II, 468 

JRA55-do and DRAKKAR in 2006 over south BoB. CORE-II winds reproduce the observed 469 

seasonal and intra-seasonal variability. However, for most of the year, it overestimates the buoy 470 

wind speed (Figure 2). In contrast, JRA55-do and DRAKKAR winds more  471 
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 472 

 473 

Figure 2: Daily wind speed comparison of CORE-II, JRA55-do and DRAKKAR with buoy data 474 

over the south Bay of Bengal at 3 m height for 2006. 475 

 476 

accurately capture the buoy-observed daily wind speed, with at times, slight under estimations. 477 

The statistics of wind speed comparison is given in Table 3. The CORE-II mean wind speed bias 478 

is 0.8 m/s with a root-mean-square deviation (RMSD) value of 1.75 m/s and a correlation 479 

coefficient of 0.8. The underestimation of JRA55-do and DRAKKAR wind speed with respect to 480 

buoy observation is reflected with mean bias of -0.40 m/s and -0.35 m/s respectively (Table 3). 481 

However, the RMSD values in JRA55-do and DRAKKAR are much lower when compared to 482 

CORE-II. CORE-II winds have larger variability as compared to buoy observation with standard 483 

deviations of 2.1 m/s in the buoy and 2.6 m/s in CORE-II. JRA55-do and DRAKKAR standard 484 

deviation (SD) values are very close to the observed buoy value (Table 3).  485 

 486 

 487 
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Table3: Wind Speed Comparison statistics over Bay of Bengal (Buoy location 94°E, 10.5°N). 488 

 489 

Figure 3a shows the 1993-2007 mean spatial distribution of wind speed from CORE-II, CCMP, 490 

JRA55-do and DRAKKAR. The basin-average mean wind speed is given within each panel (top 491 

right). The values are roughly similar except for CORE-II, which is slightly higher than the other 492 

products, which is also seen in the buoy comparison (Figure 2). The mean wind speed structure 493 

over the Indian Ocean is dominated by the summer monsoon wind. The summer monsoon wind 494 

speed over AS is high as compared to BoB and it reflects in the annual mean structure. CORE-II 495 

wind speed is higher by ~ 0.5 m/s over the west coast of Australia as compared to the other 496 

products. This region also shows the highest wind speed over the entire Indian Ocean. CORE-II 497 

wind is corrected by QuikScat wind (Large and Yeager, 2009), but still it shows higher values as 498 

compared to buoy and other wind products. Yu et al. (2007) have reported large LHF over this 499 

region in NCEP2 product as compared to other products, and attributed this bias to the strong 500 

wind. Sanchez-Franks et al. (2018) also noted LHF biases in this region and linked them to dry 501 

biases in humidity. The spatial distribution of monthly SD is shown in figure 3b. All wind 502 

products show that the variability is highest over the Somalia coast and it is ~ 4-5 m/s in CORE-503 

 AN3 2006 ( no of points 365) 

 
Mean  

(m/s)  

Standard 

Deviation 

(SD) 

(m/s) 

Bias 

(m/s) 

Correlation  

Coefficient (CC) 

RMSD 

(m/s) 

Buoy 5.38 2.09 - - - 

CORE-II 6.16 2.64 0.78 0.80 1.75 

JRA55-do 4.98 2.17 -0.4 0.84 1.26 

DRAKKAR 5.03 2.20 -0.35 0.86 1.20 
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II, DRAKKAR and JRA55-do, but slightly lower values (~3-4 m/s) are seen in satellite-based 504 

product, CCMP. The variability is lowest over equatorial Indian Ocean and in a zonal band over 505 

the south Indian Ocean (20 - 25 °S) in all products. The SD values over these regions are similar 506 

in DRAKKAR, CCMP and JRA-do, but slightly larger values are seen in CORE-II.  507 

 508 

Figure 3a: Mean wind speed (m/s) at 10 m height from CORE-II, DRAKKAR, CCMP and 509 

JRA55-do. Average over 1993-2007 is taken. The basin-average mean values are given in the 510 

upper right corner of each panel.  511 

 512 
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 514 

Figure 3b: Monthly standard deviation (1993-2007) of wind speed (m/s) at 10 m height from 515 

CORE-II, DRAKKAR, CCMP and JRA55-do. The basin averaged mean values are given in the 516 

upper right corner of each panel.  517 

To understand the wind impact on LHF, we computed latent heat fluxes using bulk 518 

formula (see details in Rahaman and Ravichandran, 2013) by using buoy observed atmospheric 519 

fields but replacing buoy wind speed with CORE-II, JRA55-do and DRAKKAR wind speed 520 

fields. The daily LHF comparison is shown in Figure 4. The wind impact on LHF shows RMSD 521 

values of ~50 W/m2 and a mean bias of ~22 W/m2 in CORE-II. The underestimation of wind 522  Jo
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speed in JRA55-do and DRAKKAR is reflected as mean LHF bias of -11 W/m2 and -10 W/m2 523 

respectively. Sanchez-Franks et al. (2018) found that JRA-55 underestimates buoy wind speed in 524 

the BoB in agreement with results here. Biases in turbulent heat fluxes of the order reported in 525 

their work can have large implications for a product/model to correctly represent monsoon-526 

related processes. The RMSD values of 36 W/m2and 34 W/m2are much lower in JRA55-do and 527 

DRAKKAR as compared to CORE-II. These results also corroborate the finding of Swain et al. 528 

(2009). They showed that over the SEAS during monsoon season, 1 m/s RMSD in wind speed 529 

can cause 45 W/m2 RMSD in LHF. As expected the variability in CORE-II is also large with SD 530 

value 62 W/m2 as compared to buoy SD value of 44 W/m2. The SD in JRA55-do and 531 

DRAKKAR is also very close to the SD derived from buoy observations (Table 4).  532 

 533 

Figure 4: Latent Heat Flux (LHF) computed from buoy observations (black) and replaced buoy 534 

wind speed with CORE-II (red curve), JRA55-do (green curve) and DRAKKAR (blue curve) 535 

wind speed fields. In the calculation of LHF only wind fields are changed, while all other fields 536 

are from observations. This comparison reveals the impact of wind speed on LHF.  537 

 538 
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Table 4: LHF Comparison statistics over Bay of Bengal (Buoy location 94 °E, 10.5°N). 539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 

 547 

 548 

 549 

 550 

4.1.2 Specific humidity, air temperature, and radiative fluxes 551 

Rahaman and Ravichandran (2013) evaluated CORE-II specific humidity (Qa) and air 552 

temperature (Ta) with independent in situ observations over the tropical Indian Ocean. They 553 

reported that the RMSD value of Ta is ~0.5 °C, but a large drop in Ta observed during intense 554 

rainfall events are not well captured by CORE-II products.  They also reported a change in 1 555 

g/kg Qa can cause about 11–15 W/m2 errors in latent heat flux. Qiu et al. (2004) showed that 556 

over the western North Pacific, the synoptic-scale heat fluxes have a large impact on SST and 557 

have typical amplitude of ±1°C. The downwelling fluxes of shortwave and longwave radiation 558 

from the CORE-II product have been evaluated with the tropical moored buoy observations 559 

(Venugopal and Rahaman, 2019). They found the mean bias in CORE-II over the Atlantic Ocean 560 

is about zero and a root-mean-square deviation (RMSD) of 43 W/m2 and 12 W/m2 for 561 

downwelling shortwave and longwave radiation, respectively. For the Indian Ocean with respect 562 

to Research Moored Array for African-Asian-Australian Monsoon Analysis & Prediction  563 

(RAMA) buoy the mean bias is roughly-3 W/m2 and -8 W/m2 but with large RMSD values of 50 564 

 AN3 2006 (no of points 365) 

 
Mean  

(W/m2 ) 

Standard  

Deviation 

(SD) 

(W/m2 ) 

Bias 

(W/m2) 

Correlation 

Coefficient(CC) 

RMSD 

(W/m2 ) 

Buoy 144 44 - - - 

CORE-II 166 62 22 0.70 50 

JRA55-do 133 46 -11 0.72 36 

DRAKKAR 134 47 -10 0.75 34 
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W/m2 and 14 W/m2 for downwelling short and longwave radiation, respectively. The variability 565 

is also underestimated with standard deviations of 70 W/m2 in RAMA for shortwave whereas in 566 

CORE-II it is 48 W/m2. In the case of longwave, variability is larger in CORE-II (23 W/m2) as 567 

compared to buoy values of 18 W/m2. CORE-II forcing fields compare reasonably well to 568 

observational-based measures as well as other reanalysis products.  569 

 570 

4.2. Sea Surface Temperature 571 

In this section, we offer a particularly extensive analysis of the SST given its importance 572 

for Indian Ocean climate variability and due to its relatively precise observational measures. For 573 

the analysis purpose, we regrided all models and observed SST and NHF data set uniformly on a 574 

1ºx1ºgrid.  575 

 576 

4.2.1 Spatial patterns 577 

4.2.1.1 SST patterns from CORE-II simulations  578 

Figure 5 shows the annual mean SST bias for each model together with the model 579 

ensemble mean bias. The observed and model ensemble mean SST is also shown in the upper 580 

left corner panels. The annual mean is computed over the period 1982 to 2007 for both 581 

observations and models. The OI-SST data is based on advance very high resolution radiometer 582 

(AVHRR) satellite data (Reynolds et al. 2002) which is available from April 1981, hence we 583 

used 1982 - 2007 to compute monthly climatology. Observations (Fig 5a) show SST cooler in 584 

the west and warmer in the east (Murtugudde and Busalacchi, 1999; Schott et al., 2009) and a 585 

tongue of relatively warm SST (>29°C) in the  586 

 587 
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 588 

Figure 5: Annual mean SST bias (model minus observation) from all model simulations are 589 

shown in color (panels d-s). The contours show the annual mean SST (1982-2007) of the 590 

5thCORE-II cycle. The model ensemble mean bias is shown in the upper right panel (c). 591 

Observed annual mean SST from observation is shown in upper left panel from NOAA-OI 592 

(Reynolds et al 2002) (a). The ensemble mean from CORE-II models is shown in the upper 593 

middle panel (b).  Contour levels for the NOAA-OI observation and all models are the same. 594  Jo
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Units are in degrees Celsius. The basin averaged mean (upper right corner) and its standard 595 

deviations (left) are also given in each panel in blue colors.  596 

 597 

equatorial Indian Ocean, forming the Indian Ocean warm pool (Fasullo and Webster, 1999; Rao 598 

et al., 2015;Rao and Ramakrishna,2017).The CORE-II ensemble mean (Fig 5b) reproduces this 599 

warm pool structure both in terms of the magnitude and spatial extent. Looking at singular model 600 

annual means (Fig. 5d-s, contours) almost all of them reproduce the observed patterns. Two 601 

exceptions are AWI and ACCESS, where the maximum SST does not exceed 28 °C, and show a 602 

basin-wide cold bias (shaded values) including the warm pool region. Zonal variation of the SST 603 

pattern is well reproduced in all the CORE-II simulations. The ensemble mean SST pattern 604 

nearly replicates the observed mean SST spatial pattern. Individual models show biases of +/- 1 605 

°C with a warm bias over the southwest Indian Ocean and cold bias over the AS and BoB. No 606 

significant improvement is seen in the two eddy-permitting models GFDL-MOM025 and 607 

KIEL025 as compared to their coarser resolution companion configurations. Therefore, biases 608 

may be arising more from improper representation of physical parameterizations (e.g., boundary 609 

layer processes) than coarse grid resolution or it may be also due to surface forcing bias. 610 

Previous studies have shown that the NHF accounts for most of the tropical Indian Ocean 611 

(TIO) SST variability (Murtugudde and Busalacchi, 1999; Klein et al., 1999). Over the AS, apart 612 

from the NHF, oceanic processes also play a major role in the SST variability (Shenoi et al. 613 

2002). However, SST over BoB is more air-sea flux driven due to the Bay’s BL (Vialard et al., 614 

2012). In the tropical southwest Indian Ocean (SWIO), ocean dynamics plays an important role 615 

at all timescales due to local and remotely-forced ocean dynamics (Lau and Nath, 2004).  616 

Murtugudde and Busalacchi (1999) and Xie et al. (2002, 2009) have shown that SST variability 617 

over this region is forced by thermocline variability and mixed layer-thermocline interactions. 618 

The warm SST bias over this region is coincident with the warmer thermocline temperature bias 619 

over the same region (see Figure 19). The NHF bias computed from model SSTs is uniform 620 

throughout the basin (~10 W/m2) in all these models (not shown), which further confirms this 621 

finding. The NEMO-based models (CERFACS, CNRM, CMCC and KIEL) show slightly larger 622 

warm bias to the south of the equator as compared to other models.  623  Jo
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 624 

Figure 6: Mean SST bias (model minus observation) in March from all model simulations are 625 

shown in shade (panels d-s) from the 5th CORE-II cycle. The overlaid contour levels are for the 626 

mean SST in March. The ensemble mean from CORE-II models is shown in the upper middle 627 

panel (b).  Ensemble mean bias for all models is shown in upper right panel (c). Observed   mean 628 

SST in March from observations is shown in the upper left panel (NOAA-OI) (a). Contour levels 629 

for NOAA-OI observation and all models are same. The basin averaged mean (upper right 630  Jo
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corner) and its standard deviations (left) are also given in each panel in blue colors. Units are 631 

degrees Celsius. 632 

 633 

In the AS and the BoB, almost all simulations show a cold SST bias. The annual mean 634 

cold bias over these regions mainly arises from a large cold bias during March (Figure 6). 635 

Chowdary et al. (2015, 2016) have shown that the seasonal SST over the BoB is governed by the 636 

seasonal NHF. But the observational study of Thangaprakash et al. (2015) show that vertical 637 

processes and horizontal advection also play a significant role in the seasonal SST tendency over 638 

the BoB. The NHF in CORE-II simulated models does not differ much with the TropFlux 639 

observations (see Figure 11b and Section 4.2.2.2). Hence, the different magnitudes for the SST 640 

bias in CORE-II simulated models over the BoB could be due to the vertical processes and 641 

horizontal advection, thus supporting the finding of Thangaprakash et al. (2015). 642 

 643 

In the AS, the Great Whirl and the southern eddy are two dominant anti-cyclonic eddies 644 

present near the Somalia coast. The Great Whirl has been observed to form during late May and 645 

early June between 5 °N and 10 °N. A large branch of the East African Coastal Current (EACC) 646 

turns offshore after crossing the equator at about 2 °N to 3 °N and forms the Southern Gyre (SG). 647 

The SG is a large anticyclonic retroflection cell with a well-marked wedge of cold upwelled 648 

water attached to its northern flank (the southern cold wedge). A third anticyclonic eddy named 649 

the Socotra Eddy (SE) is frequently present in the northeast of the Island of Socotra (Beal and 650 

Donohue, 2013; Beal et al., 2013). The very prominent small circular patch of cold SST bias 651 

seen over these regions, found in most of the CORE-II models, represents the presence of these 652 

anti-cyclonic eddies in July and October (Figure not shown). Most of the models show a cold 653 

bias with ACCESS showing the largest (~ 1.5 °C). GFDL-MOM group of models also shows a 654 

fairly large cold bias, whereas this bias is relatively small in the NEMO group of models. Annual 655 

mean bias over the BoB in the NEMO models and FSU are least among all the model 656 

simulations.  657 
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The region of the equatorial Indian Ocean and latitudes to its south shows a positive bias 659 

(~ 0.6 °C) in all simulations except AWI and ACCESS, whose simulations show a small cold 660 

bias (~ 0.4 °C). All biases are within observational errors (Bhat et al., 2004; Senan et al., 2001.) 661 

Furthermore, the flux errors are larger than the corrective fluxes needed to correct these SST 662 

biases which make it difficult to assign any errors in the models (see Murtugudde et al., 1996). 663 

However, the high mean SSTs are close to atmospheric convective thresholds and thus even 664 

small errors can lead to large errors in a coupled climate model. The CORE-II models 665 

realistically simulate the spatial distribution and zonal variation of SST in the Indian Ocean. The 666 

basin-wide   bias is within +/- 1 °C seen in almost all the models, which may arise from 667 

problems representing ocean physics as well as atmospheric forcing. We conjecture that the most 668 

important physical process is related to vertical mixing, given the importance of upper ocean 669 

boundary layer processes for setting the SST. These results suggest that a focus on improved 670 

physical parameterizations may, in the near term, offer more advances in Indian Ocean 671 

simulations than refinement of the grid resolution. This conclusion is supported by Benshila et al. 672 

(2014).  673 

 674 

4.2.1.2 Comparing SST from CORE-II and CMIP5 simulations 675 

We here compare SST from CMIP5 coupled models using the same ocean component as 676 

the CORE-II models. In particular, we analyze SSTs from CMIP5 historical simulations from the 677 

nine models that employ the same ocean configuration used in our CORE-II study (Table 678 

2).Compared to forced CORE-II model simulations, coupled CMIP5 simulations show SST 679 

biases that are not uniformly distributed across different seasons. They also show a similar 680 

pattern to that of the forced simulations described in Section 4.2.1.1, but with larger amplitude. 681 

The larger biases suggest the amplification of SST errors that arise from coupling with an 682 

interactive atmospheric model.  683 

 684 

Previous studies have identified a cold SST bias in the Indian Ocean in coupled climate 685 

models (Pokhrel et al., 2012a,b; Chowdary et al., 2015, 2016; Prasana, 2015). Fathrio et al. 686 

(2017a) examined the western Indian Ocean SST biases among CMIP5 models and found that 687  Jo
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about half of the models show positive SST biases, while others show negative bias.  The models 688 

with cold SST biases exhibit a colder bias in the entire tropical Indian Ocean throughout the 689 

year. The positive bias was attributed to relatively weak southwest monsoonal winds over the AS 690 

and an equatorial southeasterly wind bias. The warm SST biases persisted until boreal fall, and 691 

then disappeared in winter (Li et al., 2015). All CMIP5 models show cold SST biases over the 692 

northern AS during the pre-monsoon season (Marathayil et al.,2013; Sandeep and 693 

Ajayamohan,2014; Levine et al.,2013; Li et al., 2015; Fathrio et al.,2017a). Studies show that 694 

anomalous advection of cold surface air from the south Asian landmass during boreal winter 695 

contributes to the cold SST biases over the north AS (Marathayil et al., 2013; Sandeep and 696 

Ajayamohan, 2014).  697 
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Figure 7: Annual mean SST bias (model minus observation) from CMIP5 simulations (shade), 699 

with contours for the mean SST. The ensemble mean from the CMIP5 models is shown in the 700 

upper middle panel (b).  The CMIP5 model ensemble mean bias is shown in the upper right 701 

panel (c). Observed annual mean SST is shown in upper left panel from NOAA-OI (a). Contour 702 

levels for the NOAA-OI observation and all models are the same. The basin averaged mean 703 

(upper right corner) and its standard deviations (left) are also given in each panel in blue colors. 704 

Units are degrees Celsius. 705 

We show the annual mean SST (contour) and bias (colour) from the CMIP5 simulations 706 

in Figure 7. Except for CESM and CMCC (which corresponds to the NCAR CORE-II ocean/ice 707 

configuration), none of the CMIP5 models reproduce the observed warm pool over the equatorial 708 

Indian Ocean (Rao et al., 2015). The majority of the CMIP5 models show a basin-wide cold bias 709 

with highest bias in the north AS up to 4 °C. The north AS cold bias is more than 3°C in MRI 710 

whereas CESM shows the smaller cold bias of ~0.6 °C. CESM, CMCC and MRI show a warm 711 

positive bias (of up to 1.6 °C) over the western equatorial Indian Ocean and southeast Indian 712 

Ocean off the Australian Coast. The overall basin wide cold bias is weakest in CMCC (-0.12 °C) 713 

and largest in NorESM(-0.93 °C). The largest basin averaged cold bias in CORE-II ocean only 714 

simulations is -0.37 °C in ACCESS. Biases in the NCAR CORE-II model are only ~ 0.1-0.2 °C 715 

to the south of the equator. However, when coupled as part of CESM, this model shows roughly 716 

five to ten times larger biases up to ~1 °C.  717 

 718 

The large cold bias in the CMIP5 models over the northern AS in the annual mean mostly arises 719 

from the cold bias during Feb-April, which peaks in March (Figure 8). The SST cold bias is 720 

larger than 3 °C in GFDL-ESM2M, GFDL-ESM2G, GFDL-CM3, NorESM and MRI during 721 

March. Sandeep and Ajayamohan (2014) show a similar cold bias, but with larger amplitude 722 

over the north AS in all CMIP5 models. They attributed this bias to an equatorward bias in the 723 

subtropical jet stream during boreal spring, thus causing excessive cooling of the northern AS 724 

and adjoining land regions. This cold bias in coupled models was also attributed to the 725 

northeasterly cold air temperature (Marathayil et al., 2013).  726  Jo
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The cold bias in forced CORE-II simulations is much weaker when compared to coupled 727 

models that use the same ocean component (Figure 5 and Figure 7). The cold biases in the 728 

CORE-II simulations are ~1 °C over the northern AS whereas they are ~3 °C in the CMIP5 729 

models, with even larger biases in the MRI and NorESM. These results suggest that the large 730 

northern AS SST biases in coupled models may arise from coupled dynamical feedbacks that 731 

amplify ocean errors. This hypothesis is supported by Figure 9a, which shows the seasonal cycle 732 

of the mixed layer depth (MLD) in CORE-II models and WOA observations over the north 733 

AS.The CORE-II MLDs are generally deeper than WOA during Feb-March. Figure 9b shows the 734 

MLD vs SST bias over the northern AS. It can be seen that larger SST cold biases are  associated 735 

with deeper MLDs as compared to observations. The correlation coefficient between MLDs and 736 

SST bias is 0.64, which is significant at the 99 % confidence level. In figure 9b the BERGEN 737 

simulation appears like an outlier. Without this simulation the correlation coefficient value 738 

reduces from 0.64 to 0.50 but it is still significant at the 95 % confidence level. Tozuka et al., 739 

(2017) showed in the upstream Kuroshio Extension region in the North West Pacific that the 740 

deeper MLD is less sensitive to cooling by surface heat fluxes. However, Roxy et al. (2012) 741 

showed a shallow (deep) MLD enhances (suppress) the SST anomaly, thereby amplifying 742 

(lessening) the intra-seasonal variability of the monsoon in a coupled model (CFSv2) and argued 743 

that a prime focus should be on improving the mixed layer scheme of the ocean component in 744 

that model. This confirms the need of improvement of MLD in ocean models for a better 745 

simulation of SST over the northern AS. 746 
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 747 

Figure 8: March mean SST bias (model minus observation) from CMIP5 simulations are shown 748 

in shade. The ensemble mean from the CMIP5 models is shown in the upper middle panel (b). 749 

Ensemble mean bias for all models is shown in the upper right panel(c). Observed mean March 750 

SST is shown in the upper right panel (NOAA-OI) (a). The basin averaged mean (upper right 751 

corner) and its standard deviations (left) are also given in each panel in blue colors. 752 
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 753 

                     (b) 754 

                                    755 

Figure 9: (a) Seasonal cycle of MLD from all CORE-II model simulations and WOA 756 

observations averaged over northern AS (10-25 °N, 55-70°E) (b) scatter plot of MLD vs SST 757 

bias over northern AS for the individual models in March. For the observations (NOAA-OI) the 758 

SST bias is just zero while the MLD (32 m) is the reference for that month. The correlation 759 

coefficient between model MLD and SST bias is 0.639, which is significant at 99 % confidence 760 

level.  761  Jo
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These results suggest that the origin of SST bias during spring (Feb-March-April) mainly 762 

arise from the coupled feedbacks as well as MLD biases. The spatial distribution and magnitude 763 

of SST bias in CORE-II forced simulations are weaker than those in coupled simulations since 764 

the errors are amplified by coupled feedbacks. We conjecture that the basin-wide cold bias in 765 

CORE-II simulations arises from deficiencies in ocean vertical mixing, with biases enhanced due 766 

to coupled feedbacks in the coupled model simulations. 767 

 768 

4.2.2 Seasonal cycle of SST and net surface heat flux 769 

The Indian Ocean circulation and tracer property distributions exhibit great spatial 770 

inhomogeneity. Correspondingly, so is the spatial distribution of the SST bias. Hence, we here 771 

consider the area averaged seasonal cycle over the different sub-regions shown in Figure 1 and 772 

described in Section 3.4. The ability of model simulations to correctly capture the seasonal SST 773 

variation is a difficult task, particularly over the north Indian Ocean. 774 

 775 

4.2.2.1 Arabian Sea (AS) 776 

Figure 10a shows the seasonal evaluation of SST over the AS from CORE-II simulations and its 777 

ensemble mean along with observations. The observed annual cycle over the AS shows a 778 

bimodal SST seasonality with the primary maximum during April-May and the secondary 779 

maximum in October (Murtugudde and Busalacchi, 1999; Vinayachandran and Shetye, 1991; 780 

Fathrio et al., 2017a). During April–May, prior to the onset of the Indian summer monsoon, the 781 

AS evolves to one of the warmest areas in the tropical oceans (Joseph, 1990; Joseph et al., 2006). 782 

All CORE-II simulations show bi-modal SST seasonality, but there exists inter-model spread 783 

that is largest during summer.  784 
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 785 

Figure 10: Seasonal cycle of SST over the Arabian Sea (AS) from (a) CORE-II simulations (c) 786 

CMIP5 simulations. The model ensemble mean and observed SST are also shown as dashed 787 

thick gray and blue lines, respectively. (b) Seasonal cycle of net heat flux from all the CORE-II 788 

simulations as well as two observations (NOCS and TropFlux in dashed thick red and black 789 

lines, respectively). (d) Seasonal cycle of CORE-II and CMIP5 ensemble mean and NOAA-OI 790 

SST (left axis) and net heat flux (NHF) from CORE-II simulations and observations (NOCS and 791 

TropFlux; right axis). The legend for individual models is the same in panels a and b.  792 

 793 

Observations show that SST reduces after the onset of the summer monsoon in June. It reaches a 794 

minimum during the peak summer monsoon (Jul-Aug) over the AS due to upwelling off the 795 

Somali Coast and Arabian Peninsula as well as due to latent heat loss caused by strong 796 

southwesterly monsoon winds (Shenoi et al., 2002). Another mechanism through which SST 797 

reduces over the AS is the export of heat through meridional overturning. Few models show 798 

lower SST during July-August with respect to NOAA-OI observation, while others show slightly 799  Jo
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higher. This behavior could be due to the different cross-equatorial heat transport among 800 

different models (Swapna et al., 2017).  801 

The CMIP5 coupled model simulations show similar variations to those forced by 802 

CORE-II, but CMIP results show far more inter-model spread (Figure 10c). The cold biases 803 

during winter and spring in the coupled models are larger (~ 2 °C) than the CORE-II models 804 

(~0.5 °C) (Figure 10a,c). Coupled Model Inter-comparison Project Phase 3 (CMIP3) and other 805 

CMIP5 coupled models (not considered here) also show similar cold biases over the AS 806 

(Marathayil et al., 2013; Levine et al., 2013). Levine and Turner (2012) showed that coupled 807 

model SST biases over the northern AS are substantially larger than the observed interannual 808 

variability of AS SST, and in turn these biases affect the Indian summer monsoon simulations 809 

and forecasts (Narapusetty et al., 2015). 810 

 811 

The AS seasonal cycle of NHF from the CORE-II models matches that of the TropFlux 812 

observations (Figure 10b) during October-March, while the magnitude is about 20-30% less than 813 

the observations. Despite this reasonably good match in surface heat flux forcing, the cold SST 814 

bias in CORE-II simulations indicates the role of oceanic process in seasonal SST evolution, 815 

which is also evident from the deeper MLD in all models (Figure 9a). Recent studies by 816 

Parampil et al. (2016) have shown that TropFlux derived NHFover the NIO is more realistic 817 

when compared with OAFLUX and satellite derived products. All the CORE-II models 818 

underestimate the NHF as compared to observations (Figure 10b) during March-October. Most 819 

models show a cold SST bias during spring but the majority shows warm bias during summer 820 

(Jul-Aug) (Figure 10a). The wind speed is strong over AS in CORE-II during spring but it is 821 

weaker during peak summer (Aug) as compared to other wind speed products (figure not 822 

shown). This leads to an over estimation of the LHF in model. The overestimation of the LHF 823 

due to CORE-II wind speed is also shown in Figure 4 and table 4. As previously noted, wind 824 

speed is not the sole factor determining the LHF (Rahaman and Ravichandran, 2013). They 825 

showed that the LHF overestimation is mainly due to the positive biases of CORE-II near-826 

surface air temperature and specific humidity. 827 
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Figure 10d shows the seasonal evolution of ensemble mean SST and NHF from 829 

observations, CORE-II and CMIP5 simulations. The NHF reaches its maximum in April whereas 830 

SST attains its maximum in May. Studies have shown that the seasonal evolution of SST 831 

tendency matches well with the NHF seasonal cycle (Chowdary et al., 2015; Sayantani et al., 832 

2016; Kurian and Vinaychandran, 2007).  833 

 834 

In summary, the bimodal semiannual cycle of SST in the AS is well captured by the 835 

CORE-II forced simulations, revealing weaker biases than the coupled CMIP5 models. We 836 

conjecture that the cold SST bias and under-estimation of SST maximum in the pre-summer 837 

monsoon season reflects a problem with simulated oceanic processes since the CORE-II 838 

ensemble NHF is reasonably well matched with both observational products. Additionally, the 839 

inability to reach the minimum SST during the summer monsoon season may arise from biases 840 

in the wind forcing (see section 2.4) as well as simulated oceanic processes.  841 

 842 

Figure 11: Same as Figure 10 but for the Bay of Bengal (BoB). 843  Jo
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 844 

4.2.2.2 Bay of Bengal (BoB) 845 

Figure 11a shows the SST seasonal cycle over the BoB from CORE-II simulated models 846 

and observations. As for the AS, the semiannual cycle is very prominent in the BoB, with peak 847 

SSTs in May and October. Although the SST reduces rapidly over the AS following the 848 

monsoon onset, SST in the BoB remains higher than 28°C, making the BoB favorable for deep 849 

atmospheric convection(Gadgil et al., 1984; Graham and Barnett, 1987). The magnitude of SST 850 

reduction in the BoB is smaller (~1 °C) than in the AS (2-3 °C). This difference arises from the 851 

BL present in the BoB, with this layer suppressing ocean vertical mixing and thus maintaining a 852 

higher SST throughout the year (Thadathil et al., 2008; Shenoi et al., 2002; deBoyer et al., 2007; 853 

Sprintall and Tomczak, 1992). The models are able to simulate the observed seasonal cycle but 854 

most underestimate the observed SST, with KIEL and KIEL025 as exceptions. This 855 

underestimation of SST could be due to the models’ inability to simulate properly the (observed) 856 

BL thickness (Thadathil et al., 2008). Several studies point to the impact of the BoB’s BL on 857 

SST variation (e.g. deBoyer et al., 2007; Saji and Yamagata, 2003; Saji et al., 2006; Girishkumar 858 

et al., 2011).  The model study of Rahaman et al. (2014) suggested the importance of relatively 859 

fine vertical grid spacing (~2 m) to properly represent the BL features. Note that most of the 860 

CORE-II models have vertical grid spacing no finer than ~5 m in the upper ocean.  861 

Further evidence for the oceanic role in establishing the SST biases can be further seen in 862 

Figure 11b, which shows that the CORE-II ensemble mean surface heat fluxes closely follows 863 

the TropFlux observations with little spread across the models. As pointed out by Parampil et al., 864 

(2016), data from NOCS overestimates the NHF compared to other observational products. This 865 

bias is also reflected in Figure 11b where the NOCS NHF is larger than TropFlux throughout the 866 

year. 867 

In contrast to the CORE-II forced simulations, the coupled CMIP5 simulations show 868 

larger SST bias ranging up to -2 °C almost throughout the year with maximum during February-869 

May (Figure 11c). The inter-model spread is large in coupled models compared to the CORE-II 870 

forced simulations. Figure 11d shows the seasonal variation of the ensemble mean SST and the 871 

NHF from both CORE-II and CMIP5 along with observations, with CORE-II models better 872  Jo
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representing the seasonal variation of SST in the BoB than CMIP5 models, showing a rather 873 

uniform offset of 1 °C over the year compared to observations. 874 

 875 

4.2.2.3 Eastern Equatorial Indian Ocean (EEIO) 876 

SST over the Indian Ocean generally shows large-scale seasonal variability, but SST variation in 877 

the EEIO remains within about ±0.5 °C (Figure 12a). The mean SST is above 28 °C throughout 878 

the year, thus favoring deep atmospheric convection (Gadgil et al., 1984) and rainfall throughout 879 

the year. Figure 12a shows the EEIO SST seasonal cycle from CORE-II forced models and 880 

observations. The observations show that SST exceeds 29 °C throughout the year and peaks in 881 

April. All models are able to capture the observed seasonal cycle with comparatively small 882 

biases (~0.25 °C), except ACCESS and AWI, both of which show a systematic year-round cold 883 

bias of ~0.5 °C. Similar to the AS and the BoB, the NHF over the EEIO is also underestimated 884 

by all models compared to both observational products. The CORE-II ensemble mean value 885 

shows good agreement with the observations, but a large inter-model spread exists throughout 886 

the year, with all models showing systematically warm or cold biases. KIEL and FSU show 887 

positive SST biases during April-May despite a NHF that underestimates the observed values. 888 

This result suggests that the NHF may not be a major factor determining the evolution of SST 889 

during April-May, but that instead the ocean dynamics likely dominate. Over the EEIO, 890 

particularly off Java and further east, horizontal advection through the ITF and vertical 891 

entrainment by upwelling are the most important processes balancing the annual mean heat 892 

budget, and these processes in turn control the SST variation (Qu et al., 1994; Du et al., 2005).In 893 

the EEIO, the horizontal advection by the WJ is also expected to contribute to the SST (e.g. 894 

Halkides and Lee 2009). 895 

 896 

 897 
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 898 

Figure 12: Same as Figure 10 but for the Eastern Equatorial Indian Ocean (EEIO). 899 

 900 

Coupled CMIP simulations show large cold biases throughout the year and inter-model 901 

spread is much larger than their CORE-II counter parts (Figure 12c). The systematic inter-model 902 

spread is ~2 °C and the systematic bias is much larger (~1-1.5 °C) in coupled simulations 903 

compared to 0.25-0.5°C in CORE-II simulations.  904 

The zonal wind stress over this region is westerly from March to October and largest 905 

during northern hemisphere spring and autumn, driving the bi-annually observed equatorial jets 906 

in spring and autumn (Wyrtki, 1973). These equatorial jets deepen the thermocline in the east, 907 

thus contributing to SST increase in the EEIO. 908 

Figure 12d shows the ensemble mean SST seasonal cycle from the CORE-II and the 909 

CMIP5 simulations along with observations. The ensemble mean NHF from the CORE-II 910 

simulations and observations (TropFlux and NOCS) are additionally overlaid. The CORE-II 911 

ensemble mean closely matches the observed SST seasonal cycle, whereas the CMIP5 912  Jo
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simulations show a systematic cold bias throughout the year with a maximum bias of about 1.2 913 

°C during December-January. Additionally, the peak SST in CMIP5 models is reached in May, 914 

which is one month after the observed peak in April. The NHF from the CORE-II ensemble is 915 

underestimated throughout the year except in autumn. As for the AS and the BoB, the EEIO 916 

NHF peaks one month earlier than the SST, so that the tropical Indian Ocean SST responds to 917 

NHF changes after roughly one month. 918 

 919 

4.2.2.4 Thermocline Ridge  920 

SST in the TR (also called the Seychelles Dome) region shows a dominant annual cycle, 921 

rather than a semiannual cycle as in the AS, the BoB and the EEIO (Levitus, 1987; Rao and 922 

Sivakumar, 1999; Vialard et al., 2009). SST in the TR region has a large impact on the Indian 923 

summer monsoon (Annamalai et al., 2005) and the tropical cyclone activity (Xie et al., 2002). 924 

Therefore, it is important for coupled prediction models to simulate the observed SST variability 925 

over TR. In particular, resolving its seasonal cycle provides a useful benchmark test for model 926 

performance. Figure 13a shows the seasonal variation of SST from observations and  927 

 928 
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 929 

Figure 13: Same as Figure 10 but for the Thermocline Ridge (TR) region. 930 

 931 

the CORE-II simulations. Observational estimates show an increase in SST from August to April 932 

followed by decrease from May to July as the cross-equatorial wind starts evolving (Figure 13a). 933 

Most of the models capture this seasonal variation, but they generally overestimate the observed 934 

SST throughout the year with a maximum during July-August (up to 1 °C). AWI and ACCESS 935 

capture the observed July-August cooling over the TR region. However, both models have a 936 

consistently cold bias over other sub-regions. The NHF is underestimated (Figure 13b) 937 

systematically by all CORE-II simulations with an ensemble bias (-60 W/m2) during July-August 938 

(figure 13b). Horizontal advection tends to warm the SST in austral winter owing to the 939 

southward Ekman heat transport associated with the Indian summer monsoon (Yokoi et al., 940 

2012). Despite a large negative NHF in the CORE-II simulations, many models show a warm 941 

bias during August, thus suggesting the role of excess heat transport from north of the Equator 942 

by the wind driven Ekman transport. Yokoi et al. (2012) also showed that cooling by vertical 943  Jo
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turbulent diffusion in the ocean becomes most effective in the austral summer, owing to the 944 

shallow mixed layer and correspondingly shallow thermocline during that season. Positive SST 945 

biases may have arisen due to the reduced vertical cooling since the thermocline is deeper (85-946 

140 m) than found in the observations (75-80 m) (not shown). Similarly, the CMIP5 simulations 947 

also capture the observed seasonal cycle of SST, but exhibit a larger inter-model spread than the 948 

CORE-II simulations. Analysis indicates that almost half of the CMIP5 models shows a warm 949 

bias and the rest show a cold bias, thus leading to an ensemble mean CMIP5 SST that is close to 950 

the observation. Nagura et al. (2013) analyzed 35 coupled general circulation models (CGCM) 951 

including some CMIP5 models for the simulations of the longitudinal biases in the Seychelles 952 

Dome. They showed that the CMIP5 models are unable to simulate the longitude of the 953 

upwelling dome and the magnitudes of the annual and semiannual cycles of thermocline depth 954 

variability in the dome region. These biases could help to explain why some of the CMIP5 955 

models generally have problems reproducing the observed seasonal cycle of SST over this 956 

region. GFDL-ESM2G shows a systematic cold bias throughout the year (figure 13c). This 957 

region also shows that the NHF leads SST by about one month (Figure 13d).  958 

 959 

4.2.3 Zonal SST variation along the equator  960 

Murtugudde and Busalacchi (1999) first reported that the mixed layer-thermocline 961 

interactions in the EEIO potentially imply a coupled feedback. Furthermore Saji et al. (1999) and 962 

Webster et al. (1999) showed that coupled feedbacks in the equatorial Indian Ocean are critical 963 

for variability in the tropical Indian Ocean. This variability mode is known as the IOD. Many 964 

studies have since shown that IOD is intrinsic to the Indian Ocean with a potential kick from the 965 

massive western Pacific convection center (Annamalai et al., 2003; Annamalai and Murtugudde, 966 

2004; Saji et al., 2006; Wang et al., 2016; Wang and Wang, 2014).  967 

 968 

Figure 14a shows the east-west SST gradients from CORE-II simulations and results 969 

from CMIP5 simulations are shown in Figure 14b. Observational estimates for mean SST in the 970 

eastern and western regions are 29.6 °C and 27.2 °C respectively (Figure 14a). All models show 971 

a warm bias of up to 0.9 °C in the western equatorial Indian Ocean (45-60 °E) (Figure 14a). This 972  Jo
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sort of bias concentrated on the western equatorial IO would have implications for the modes of 973 

interannual variability. Observations show a sharp gradient at 65 °E and nearly constant values 974 

of 29.3 °C in between 65-95 °E with a dip of 29.1 °C at 80 °E. All models show nearly constant 975 

SST between 65-95 °E with a spread of +/-  976 

 977 

 978 

 979 

Figure 14: Annual mean SST along the equator from (a) CORE-II models (b) CMIP5 models, 980 

their ensemble mean and NOAA-OI observations are also shown in thick gray and blue colors.  981  Jo
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 982 

0.5 °C compared to observations. The KIEL group of models as well as FSU and FSU2 represent 983 

the upper estimates of SST along the equator, while AWI and ACCESS show a cold bias 984 

between 65-95 °E providing the lower SST estimate of the ensemble. The CORE-II ensemble 985 

mean shows a general warm bias stronger evolved west of 65 °E. In contrast to the CORE-II 986 

forced simulations, most CMIP5 simulations show colder SST throughout the basin as well as a 987 

large model spread (figure 14b). Overall, CORE-II models show a higher skill in simulating 988 

zonal SST distribution along the equator than the CMIP5 models. 989 

 990 

 We summarize this analysis by noting that the seasonal variation of SST in different sub-991 

regions in the Indian Ocean is well captured by the CORE-II models compared to the coupled 992 

CMIP5 simulations. In particular, the bi-modal SST variability over the AS, the BoB and the 993 

EEIO are well reproduced in CORE-II models, while the absolute climatological values differ 994 

regionally and seasonally by up to 1.8 °C, with a broad range of variations shown by the models. 995 

However, both CORE-II and CMIP5 models exhibit deficiencies in capturing the equatorial 996 

Indian Ocean dynamics, as evident from the flat zonal SST gradient and the warm bias over the 997 

open ocean upwelling dome south of the equator. The seasonal prediction skill for the tropical 998 

SST anomalies are a major predictability source for monsoon precipitation in the coupled 999 

models and is closely linked to the ability to simulate the SST mean state (Lee et al., 2010). 1000 

We conjecture that the relatively poor skill of the coupled models at simulating the mean SST 1001 

in the Indian Ocean versus the higher skill in the CORE-II simulations indicates the role for 1002 

coupled feedbacks that amplify ocean biases.  These results offer a useful benchmark for use in 1003 

developing methods to reduce biases in coupled prediction models.  1004 

 1005 

4.3. Surface Salinity and barrier layer  1006 

 1007 

In this section, we study the behavior of the surface salinity and associated BL within the 1008 

Indian Ocean. Much of this behavior is affected by precipitation and river runoff forcing, with 1009 

CORE-II simulations using interannually varying monthly mean precipitation derived from 1010  Jo
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satellite corrected rainfall and interannually varying monthly mean river runoff (Dai et al. 1011 

2009;Danabasoglu et al. 2014). Additionally, as detailed in Griffies et al. (2009) and 1012 

Danabasoglu et al. (2014), CORE-II simulations are integrated with surface salinity restoring in 1013 

order to reduce long-term drifts in the thermohaline properties of the models. Details are given in 1014 

Section 3.1.  The monthly climatology is computed over the period 1982 to 2007 for all models.  1015 

 1016 

4.3.1 Surface Salinity  1017 

 1018 

Figure 15 shows the annual mean SSS from the CORE-II models and their biases with 1019 

respect to observations. Figure 15a shows the SSS from WOA observation, Figure 15b shows the 1020 

ensemble mean from all models and Figure 15c shows the ensemble bias. Asymmetry in the SSS 1021 

distribution with higher salinity in the AS and lower salinity in the BoB is seen in the 1022 

observation and is reproduced by all simulations. However, all models show a basin wide 1023 

positive salinity bias with large values over the northern BoB and the southeastern AS. 1024 

Interestingly, the biases are much smaller along the observed salinity fronts aligned towards 1025 

Madagascar Island from Sumatra. Some models, such as CNRM, CMCC, AWI and BERGEN, 1026 
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 1027 

Figure 15: Annual mean SSS bias (model minus observation) from CORE-II simulations (color 1028 

shade) with contours for the annual mean. The model ensemble mean bias is shown in the upper 1029 

right panel. Observed annual mean SSS from WOA is shown in the upper left panel. Ensemble 1030 

mean from all CORE-II models is shown in the upper middle panel. Contour levels for WOA 1031 

and all models are same. Units are in practical salinity. Basin averaged SSS values from WOA 1032 

observation, ensemble mean as well as basin averaged bias of individual models are shown in 1033 

upper right corner of each panel. 1034  Jo
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 1035 

even show lower salinity along this path. Due to this opposite sign of the bias, the basin averaged 1036 

salinity bias is much weaker in these models. Both FSU models show a basin wide bias of 0.44 1037 

and 0.48 psu, which is much larger than the ensemble mean bias (0.16 psu) as well as the bias in 1038 

other models. The annual mean basin averaged salinity from WOA observation is 34.77 psu and 1039 

over the northern BoB it reaches down to 32.12 psu due to the strong influence of river runoff. 1040 

 1041 

In the northern BoB, the mean SSS bias in the individual models range between 0.3 and 1042 

0.5 psu with higher values in FSU and FSU2 (2.1 and 1.8 psu, respectively). The slight 1043 

improvement in FSU2 may be due to an improvement in model physics. The low-salinity water 1044 

flowing out of the BoB along its eastern boundary (Shetye et al., 1996; Han and McCreary 2001; 1045 

Jensen, 2001; Sengupta et al., 2006) crosses the basin with the SEC and reaches to the western 1046 

Indian Ocean to Madagascar. The observed low salinity band south of the equator between 5 °S 1047 

and 20 °S is well reproduced in all models. This low salinity region also corresponds to the 1048 

region of Inter Tropical Convergence Zone (ITCZ) associated with locally large precipitation 1049 

(Yu, 2011; Perigaud et al., 2003). The annual SSS bias is only 0.11 psu over the entire basin in 1050 

GFDL-GOLD (Figure 15p). KIEL shows a large positive bias over the BoB. ACCESS, GFDL-1051 

MOM and NCAR show a large positive bias over the eastern AS. A positive bias over the SEAS 1052 

can be attributed to the inability of these models to transport low salinity water by the EICC. 1053 

This behavior can be seen in the depth versus time plots of salinity over this region as well (see 1054 

Figure 22a and sec 4.4.2). SSS simulations improve significantly upon refining the model’s 1055 

horizontal resolution (KIEL025, GFDL-MOM025) as compared to their coarser counterpart. Han 1056 

et al. (2001) reported that advection of salinity by a coastal current plays an essential role in the 1057 

salinity balance. This may be the reason for better salinity simulation in a higher resolution 1058 

model. This result contrasts to the SST results (Figure 5), which revealed only minor sensitivity 1059 

to horizontal grid resolution.   1060 

 1061 

Unlike SST, spatial structure of annual mean SSS and its bias are roughly symmetric 1062 

across all seasons. However, different regions differ in seasonal SSS variations (Figure 16). The 1063  Jo
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minimum surface salinity over the NIO is seen in October over the north BoB (Figure 16b;Rao 1064 

and Shivakumar, 2003; Sengupta et al., 2006).  1065 

 1066 

 1067 
Figure 16: Seasonal cycle of sea surface salinity from all CORE-II models and WOA observation 1068 

over different sub-regions of the Indian Ocean (see sec 3.4 for sub-regional specifications). 1069 
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FSU and FSU2 seasonal cycles are outliers with a systematic positive bias of ~1 psu in the BoB 1071 

(Figure 16b) and in the other regions as well with slight reduction in bias. As in the case of SST, 1072 

SSS also shows large inter-model spread. In the BoB, only AWI is able to capture the seasonal 1073 

cycle with lowest observed salinity in October (Figure 16b). Peak river runoff and the integrated 1074 

summer rainfall lead to a SSS minimum in October. EEIO shows two salinity lows during the 1075 

inter-monsoon months of Mar-Apr and Oct-Nov in the seasonal SSS variations (Figure 16c). 1076 

These lows are associated with precipitation due to ITCZ seasonality over this region. The 1077 

models are able to capture this semi-annual signal, but with varying biases and large inter-model 1078 

spread. SSS does not change significantly over the SIO on seasonal time scales (Figure 16e). It is 1079 

almost constant in WOA at 35 psu and the models are able to capture this near constant SSS 1080 

throughout the year. Almost all models show a positive salinity bias in the AS, the BoB and the 1081 

SEAS (Figure 16a, b, f), but in FSU and FSU2 this bias is seen in all the sub-regions.  1082 

 1083 

In summary, the CORE-II SSS shows good representation of the asymmetric salinity 1084 

pattern in the Indian Ocean, with high salinity water in the AS and low salinity water in the BoB. 1085 

Most of the models underestimate the freshening in the northern BoB, with improvement seen in 1086 

high resolution eddy permitting models.  1087 

 1088 

4.3.2 Barrier layer and its impact on SST bias 1089 

The time varying depth of the mixed layer is a crucial parameter for the mixed layer heat budget 1090 

and hence for the SST (Chen et al., 1994; Qiu et al., 2004). Challenges of ocean models are to 1091 

simulate this time varying MLD over global and regional oceans. In the Indian Ocean, the upper 1092 

ocean stratification in temperature and salinity does not necessarily coincide. Depending upon 1093 

the freshwater input, it differs particularly over the BoB, the EEIO and the SEAS (Thadathil et 1094 

al., 2007; Sprintall and Tomczak, 1992). Owing to its unique geographical location, the BoB 1095 

receives large amount of freshwater both from local precipitation and river discharge, estimated 1096 

at about 4700 and 3000 km3/yr, respectively (Sengupta et al., 2006). Annual freshwater input 1097 

exceeds evaporation and hence it makes the BoB relatively fresh compared to the rest of the 1098 

basin. This low saline water is confined within a thin layer near the surface and makes the top of 1099  Jo
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the halocline shallower than the top of the thermocline. This unique structure makes the mixed 1100 

layer limited by the top of halocline and an isothermal layer depth (ILD) limited by top of the 1101 

thermocline. The difference of these two layers is called a BL (Thadathil et al., 2007; Sprintall 1102 

and Tomczak, 1992). BL also form over the SEAS and the EEIO. This layer inhibits vertical 1103 

mixing and hence restricts entrainment cooling from the thermocline and affects the mixed layer 1104 

heat budget and SST variations. Observational studies show that on  a seasonal scale this layer 1105 

thickness is ~10-60 m (de Boyer Montégut et al., 2007; Thadathil et al., 2007). It has been shown 1106 

in these studies that BL formation potentially plays a significant role in mixed layer heating. In 1107 

this section, we assess the BL from all the simulations and its effect on SST. The ILD and MLD 1108 

are computed based on Kara et al. (2000) corresponding to temperature change of 1 °C at the 1109 

surface.   1110 

 1111 

The annual mean BL from all model simulations and WOA is shown in Figure 17. 1112 

Sprintal and Tomczak (1992) show that three regions (EEIO, north BoB and SEAS) consistently 1113 

display a significant BL of 10-50 m thickness throughout the year. There is a BL in the north 1114 

BoB (Vinayachandran et al., 2002;Thadathil et al., 2007;de Boyer Montégut et al., 2007) due to 1115 

inflow of freshwater from adjoining rivers and local precipitation during the Indian summer 1116 

monsoon, thus making the mixed layer very thin (~ 10-20 m) and in turn thickens the BL (Figure 1117 

17). The observed annual mean BL over the northeastern BoB is ~ 40-44 m (Figure 17). The 1118 

northwestern BoB shows slightly thinner BL, mainly since the western BoB experiences a 1119 

regime of excess evaporation as compared to the eastern BoB (Sprintal and Toczak, 1992; 1120 

Pokhrel et al., 2012b). The BL in the western BoB is maintained by the river runoff received 1121 

during summer monsoon (Vinayachandran et al., 2002; Sengupta et al., 2006). The east-west 1122 

difference in BL over BoB is most prominently simulated by KIEL and KIEL025. Other models 1123 

are unable to capture this east-west gradient.  1124 

 1125 
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 1126 

Figure 17: Annual mean barrier layer thicknesses (BL) in meters from CORE-II simulations and 1127 

WOA observation. The observed annual mean BL from WOA is shown in upper left panel. The 1128 

ensemble means BL from all simulations is shown in the upper middle panel. The individual 1129 

model performances are shown in other panels.  1130 
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To see how the models simulate the seasonal variation of the BL, we show the time series 1131 

of the BL averaged over the BoB, the SEAS and the EEIO in Figure 18. Observations show that 1132 

the seasonality in the BL becomes most prominent over the BoB during Dec-Jan when it 1133 

becomes ~40 m thick (Figure 18a) and is mainly driven by substantial river runoff into the north 1134 

BoB. Most of the models are unable to capture this winter time thick BL in the northern BoB, 1135 

though the NEMO group of models (KIEL at both resolutions, CERFACS, CNRM and CMCC) 1136 

do a reasonable job with KIEL and CERFACS have BL slightly thicker than observed value. 1137 

MOM and the HYCOM class of models are unable to capture this BL. Notably, horizontal 1138 

refinement of grid resolution (eg., MOM025) improves the BL simulations (figure 31b). We 1139 

conjecture that the inability of the MOM class of models to simulate the observed BL, in contrast 1140 

to the NEMO class, arises from differences in boundary layer parameterizations. 1141 

 1142 
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Figure 18: Seasonal cycle of Barrier Layer Thickness over (a) Bay of Bengal, (b) Eastern 1143 

Equatorial Indian Ocean, and (c) South Eastern Arabian Sea from all CORE-II model 1144 

simulations and WOA observations. 1145 

The second region with a prominent BL occurs over the EEIO west of Sumatra. 1146 

Observations show an annual mean BL thickness of ~20-25 m with seasonality and peaks during 1147 

Nov-Dec with a BL thickness of 30 m. KIEL and CERFACS capture the observed mean and 1148 

seasonality (Figure 18b). The remaining NEMO models also capture this annual mean and 1149 

seasonality with reasonable accuracy. The remaining models underestimate the BL. FSU and 1150 

FSU2 models underestimate the BL by ~10 m, and during the peak season (Nov-Dec) it is 1151 

doubled (20 m). The presence of a BL throughout the year is due to the local maximum in P-E 1152 

present throughout the year (Oberhuber, 1988).  1153 

The SEAS is the third region where a BL is prominent. Observations show a thick BL 1154 

(~30 m) over the SEAS (Figure 18c). Once again, the NEMO class of models performs better 1155 

than the other models. The other class of z-coordinate models based on MOM (MOM, 1156 

MOM025, ICTP, and ACCESS) and NCAR as well as the isopycnal model BERGEN provide a 1157 

reasonable simulation of the location and amplitude of the BL. In the hybrid vertical coordinate 1158 

model FSU and FSU2, BL amplitude is largely underestimated as compared to WOA 1159 

observation. The seasonal cycle of the BL shows that the BL is a maximum in January-February 1160 

(~ 50 m) and then gradually decreases and is almost annihilated in April (Shenoi et al., 2004) 1161 

(Figure 18c). Large spread (10-55 m) is seen among the models in simulating the peak BL during 1162 

January-February. The superiority of the NEMO model class in reproducing the seasonal cycle 1163 

of BL can be seen with KIEL025, which is able to capture the peak magnitudes. Although the 1164 

MOM simulations are unable to reach the highest value for the BL thickness, the increased 1165 

resolution clearly improves the peak magnitude. FSU and FSU2 are notably poor in reproducing 1166 

the seasonal cycle. The inability of reproducing the BL is mainly due to the inability to bring the 1167 

low salinity water from the north BoB by the EICC during November-January (Shankar et al., 1168 

2002;Rao and Shivakumar, 2003), as explained in Section 4.2. 1169 
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4.4. Subsurface Features 1171 

 1172 

4.4.1 Subsurface Temperature  1173 

The spatial distribution of subsurface temperatures in the tropical Indian Ocean has 1174 

distinct regional characteristics (Colborn, 1975). It is well documented that all climate models 1175 

tend to render a diffuse thermocline with mostly deeper than observed thermocline (Cai and 1176 

Cowan, 2013; Tao et al., 2015; Flato et al., 2013). The models’ ability to simulate the temporal 1177 

and spatial variability, particularly on a seasonal timescale, determines how well the model 1178 

performs in terms of monsoon strength and variability. It has been reported in IPCC-AR5 1179 

(Stocker et al., 2013) that the thermocline biases in CMIP5 have not improved much despite the 1180 

increase in resolution compared to CMIP3 (IPCC AR4) (Cai and Cowan, 2013; Tao et al., 2015; 1181 

Flato et al., 2013). It is important in this context to investigate how the CORE-II simulations, 1182 

perform in simulating subsurface dynamics and thermodynamics.  1183 

 1184 

The average thermocline depth in the NIO is about 100 m (Rao and Sivakumar, 2000; 1185 

Yokoi et al., 2008; Yokoi et al., 2009). We thus take 100 m as a reference depth, with Figure 19 1186 

showing the 100 m temperature bias from models relative to WOA. The WOA shows three 1187 

distinct warm regions over the AS, the EEIO, and along 25 °S-10 °S in the south Indian Ocean. 1188 

The relatively cooler region over the thermocline ridge corresponds to the open ocean upwelling 1189 

region (Xie et al., 2002; Schott et al., 2009). Similar to the SST distribution, all models show a 1190 

warm bias over this region as well as the western equatorial Indian Ocean, with ICTP and 1191 

BERGEN showing the largest bias (>3 °C) and CMCC and GFDL-GOLD showing the smallest 1192 

in these regions. The basin averaged bias is largest in BERGEN (2.4 °C) followed by ICTP (2.1 1193 

°C), whereas GFDL-GOLD shows a negligible bias of 0.1 °C. The refined resolution reduces the 1194 

bias especially in GFDL-MOM025. Among the NEMO group of models, CMCC performed best 1195 

with a basin averaged bias of 0.49 °C. Interestingly, both the isopycal (BERGEN) and hybrid 1196 

class of models (FSU, FSU2) show larger biases than the z-coordinate models. This result 1197 
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indicates a common weakness of these models in the representation and/or parameterization of 1198 

near surface physical processes. 1199 

 1200 

 1201 

Figure 19: The upper left panel shows the temperature (degrees Celsius) at 100 m depth from 1202 

WOA; the upper middle panel shows the same from the CORE-II ensemble and the upper right 1203 

panel shows the ensemble bias at 100 m depth with respect to WOA. The remaining panels show 1204  Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

61 

 

the temperature bias (model minus observation) at 100 m depth from all CORE-II individual 1205 

models. The basin averaged values are given in upper right corner of each panel. 1206 

 1207 

To see how the models capture the seasonal cycle of subsurface temperature, we plot the 1208 

depth versus time mean temperature and the corresponding bias over different regions. The 1209 

vertical levels of all models are regrided to MOM depth levels. Figure 20 shows upper ocean 1210 

mean temperature from WOA observations and from the 16 model CORE-II ensemble. The 1211 

biases of individual models are also shown in shade with mean values represented in contours. 1212 

The warm surface temperature seen in April-May (Figure 20) penetrates down to 40 m with 1213 

values similar to the surface (~30 °C) in the WOA observations, which is well represented by the 1214 

CORE-II ensemble mean. The upper ocean (0-100 m) is warmer throughout the year with 1215 

maximum of 30 °C right at the surface during April/May, but decreasing to 26 °C near 40 m. 1216 

Below 100 m, temperature changes sharply and reaching ~11 °C at 500 m depth. The ensemble 1217 

mean temperature variation is close to observed values. The ensemble mean bias in the 1218 

thermocline depth and below (100-300 m) shows much lower values (~1 °C) compared to many 1219 

individual models, thus indicating a non-unidirectional bias of the models. The MOM group of 1220 

models (GFDL-MOM, GFDL-MOM025, ICTP and ACCESS) shows a large bias in the 1221 

thermocline with a range between 1-3 °C, with the highest bias in the coarsest model ICTP. 1222 

Among all models, MRI shows the maximum bias of ~4-5 °C in the thermocline region. In the 1223 

AS for the NEMO group of models (KIEL, KIEL025, CERFACS, CNRM and CMCC), the bias 1224 

in the thermocline region (100-200 m) is much less (~1 - 1.5 °C) with almost negligible bias in 1225 

CNRM. However, these biases are increased in the BoB and the EEIO. In contrast, the deeper 1226 

layers (below 250 m) are much cooler (~1.5 °C) in GFDL-GOLD, FSU and FSU2 in the AS and 1227 

this bias reduces in the BoB and the EEIO. These biases cancel each other out such that the 1228 

model ensemble mean resembles the observations. In BERGEN, the thermocline shows a 1229 

positive bias in the AS, whereas it shows a negative bias in the BoB. But it is much narrower 1230 

relative to the MOM group of models (MOM, MOM025, ICTP and ACCESS), which shows a 1231 

broader and more diffuse thermocline.  Increased horizontal grid resolution does not show any 1232  Jo
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significant change in the thermocline bias with slight increases in the thermocline bias for both 1233 

GFDL-MOM025 and KIEL025 as compared to their coarser resolution counterparts (Figure 20). 1234 

This behavior suggests that these models are producing enhanced spurious mixing due to 1235 

numerical truncation errors (Griffies et al., 2000; Ilicak et al., 2012).All models show a cold and 1236 

warm bias within 1 °C in the upper ocean (0-100 m), except AWI which shows a cold bias (~1-2 1237 

°C) in the BoB. The thermocline continues to be diffuse and warmer for all models except 1238 

GFDL-GOLD and BERGEN, which are cooler than WOA.  1239 

 1240 

In the EEIO, observations show a stronger seasonal cycle of temperature down to 500 m 1241 

depth, which is absent in other regions of the tropical IO (Figure 20c). All the models show a 1242 

warm thermocline bias with ICTP and MRI showing the largest bias (~3-4 °C). Also note that 1243 

the thermocline bias is largest in the EEIO as compared to AS and BoB. GFDL-GOLD is an 1244 

exception among all models in all regions, with this model showing a cold thermocline bias with 1245 

magnitude range of 0.5-1 °C. The positive subsurface bias is largest over the EEIO as compared 1246 

to the AS and the BoB.  The isotherms show a semi-annual signal with peaks in May and 1247 

November that penetrate down to 500 m depth, which is in general present in all the models 1248 

shown here. This deep penetration of seasonal variation in the isotherms is due to the 1249 

convergence of warm water from the western Indian Ocean to the eastern Indian Ocean 1250 

associated with the spring and autumn WJ (Webster et al., 1999; Rao and Sivakumar, 2000). The 1251 

equatorial downwelling Kelvin waves generated in May–June and November propagate eastward 1252 

and deepen the thermocline in the region off Sumatra (Du et al., 2005). The warm layer of 30 °C 1253 

appears in February and gradually reaches a deeper layer in May and then again cooling down to 1254 

29 °C in June. This near surface structure is only captured by the AWI simulation. The observed 1255 

vertical temperature gradients are well captured in GFDL-GOLD. The EEIO shows a mixed 1256 

response to refinement in grid resolution, with a slight bias reduction over the thermocline region 1257 

but degradation below the seasonal thermocline. The ensemble mean variation closely followed 1258 

the WOA but with a warm bias almost throughout the upper ocean with highest values in the 1259 

thermocline region (Figure 20c).  1260 
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 1262 

Figure 20a:  Seasonal variation of mean temperature (degrees Celsius) as a function of depth 1263 

averaged over the Arabian Sea (contour) and its bias (model minus observation) in color. The 1264 

upper left panel shows the mean seasonal variation of temperature from WOA observations and 1265 

the upper middle panel shows the mean seasonal variation of temperature from the ensemble 1266 

mean and the upper right panel shows the ensemble mean bias with respect to WOA. Contour 1267 

levels for WOA observation, all individual models and its ensemble mean are same. 1268 
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 1270 

Figure 20b: Same as figure 20a but for the Bay of Bengal. 1271 
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 1272 

Figure 20c: Same as figure 20a but for the Eastern Equatorial Indian Ocean. 1273 

 1274 

4.4.2 Subsurface Salinity  1275 

Salinity stratification is mainly driven by the precipitation, evaporation and freshwater 1276 

through river runoff and by the horizontal advection which also play an important role (Sprintall 1277 

and Tomczak 1992). In the NIO near-surface haline stratification indirectly influences the 1278 

evolution of the mixed-layer temperature by inhibiting the entrainment of subsurface cooler 1279  Jo
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water (Moshonkin and Harenduprakash, 1991; Rao and Sanil Kumar, 1991; Rao et al., 1991; Rao 1280 

and Sivakumar, 2003; Howden and Murtugudde, 2001; Shenoi et al., 2002; Shenoi et al., 2004; 1281 

Miller, 1976). Many modelling studies have also shown that salinity plays an important role in 1282 

the evolution of SST through MLD variations in the tropical Indian Ocean (Cooper, 1988; 1283 

Masson et al., 2002; Masson et al., 2005; Sharma et al., 2007; Sharma et al., 2010; Durand et al., 1284 

2011; Fathrio et al., 2017b). These results motivate us to examine the vertical salinity gradients 1285 

in the tropical Indian Ocean, with the vertical difference of salinity between surface and 100 m 1286 

shown in Figure 21.  1287 
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 1288 

Figure 21: The upper left panel shows the annual mean salinity stratification (surface minus 100 1289 

m depth) from the WOA observation, and the upper middle panel shows the same for CORE-II 1290 

model ensemble mean. Remaining panels show the same for the individual CORE-II models. 1291 

 1292 

The WOA shows three regions with strong haline stratification (>1.4 psu), namely: BoB, 1293 

EEIO and SEAS. The strong vertical salinity differences are noticed primarily in the northern 1294 

BoB. The observed difference is more than 3 psu over the northern BoB. The MOM group of 1295  Jo
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models (GFDL-MOM, GFDL-MOM025, ACCESS and ICTP) and the NEMO class (KIEL, 1296 

KIEL025, CERFACS, CNRM and CMCC) show their strongest stratification there as compared 1297 

to WOA. The stratification is rather weak over the BoB in AWI, BERGEN, FSU and FSU2 and 1298 

worst in ICTP as compared to WOA. 1299 

 1300 

Rao (2015) has shown that within the Indian Ocean warm pool, near surface haline 1301 

stratification exist over the southeastern AS, the southwestern BoB and the EEIO. They also 1302 

reported that a strong coupling between near surface salinity stratification and the subsequent 1303 

evolution of warm pool core is most prominently seen over the SEAS. The near-surface vertical 1304 

salinity stratification over the SEAS is instrumental for the mini-warm pool in the AS (Durand et 1305 

al., 2004), which is influenced by the advection of low salinity waters from the BoB during 1306 

November–February (Rao et al., 2015). Hence, it is of particular interest to determine how the 1307 

CORE-II models capture this stratification.  1308 

Since salinity stratification mostly modulates the upper ocean temperature, we show the 1309 

seasonal evolutions of salinity with depth over the SEAS, the BOB and the EEIO. The vertical 1310 

levels of all models are regrided to MOM depth levels. Figure 22a shows the seasonal evolution 1311 

of salinity with depth over the SEAS. The freshening in the upper ocean (0-50 m) during the 1312 

period December-February is very prominent in the WOA observation. This freshening is 1313 

reasonably reproduced by all models, but most prominently by KIEL, KIEL025 and MOM025. 1314 

Below this fresh water, there is an intrusion of saltier water present throughout the year with 1315 

peak values in October-November at about 50 m depth. This intrusion of saltier water is from AS 1316 

high salinity water (ASHSW), as well as salty waters from the Red Sea and Persian Gulf (Shenoi 1317 

et al., 1999, 1993, 2005; Levitus, 1983; Shetye et al., 1994; Durgadoo et al., 2017).  1318 
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 1319 

Figure 22a: The upper left panel shows the seasonal variation of salinity with depth over the 1320 

south eastern Arabian Sea (SEAS). The top middle panel shows the same for CORE-II ensemble 1321 

mean, and the top upper right panel shows the ensemble mean bias. The remaining panels show 1322 

the individual CORE-II model bias (model minus WOA) in colors and its mean in contours. 1323 

Contour levels for WOA observation, all individual models and its ensemble mean are same. 1324 
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Below this saltier layer there are fresher waters seen in WOA, with a minimum at 200 m depth, 1325 

which can also be seen in Figure 23c. Note that individual profiles based observations also show 1326 

this structure (Shankar et al., 2005; Shenoi et al., 2005).The upper ocean is saltier during 1327 

December-Febuary in all simulations, with salinity larger than 1.2 psu in GFDL-MOM, 1328 

ACCESS, ICTP, NCAR, BERGEN, FSU and FSU2. Aside from BERGEN, these models also 1329 

show a saltier thermocline region compared to observations, as well as an increased salinity 1330 

down to 300 m depth. Within the MOM models, ICTP and GFDL-MOM are unable to capture 1331 

the winter time upper ocean freshening. A refinement of the horizontal resolution improves the 1332 

simulation and allows the model to capture these low salinity values. Among all the models, 1333 

BERGEN shows the freshest thermocline in contrast to a positive salinity bias for the 1334 

thermocline in other models (Figure 22 a). The CORE-II ensemble mean variation captures the 1335 

overall observed vertical structure, but with a positive salinity bias with largest value in the 1336 

thermocline. The ensemble mean is also unable to resolve the local minimum in salinity below.  1337 

Figure 22b shows the seasonal cycle of vertical salinity over the BoB. The upper ocean 1338 

(0-100 m) is much fresher ~33-34 psu in observations than in the SEAS due to the proximity of 1339 

large freshwater input by river runoff. MRI shows the smallest biases over depth and the 1340 

seasonal cycle. Most models show an upper ocean (0-100 m) fresh bias, except FSU and FSU2 1341 

which show a much saltier upper ocean. There is a rather large positive salinity biased 1342 

thermocline in KIEL, KIEL025, CERFACS, CNRM, CMCC, FSU and FSU2, whereas 1343 

BERGEN shows a much fresher thermocline as compared to WOA (Figure 22b). The remaining 1344 

models show a slightly saltier (~0.3 psu) thermocline. In the EEIO region (Figure 22c) we see a 1345 

fresh surface layer (0-100 m), which is mostly captured by all models except FSU and FSU2. 1346 

Below 100 m, salinity shows only weak variation in observations, remaining nearly constant at 1347 

35 psu. However, the simulations show a spread with a positive salinity bias in the upper 1348 

thermocline and fresh bias in the deeper ocean (also see Figure 23c).    1349 

Figure 23 shows the annual mean vertical salinity variations from WOA and CORE-II 1350 

simulations averaged over different regions. The vertical salinity distribution shows distinct 1351 

variations in the western Indian Ocean (AS, SEAS, TR) as compared to the eastern Indian Ocean 1352  Jo
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(BoB and EEIO). Over the BoB and the EEIO, higher precipitation reduces surface salinity 1353 

compared to the western basin, where evaporation dominates precipitation (Pokhrel et al., 2012b) 1354 

thus leading to a saltier surface layer there. The observations show that in the AS the high 1355 

surface salinity decreases rapidly with depth to 200 m then the observed salinity decrease is 1356 

small, almost stable up to 800 m depth then the observed salinity decrease is small, almost stable 1357 

up to 800 m depth, while deeper a stronger freshening occurs again. All simulations show saltier 1358 

upper ocean, except for BERGEN and AWI, which show a fresh bias. Below 200 m all models 1359 

reproduce a fresh subsurface layer. Salinities in FSU and FSU2 are the freshest of all 1360 

simulations.  1361 
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 1362 

Figure 22b: Same as figure 22a but for the Bay of Bengal. 1363 

 1364 
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 1365 

Figure 22c: Same as figure 22a but for the Eastern Equatorial Indian Ocean. 1366 

 1367 

This low salinity could be due to the unrealistic exchange of salty water from the Red Sea and 1368 

Persian Gulf in these models (Legg et al., 2009; Durgadoo et al., 2017). In the BoB, the halocline 1369 

is represented by a strong gradient over the upper 100 m, which is captured by almost all models, 1370 

except for AWI, which shows a negative salinity bias. Observations also  1371 
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Figure 23: Annual mean vertical salinity variations from the CORE-II simulations as compared 1373 

to WOA observation averaged over different sub-regions in the Indian Ocean: (a) Arabian 1374 

Sea(AS), (b) Bay of Bengal (BoB), (c) Eastern Equatorial Indian Ocean(EEIO), (d) Southern 1375 

Indian Ocean (SIO), (e) South Eastern Arabian Sea (SEAS), and(f) Thermocline Ridge 1376 

(TR).(See Section 3.4 for sub-region specifications) 1377 

 1378 

show a local maximum in salinity around 200-400 m depth, which is connected to the intrusion 1379 

of high saline ASHSW, Red Sea Water (RSW) and Persian Gulf Water (PGW) (Rochford ,1964; 1380 

Varadachari et al., 1968; Sastry et al.,1985; Vipin et al.,2015). All models capture this subsurface 1381 

salinity maximum except for AWI. Below 400 m FSU and FSU2 show a much fresher layer as 1382 

compared to WOA observation.  1383 

 1384 

Vertical salinity variations in the SEAS show a saltier layer at 50 m depth with a fresh 1385 

layer above and below. As already seen in the AS, in the SEAS models overestimate the surface 1386 

and subsurface salinity, with only AWI showing a clear local minimum between 100 m and 200 1387 

m depth. Below 600 m all models are fresher than the observations. In the TR region, the 1388 

presence of ASHSW increases subsurface salinity at 100-200 m depth. Although all models 1389 

overestimate salinity in the upper 400 m, they capture this increased salinity signature from 1390 

ASHSW and finally end with a rather constant salinity over depth below 1000 m, as seen in 1391 

observations already further up in the water column.  1392 

 1393 

In the SIO a high saline subsurface layer exists at 200-400 m depth. This salty layer is 1394 

formed due to the presence of Indian Ocean Central Water. The excess evaporation over 1395 

precipitation forms high salinity surface water (>35 psu) between 35 °S-25 °S, winter convection 1396 

and downward fluxes of salt and heat causes the subtropical water to extend with salinity above 1397 

35 psu to a depth of about 500 m (Wyrtki, 1973). The subsurface salinity maximum in the south 1398 

Indian Ocean spreads towards the north and is carried by the South Equatorial Current and 1399 

reduces the thickness of the central water mass to 300 m at 20 °S and 100 m at 10 °S. The 1400 

subsurface salinity maximum is at ~ 250 m depth, in which salinity can exceed 35.6 psu as 1401  Jo
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reported by Warren (1981). This feature is most strongly developed in the central Indian Ocean, 1402 

between 70-100 °E along 18 °S. Slight freshening at 1000 m depth is seen in the observation, 1403 

which is captured by most models except CERFACS and KIEL025. This freshening is due to the 1404 

intrusion of Antarctic Intermediate Water in this layer (Wyrtki, 1973). This low salinity layer has 1405 

a thickness of 500 m or more and can be identified by a salinity minimum of 34.3-34.4 psu at the 1406 

Subtropical Convergence Zone. Warren (1981) has reported that the salinity minimum of AAIW 1407 

is at depth of 600-900 m along 18 °S with depth generally increasing towards the west.  1408 

 1409 

In summary, the vertical salinity structure is more realistically captured by z-level models 1410 

(MOM and NEMO group of models) except for ACCESS and ICTP. The vertical salinity 1411 

structure is less well represented by the isopycnal/hybrid models (BERGEN, FSU and FSU2). 1412 

An increased horizontal resolution in the model marginally improves the salinity simulation.  1413 

 1414 

4.5. Variations in the Equatorial currents 1415 

 1416 

4.5.1 Surface Current  1417 

As seen in Figure 24a, the CORE-II simulations capture the major current systems shown 1418 

in Figure 1. During the northeast Monsoon the SC flows southward and is limited to the region 1419 

south of 10 °N. The surface flow reverses in April and November, during the inter-monsoon 1420 

period (not shown). Observations show that during the southwest Monsoon, the SC develops into 1421 

an intense jet with extreme velocities of about 2 m/s during mid-May and reaching to 3.5 m/s 1422 

during June (INDEX, 1976-1979). This jet is very well reproduced in all the models; however, 1423 

models are unable to capture the observed magnitudes (not shown). The SEC, the westward 1424 

current south of 10 °S, does not undergo any seasonal variation in direction throughout the year. 1425 

The model simulated SEC shows good fidelity in reproducing the spatial variability seen in the 1426 

observations (Figure 24a). Compared to the observations all models show a narrower SEC and 1427 

an underrepresented SECC pattern. 1428 

 1429 
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Figure 24b shows the comparison of the seasonal cycle of the WJ between different 1430 

observations (OSCAR, CUTLER and LUMPKIN) and the CORE-II model simulations. All 1431 

observations   show the spring (autumn) jets peak in May (November) but differ in magnitude 1432 

between 33-43 cm/s. Interestingly, all the models show a quite coherent but under-represented 1433 

autumn jets; however, there exist a large model spread (25-45 cm/s) in the representation of the 1434 

spring jet. 1435 
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Figure 24a: Annual mean surface current comparison (current speed is given in color) with ship 1437 

drift observation. The upper left panel shows observations (CUTLER) and the upper middle 1438 

panel shows CORE-II ensemble mean. The remaining panels show the individual CORE-II 1439 

models. Units are in cm/s. 1440 

 1441 

 1442 

 1443 
Figure 24b: Seasonal cycle of zonal currents at the WJ location [55-80 °E, 2.5 °S - 2.5 °N] 1444 

averaged over 0 -15m depth from CORE-II simulations and observations (CUTLER, OSCAR, 1445 

LUMPKIN). 1446 

 1447 

4.5.2 Subsurface Currents 1448 
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 1449 
 1450 

Figure 25: Upper ocean mean zonal current (cm/s) comparison of CORE-II simulations with 1451 

ADCP observation at 90 °E and equator. The mean is computed for 2001-2007 for both models 1452 

and ADCP observation.  1453 

 1454 

Figure 25 shows the seasonal cycle of sub-surface currents from Acoustic Doppler 1455 

current profiler (ADCP) observations and the CORE-II simulations at 90 °E and the equator. 1456  Jo
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CORE-II simulations are able to capture the semi-annual cycle of the EUC magnitude. Refining 1457 

the horizontal resolution from GFDL-MOM to GFDL-MOM025 indicates an improvement in the 1458 

EUC representation. The NEMO groups of models accurately simulate the EUC magnitude. 1459 

However, all models are unable to capture the timing of the peak values of EUC (Figure 26b), 1460 

where the peak magnitude is reached about a month earlier (February) relative to ADCP 1461 

observations. The pronounced upward phase propagation (Iskandar et al., 2009) is weaker or 1462 

near absent in the CORE-II models. 1463 

The presence of a WJ during inter-monsoon period extends down to 100 m (Figure 25). 1464 

The ADCP observations are not available in the upper 40 m but the extent of spring WJ can be 1465 

seen between 40-100 m (Figure 25). To compare the lower part of WJ, the seasonal cycle of 1466 

upper ocean current averaged over 40-100 m depth from observations and simulations are shown 1467 

in Figure 26a. None of the models capture the observed peak spring jet values of ~45 cm/s 1468 

whereas the models overestimate the autumn jet values. The observed eastward current 1469 

associated with summer monsoon in July is also not found in any of the models whereas the rest 1470 

of the season they are more coherent and close to observations.  1471 

EUC is present below WJ and it is most prominent at 90-170 m (Iskandar et al., 2009). 1472 

To examine the simulated EUC seasonal cycle, we show the depth averaged (100-200 m) zonal 1473 

current from ADCP observations and CORE-II simulations in Figure 26b. The peak observed 1474 

EUC value occurs in March-April, but all the models show an early peak in February-March. 1475 

Iskandar et al. (2009) showed that development of an eastward pressure gradient during winter is 1476 

responsible for the formation of the EUC with a delay of one month. Equatorial wave dynamics 1477 

also play a role in the development of EUC. A downwelling Kelvin wave is excited in the 1478 

western basin in March-April (see their Figure 8b), which raises the sea level in the western part, 1479 

whereas an upwelling Rossby wave lowers the eastern basin during same time.  These waves are 1480 

responsible for generating the pressure gradient. In the CORE-II simulations all models show the 1481 

appearance of these waves about a month early and hence the pressure gradient force gives rise 1482 

to an early EUC peak (not shown). The subsurface-surface interactions in the ocean are governed 1483 

chiefly by baroclinic dynamics and wave propagations. If baroclinic dynamics are affected via 1484 

biases in the resolved vertical structure of density, the associated planetary/Rossby and Kelvin 1485  Jo
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waves will be affected too. These waves are the key controlling factors for thermocline 1486 

displacements and are at the core of tropical climate variability such as El Nino-Southern 1487 

Oscillation and Indian Ocean dipole/zonal mode (IODZM). Recently Shikha and Valsala (2018) 1488 

have shown the subsurface temperature and salinity bias in CMIP-5 models over the Indian 1489 

Ocean tend to have a positive bias in the speed of first baroclinic mode wave propagation since  1490 

the first and second baroclinic modes are highly sensitive to density and its biases. 1491 

 1492 

 1493 
 1494 

 1495 

Figure 26: Seasonal cycle of zonal current at 90 °E and the equator from CORE-II simulations 1496 

and ADCP observations (a) averaged over 40-100 m depth and (b) averaged over 100-200 m 1497 

depth. Model ensemble mean is also plotted in gray. 1498  Jo
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 Figure 27a shows the comparison of annual mean vertical variation of the zonal current at 1499 

90 °E and at the equator. The ADCP observations show that the annual mean subsurface zonal 1500 

current peaks at 80 m depth with a magnitude of 15 cm/s. FSU2 remarkably reproduces this 1501 

feature.  1502 

 1503 
 1504 

Figure 27: The upper ocean zonal current with depth at 90 °E and the equator from CORE-II 1505 

models and ADCP observation (a) Annual mean, (b) April mean and (c) October mean. The 1506 

mean is computed for 2001-2007 for both models and ADCP observation.  1507  Jo
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As explained earlier, the NEMO (MOM) class of models over- (under)estimate this 1508 

observed EUC value. Due to these counter-acting biases, the ensemble mean is relatively close to 1509 

ADCP observations both in magnitude and depth. The subsurface zonal current in April is shown 1510 

in Figure 27b. Most of the models are unable to capture the peak values at the observed depth. 1511 

Only KIEL simulations are able to capture the observed depth of the EUC, but with an 1512 

overestimation of up to 10 cm/s. BERGEN and NCAR simulate the peak EUC value, but it peaks 1513 

at a shallower depth of 90 m. The EUC in the coarse model from ICTP is almost absent, while all 1514 

other models show a comparable velocity structure as the observations.  1515 

The autumn EUC appears at a slightly shallower depth (90 m) compared to spring (~110 1516 

m) (Figure 27c), with the models showing biases in the peak depth and its amplitude. During 1517 

autumn, most models show stronger EUC with varying peak depths ranging between 45-90 m, 1518 

whereas the observed value is ~ 35 cm/s at 90 m. The spread of peak EUC values in the autumn 1519 

is much less than its spring values. But in the autumn the models are unable to capture the 1520 

westward current at the depth range 300-400m seen in observations.  1521 

To assess the robustness of the above results, we repeated the analysis at 80 ºE. There 1522 

only 3 years (2005-2007) continuous observational ADCP data is available till 340 m depth 1523 

(Nagura and Masumoto 2015).We thus computed a monthly climatology for both ADCP and 1524 

CORE-II simulated data over that period. At 80 °E location the ADCP and CORE-II model 1525 

comparisons show coherent results with that at 90 °E. The WJ and the EUC are stronger at 80 °E 1526 

compared to at 90 °E (not shown). Furthermore, the inter-model spread for both currents is 1527 

reduced at 80 °E. Another notable difference at 80 °E is that the timing of the EUC peak in 1528 

spring is reproduced by all models. At 90 °E all models exhibit an early peak.   1529 

Recently McPhaden et al. (2015) showed that the volume transport associated with the 1530 

WJ peaks in May (November) with a transport of 14.9 +/- 2.9 Sv (19.7 +/- 2.4 Sv). The coupled 1531 

models analyzed by McPhaden et al. (2015) were unable to capture these observed values. We 1532 

examine here the performance of the CORE-II models by computing the transport following 1533 

McPhaden et al. (2015). The CORE-II models capture the observed seasonal variation of upper 1534  Jo
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ocean volume transport (not shown). The ensemble mean of zonal transport shows a transport of 1535 

18.74 Sv in May and 16.83 Sv in November which is similar to Wrytki jet volume transport 1536 

reported by McPhaden et al. (2015). 1537 

 1538 

4.6. Indian Ocean meridional overturning circulation 1539 

The surface circulation of the northern and the equatorial Indian Ocean shows large seasonal 1540 

changes due to seasonal reversals of the monsoon winds. The seasonal variability of surface 1541 

circulation is well known, such as the Somali Current (Schott et al., 1990) and the semiannual 1542 

equatorial jet (Wyrtki, 1973). However, characteristics of CEC and its underlying mechanisms 1543 

are not very well known (Lee, 2004). Apart from  CEC, the presence of an “equatorial roll” in 1544 

the mixed layer of the Indian Ocean was also identified in model simulations of Wacongne and 1545 

Pacanowski (1996), and its presence has been confirmed thereafter by observations (Wang  and 1546 

McPhaden 2017; Horii et al. 2013; Perez-Hernandez et al. 2012; Schott et al., 2002). This 1547 

shallow equatorial roll consists of a northward wind-driven surface current in the upper 25 m 1548 

near the equator overlaying the southward directed subsurface Sverdrup transport. This 1549 

circulation is narrowly confined to within ±1° of the equator and is most strongly developed 1550 

seasonally during July-October. However, it has little impact on cross-equatorial heat transport 1551 

(e.g., Schott et al., 2002; Miyama et al., 2003). 1552 

In the north Indian Ocean (north of 10 °S) the annual mean net surface heat flux is 1553 

directed into the ocean (Oberhuber, 1988; Godfrey et al., 2007). It is the wind-driven meridional 1554 

overturning circulation in the upper several hundred meters that exports the annual-mean net heat 1555 

gain towards the subtropical SIO, south of the Equator (Wagcongne and Pacanowski, 1996; Lee 1556 

and Marotzke, 1997,1998; Garternicht and Schott, 1997; Miyama et al., 2003). Godfrey et al. 1557 

(2007), evaluating a variety of different models over the Indian Ocean, found a mean heat 1558 

transport more than double the mean obtained when averaging the observed climatology. The 1559 

CEC is very important for the NIO warming and sea level variability (Srinivasu et al., 2017; 1560 

Swapna et al., 2017).  1561 
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Figure 28 shows the Indian Ocean Meridional Overturning circulation (IOMOC) 1563 

computed from all the models and the ORAS4 reanalysis. Most of the models are able to 1564 

simulate the CEC, while there is almost no thermocline northward flow in the coarse model from 1565 

ICTP. The mean strength of CEC varies in different models and is in the range of 2-8 Sv. This 1566 

value is within the earlier reported value of 6 Sv (Lee and Marotzke, 1997; Schott et al., 2002a, 1567 

b). The CEC structures as demonstrated by Miyama et al. (2003) are well reproduced by a 1568 

majority of the models (Figure 28). The ensemble mean from the entire model suite is shown in 1569 

upper middle panel of Figure 28. The CEC structure is prominent and it corroborates the finding 1570 

of Miyama et al. (2003). 1571 

Although Miyama et al. (2003) have shown the pathways of CEC, the vertical extent and 1572 

the exact location of equatorial crossing have not been reported in earlier studies. To quantify the 1573 

vertical extent and exact location, we plot the cross equatorial transport across the equator. The 1574 

cross equatorial transports from all the individual models show the vertical extent of  1575 
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 1576 

Figure 28: Indian Ocean meridional volume transport (IOMOC) from CORE-II simulations and 1577 

ORAS4 analysis. Units are in Sv. 1578 

the northward cross equatorial flow extends over the full water column near the African Coast 1579 

(Figure 29). The magnitude of this flow varies and is strongest in CERFACS, CNRM, AWI, 1580 

FSU and FSU2. The ensemble mean cross equatorial transport with depth is shown in the upper 1581 

middle panel of Figure 29. A narrow band of CEC near the Somali coast can be seen from Figure 1582 

29, with vertical extent of the transport extends to 1500 m. All the models show another 1583 

secondary pathway of northward transport of cross equatorial flow along 75 °E with a value 1584 

ranging 5-10 m2/s. These values are more prominent and higher in the fine resolution MOM and 1585 

KIEL simulations with a maximum value of ~ 20-25 m2/s. With islands and seamounts along 75 1586  Jo
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ºE (the Maldives and Chagos Archipelago), topography plays a major role for the northward 1587 

transport along that longitude. Nagura and Masumoto (2015) used in-situ observations and 1588 

OGCM output to find a northward current at about 75 °E. They discussed its dynamics using 1.5-1589 

layer model experiments and found that the WJ hits the Maldives Islands near 73°E and 1590 

meanders, leading to a northward current near the islands. The KIEL1 and MOM1 topography do 1591 

not show the presence of Maldives Island along the 73 °E in the upper 1000 m.  However, the 1592 

MOM025 and KIEL025 models show the presence of bathymetry at 45 m depth onwards (not 1593 

shown). The annual mean currents in the models at 200 m and below are mostly zonal along the 1594 

equator. As reported by Nagura and Masumoto (2015) the presence of Maldives Island around 1595 

73°E meanders this zonal current and leads to northward current at the southern flank of the 1596 

Island, which mainly drives the northward transport seen in Figure 29 for the ¼ degree MOM 1597 

and KIEL simulations. 1598 

The strong southward flow apparent in the KIEL models near to the Somali coast is due 1599 

to the stronger meridional currents seen in these models. This strong southward current is absent 1600 

in other models (not shown). The transport along the African coast across 5 °S is stronger than 1601 

across the Equator (not shown). This band is also a slightly wider across 10 °S. Observations 1602 

show a strong northward transport (25-30 m2/s) along 50 °E  1603 
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 1604 

Figure 29: Transport across the equator from all the models. The upper left panel shows transport 1605 

from ORAS4 reanalysis product. The upper middle panel shows transport from CORE-II 1606 

ensemble. The remaining panels show transport from all CORE-II individual models .The 1607 

maximum transport occurs through a narrow passage near to Somali Coast. Note that the ¼ 1608 

degree simulations from MOM-25 and KIEL025 show large transport at ~ 75 °E. Units are in 1609 

m2/s. 1610 

across the 10 °S latitude (not shown). Only GFDL-MOM and ICTP are able to capture this band.  1611 

 1612 

We conclude that most CORE-II models simulate the structure of the CEC in the Indian 1613 

Ocean. Additionally, the CORE-II analysis uncovers a previously unidentified secondary 1614  Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

89 

 

pathway of CEC. Namely, there is a northward cross-equatorial transport along 75 °E, which is 1615 

also present feebly in ORAS4, complements the pathway near the Somali coast. 1616 

 1617 

5. Summary of impacts from model resolution 1618 

Momin et al. (2014) is the only study that reported on the impact of model resolution for 1619 

Indian Ocean simulations. They showed an overall marginal improvement in D20, SST and SSS, 1620 

though with a degradation in SST seasonal cycle over the equatorial Indian Ocean. In earlier 1621 

sections, we identified a variety of features that differ across the ICTP, GFDL-MOM/GFDL-1622 

MOM025 and KIEL/KIEL025 resolution suite. In this section, we discuss these two resolution 1623 

suites with a focus on the Bay of Bengal.  1624 

Figure 30a shows the comparison of SST simulation derived from KIEL and MOM. Both 1625 

coarse and fine resolution models capture the observed seasonal cycle. Increased resolution does 1626 

not improve the biases in spring (MOM) and summer for neither KIEL nor MOM. The KIEL and 1627 

KIEL025 simulations reproduce the observed SST variation during winter and spring, associated 1628 

with a good representation of the BL thickness (Figure 30b).  1629 

The observed thermocline seasonal cycle is well captured in MOM with some 1630 

improvement in MOM025. However, the KIEL and KIEL025 simulations show a systematic bias 1631 

of ~20 m in 20 °C isotherm (D20) throughout the season with slight improvement in KIEL025 1632 

(Figure 30c), possibly as a result of differences in parameterizations between KIEL and MOM. 1633 

Enhanced horizontal resolution shows a significant improvement in the MLD simulations both in 1634 

MOM025 and KIEL025 as compared to their coarse resolution counterparts (Figure 30d). The 1635 

mixed layer depth in MOM025 and KIEL025 show similar value to WOA during spring and 1636 

summer, but deeper by ~ 10 m during autumn and winter. Their coarse resolution counterparts 1637 

show ~20 m deeper MLD as compared to WOA observations. The vertical temperature 1638 

difference with respect to WOA observations is shown in Figure 30e. KIEL does not show any 1639 

significant improvement in vertical temperature simulations as resolution increases, but MOM 1640 

shows a slight warming in the deeper layer when refining the resolution, which can also be seen 1641  Jo
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in the seasonal bias plot in Figure 20b. For salinity, MOM shows improved simulations below 1642 

the thermocline as resolution increases, but in KIEL bias slightly increases with increase in 1643 

resolution (Figure 30f).   1644 

Figure 31 shows the annual mean cross equatorial transport with depth along the equator 1645 

for MOM, MOM025, KIEL, KIEL025, ensemble mean of all models and ORAS4. As explained 1646 

in the previous section the coarse resolution models do not show much transport across 72-76 °E, 1647 

but with enhanced resolution this transport is very prominent with magnitude of 25-30 m2/s. 1648 

Earlier modeling studies show that the cross equatorial volume transport is maximum near the 1649 

Somali coast in a narrow band between 43-46 °E (Jensen, 2003, 2007; Miyama et al., 2003). The 1650 

coarse resolution MOM and KIEL simulations also show the similar band in the surface layer, 1651 

with the high resolution (MOM025 and  1652 
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 1653 

Figure 30: Seasonal cycle of (a) SST, (b) Barrier Layer Thickness, (c) Thermocline Depth, (d) 1654 

mixed layer depth for 1 degree and ¼ degree MOM and 0.5 degree and ¼ degree KIEL models.  1655 

Vertical temperature (e) and salinity (f) bias (model minus observation) with respect to WOA 1656 

observations. The averages are taken over the Bay of Bengal. 1657  Jo
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KIEL025) showing even narrower band of cross equatorial flow near the Somalia coast (Figure 1658 

31) with much stronger value (~50 m2/s) and a strong secondary pathway along 72-76 °E. As 1659 

previously reported at around 50°E a weak cross equatorial transport can be found in the 1660 

simulations except for the MOM025 configuration. The cross equatorial transport near Somalia 1661 

coast is mainly contributed from July (Figure 32b), whereas there is a negligible cross equatorial 1662 

volume transport during January (figure 32a) over the Somali coast.  1663 

 1664 

Figure 31: Annual mean transport across the equator from MOM, MOM025, KIEL, KIEL025, 1665 

all model ensemble and ORAS4. Units are in m2/s. 1666  Jo
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There is stronger cross equatorial transport in the subsurface with enhanced resolution in 1667 

KIEL025 as well as MOM025. The secondary cross equatorial pathways of volume transport 1668 

along 72-74 °E in the subsurface appears in the high resolution models both during winter and 1669 

summer (Figure 32a,b). This feature is absent or near absent in the coarse resolution models in 1670 

the ensemble mean and ORAS4 reanalysis products as well. 1671 

We conclude that increasing the horizontal resolution does not necessarily improve the 1672 

temperature and salinity properties noticeably. However, increased resolution does improve 1673 

fidelity in the cross-equatorial pathways in the Indian Ocean.  1674 

 1675 

Figure 32a: Transport across the equator from MOM, MOM025, KIEL, KIEL025, all model 1676 

ensemble and ORAS4 in January. Units are in m2/s. 1677  Jo
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 1678 

Figure 32b: Transport across the equator from MOM, MOM025, KIEL, KIEL025, all model 1679 

ensemble and ORAS4 in July. Units are in m2/s. 1680 

 1681 

6. Summary of the assessment 1682 

 1683 

We presented an analysis of 16 ocean/sea-ice models forced according to the Coordinated 1684 

Ocean-ice Reference Experiments (CORE) interannual protocol, focusing here on the annual 1685 

mean and seasonal features of the Indian Ocean. This assessment is the first of its kind, and thus 1686 

it offers an important benchmark for further studies with global ocean/sea-ice models or fully 1687 

coupled climate models. In particular, we documented the mean state by analyzing surface 1688  Jo
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properties (SST, SSS and surface currents), subsurface properties (temperature, salinity and 1689 

currents), and the MOC. The SST from CMIP5 simulations were also utilized to compare the 1690 

coupled and CORE-II simulations.   1691 

 1692 

Our study provides an assessment across a suite of high-end global ocean climate models, 1693 

many of which were part of CMIP5 climate models. We identified many biases with the 1694 

simulations, and offered suggestions for where these biases might be related to limitations in the 1695 

CORE-II forcing or the ocean model physical parameterizations. As in other CORE-II 1696 

assessments, we do not perform sensitivity studies to support hypotheses for what mechanisms 1697 

lead to the diagnosed model biases. Nevertheless, our study provides a critical baseline from 1698 

which future targeted studies can address these limitations. This perspective forms the basis for 1699 

the nine other published CORE-II assessments.    1700 

 1701 

In the following we offer a summary of the main results from our assessment.  1702 

 1703 

6.1 Sea Surface Temperature 1704 

CORE-II models show improvement in capturing the observed seasonal variability with 1705 

less bias compared to the coupled models, and their SST biases are ~2 times smaller than 1706 

coupled simulations. The SST simulations from coupled CMIP5 models that we analyzed are 1707 

dominated by a negative (cold) bias in the Indian Ocean of about 1-2 °C, with large inter-model 1708 

spread particularly over the EEIO. Additionally, CMIP5 models are generally unable to simulate 1709 

the timing and magnitude of peak SST values, thus affecting the seasonal cycle over the AS, the 1710 

BoB and the EEIO. This result emphasizes the need to improve the atmosphere and ocean 1711 

components of coupled climate models and their coupling to improve their representation of 1712 

regional Indian Ocean features. 1713 

We comment in particular on the northern AS, where the CORE-II simulations show a 1714 

negative (cold) SST bias (1-2 °C) during February to April, which is increased to (2-3 °C) in the 1715 

CMIP5 models. Previous studies showed that the advection of cold air from the Asian land mass 1716 

causes this large cooling in coupled models (Marathayil et al., 2013; Sandeep and Ajayamohan, 1717  Jo
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2014). We also find that this large bias arises from a deeper MLD over this region in the CORE-1718 

II simulations.  1719 

 1720 

6.2 Sea Surface Salinity (SSS) and barrier layer 1721 

The CORE-II models show a positive salinity bias in the BoB, the AS and the SEAS. The 1722 

simulations from FSU and FSU2 consistently overestimate the SSS throughout the basin, 1723 

particularly over the BoB, the EEIO and the SIO, with these two models exhibiting the largest 1724 

bias among the CORE-II models. The seasonal cycle of SSS shows that inter-model spread is 1725 

larger in the AS and the SIO. The unrealistic seasonal cycle in CORE-II models in the AS might 1726 

be due to the unrealistic representation of the overflow of high salinity waters from the Red Sea 1727 

and Persian Gulf into the AS. The intrusion of high-salinity water from the AS to the BoB during 1728 

the summer monsoon (Murty et al., 1992; Vinayachandran et al., 1999) is not realistic in most of 1729 

the models, particularly in FSU and FSU2. Peak river runoff and the integrated summer rainfall 1730 

lead to a SSS minimum in October over the BoB. Only AWI captures the seasonal cycle with 1731 

low salinity in October reflecting those found in observations. Whereas SST simulations do not 1732 

notably improve with enhanced resolution, the SSS simulation improves significantly when 1733 

moving to the eddy permitting models KIEL025 and GFDL-MOM025 compared to their 1734 

respective coarser counterparts.  1735 

 1736 

The seasonal variation in the BL becomes most prominent during December-January 1737 

when it reaches to 40 m thickness and is mainly driven by substantial river runoff into the 1738 

northern BoB. None of the models capture this thick BL over the northern BoB. The NEMO 1739 

models (KIEL, CERFACS, CNRM and CMCC) reasonably capture the BL and the east-west 1740 

gradients. The MOM based models and the hybrid-coordinate models are unable to represent the 1741 

observed BL variation. We conjecture that the inability of MOM class of models to simulate the 1742 

BL, in contrast to the NEMO models, might be due to the use of distinct vertical turbulence 1743 

mixing schemes. 1744 
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6.3 Indian Ocean circulation features 1746 

The CORE-II models are able to simulate the Indian Ocean circulation features with 1747 

reasonable accuracy. The WJs are weakest in the ICTP simulations (coarsest resolution model in 1748 

the suite) and are more faithfully represented in the other MOM and NEMO class of models. All 1749 

the models capture the observed seasonal cycle of WJs except ICTP, which underestimates both 1750 

the spring and autumn jets. Interestingly, all the models show converging values in the autumn 1751 

jets, however there is a larger spread among the models for the spring jet. 1752 

Three different observations (OSCAR, CUTLER and LUMPKIN) show the spring 1753 

(autumn) jets peak in May (November) but they differ in magnitude. The SMC is almost absent 1754 

in some models and the NMC is weaker in ICTP (again we hypothesize that this weakness is due 1755 

to the coarse resolution of 2° used in the ICTP model). AWI, BERGEN, NCAR and FSU2 also 1756 

show a near absence of observed peak values of SMC. We found a splitting of the zonal currents 1757 

at ~10 ºN off the Somali coast in the AS during peak summer monsoon in the observation which 1758 

is absent in all simulations. This splitting has not been noted in previous studies and is worthy of 1759 

further investigation in the future using model and observational data. 1760 

All models underestimate the spring WJ peak values of ~45 cm/s found in ADCP 1761 

observations, whereas all models overestimate the autumn jet values. The observed eastward 1762 

current associated with the summer monsoon in July is also poorly simulated by the CORE-II 1763 

models. The NEMO group of models most accurately simulates the EUC magnitude. However, 1764 

all models show an inaccurate timing of the peak values of the EUC, with models showing their 1765 

peak magnitudes about a month earlier (February) than the ADCP observations (March).  1766 

 1767 

6.4 Subsurface temperature and salinity  1768 

All models show a basin wide warm bias at 100 m depth (typically the mean thermocline 1769 

depth) except GFDL-GOLD, which shows a slightly cold bias over the EEIO and eastern AS. 1770 

ICTP and BERGEN shows the largest bias (>3 °C) over the western equatorial Indian Ocean. 1771  Jo
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Many models (ICTP, MRI, and BERGEN) show a warmer subsurface layer over central AS. 1772 

CMCC and GFDL-GOLD well reproduce the observed spatial distribution of subsurface 1773 

temperatures. The MOM group of models (GFDL-MOM, GFDL-MOM025, ICTP and ACCESS) 1774 

is unable to reproduce the spatial extent and magnitude of the TR region. These models show a 1775 

higher temperature at 100 m depth as compared to WOA. Although KIEL, KIEL025 and GFDL-1776 

GOLD capture the TR cooler water, they show a cold bias in the EEIO. The observed spatial 1777 

distributions are most accurately reproduced by CMCC whereas the BERGEN and ICTP 1778 

simulations perform the worst.  1779 

The seasonal evolution of subsurface temperature shows distinct differences. All the 1780 

models show a positive (warm) thermocline bias over the AS, BoB and EEIO with a magnitude 1781 

ranging from ~1-4 °C. MRI and ICTP show the warmest thermocline bias (3-4 °C) among all the 1782 

models in all the regions, whereas GFDL-GOLD shows a slightly cold thermocline bias. The 1783 

NEMO group of models shows a reduced bias (~0.5-1 °C) in the AS. AWI, FSU and FSU2 also 1784 

show a similar low thermocline bias over the AS. Over the EEIO, isotherms below 100 m show a 1785 

clear semiannual signal reaching to 500 m depth. The thermocline bias shows seasonality in all 1786 

the models. Over the AS and the EEIO there are maximum biases during winter and spring, but 1787 

over the BoB the models show maximum biases during the summer time. Increased spatial 1788 

resolution in the model increases the thermocline bias over AS and BoB, possibly as a result of 1789 

increases in spurious mixing (Griffies et al., 2000, Ilicak et al., 2012).  1790 

The MOM (GFDL-MOM, GFDL-MOM025, ACCESS and ICTP) and NEMO (KIEL, 1791 

KIEL025, CERFACS, CNRM and CMCC) group of models show stronger upper ocean salinity 1792 

stratification near the north BoB as compared to WOA, but over the south BoB they show 1793 

weaker salinity stratification. AWI, BERGEN, FSU and FSU2 are unable to capture either north 1794 

or south BoB salinity stratification.  1795 

 1796 

6.5 Meridional overturning circulation and cross equatorial transport 1797 
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The MOC in the Indian Ocean consists of a CEC and a Subtropical Cell (STC) also called 1798 

southern cell (see Figure 1b). The CEC is a shallow (~500 m) meridional overturning circulation 1799 

consisting of the northward flow of southern-hemisphere thermocline water, upwelling in the 1800 

northern hemisphere, and a return flow of surface water (Miyama et al., 2003). Most of the 1801 

CORE-II models simulate the structure of the CEC. The mean strength of the simulated CEC is 1802 

in the range of 2-8 Sv, which is within the earlier reported value of 6 Sv (Lee and Marotzke, 1803 

1997; Schott et al., 2002a, b). The CEC structures reported by Miyama et al. (2003) are well 1804 

reproduced by a majority of the CORE-II models. 1805 

Maximum transport occurs through a narrow passage near the Somali Coast as reported 1806 

by Miyama et al. (2003). All simulations show a single narrow band of cross equatorial flow near 1807 

the Somali Coast, but its vertical structure is yet unknown (see Figure 3 and 4 of Miyama et al. 1808 

2003). This study shows that the vertical extent of the transport extends to 1500 m.  1809 

All models show a secondary pathway of northward transport of cross equatorial flow 1810 

along 75 °E with a value ranging between 5-10 m2/s. These values are more prominent and 1811 

higher in the high resolution MOM025 and KIEL025 models with a maximum value of ~ 20-25 1812 

m2/s.  The observations show a strong northward transport (25-30 m2/s) along 50 °E across the 1813 

10 ºS latitude.  1814 

Thus, most CORE-II models simulate the structure of the CEC in the Indian Ocean. 1815 

Importantly, the CORE-II analysis uncovers a previously unidentified secondary pathway of 1816 

CEC, northward cross-equatorial transport along 80 °E, thus complementing the pathway near 1817 

the Somali coast. We plan to study this secondary pathway in studies targeted on the dynamics of 1818 

this flow.  1819 

 1820 

6.6 Comments on model resolution  1821 

ICTP is the coarsest model considered in this study, which has a nominal 2 degree 1822 

horizontal grid spacing with 30 vertical levels. For many of the metrics assessed in this study, 1823 

this coarse model performed the worse. We therefore suggest that Indian Ocean simulations 1824 
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should be conducted with grid spacing no coarser than the 1 degree used by the bulk of the 1825 

models considered here.   1826 

When comparing the one degree and one-quarter degree simulations, we find that moving 1827 

to a fine horizontal resolution plays a large role in improving mesoscale eddy dominated 1828 

processes and strong confined boundary current regions. In particular, for the eddy active BoB 1829 

region the simulations are better represented using ¼ degree models (MOM025 and KIEL025) 1830 

than their coarser resolution (1º MOM or 0.5º KIEL) counterparts. Furthermore, an improvement 1831 

is seen in the representation of mixed layer depth, and SSS with simulations of ¼º as compared 1832 

to their coarse resolution counterpart. However, the thermocline becomes deeper as well as the 1833 

vertical temperature and salinity representation degrades in ¼º models compared to their coarser 1834 

resolution counterparts. This is reflected in the SST features which are not improved, thus 1835 

suggesting that many biases result from limitations due to physical parameterization (e.g., 1836 

vertical mixing in the boundary layers) rather than limitations due to horizontal grid resolution.   1837 

Our current understanding of the meridional overturning circulation in the Indian Ocean 1838 

is based largely on non-eddy-resolving models. The CORE-II simulations provide new insight on 1839 

the cross-equatorial cell, which is an important component of MOC in the Indian Ocean. A 1840 

future analysis will target how these new pathways improve the inter-annual variability of the 1841 

Indian Ocean. 1842 

 6.7 Closing comments about the present study and its future implications 1843 

The Indian subcontinent and surrounding south Asian region are home to billions of 1844 

people whose livelihood depends on the ISMR. Hence, a timely and accurate prediction of the 1845 

monsoon rains is crucial throughout this region. Presently, many global prediction centers predict 1846 

ISMR on a seasonal time scale. The seasonal prediction skill for tropical SST anomalies provides 1847 

the major predictability source of monsoon precipitation, and is closely linked to the models’ 1848 

ability to accurately simulate the mean SST (Sperber and Palmer, 1996; Lee et al., 2010; Pokhrel 1849 

et al., 2012a; Pokhrel et al., 2016; Saha et al., 2019). Current coupled models generally show 1850 

cold biases over the Indian Ocean. Our study of CORE-II simulations shows that these biases are 1851  Jo
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reduced in CORE-II forced simulations, thus suggesting that the origin for the coupled biases is 1852 

mostly related to coupled feedbacks that amplify ocean and atmospheric biases. However, apart 1853 

from this coupled feedback the coupled mode SST bias also arises due to the tuning effect to 1854 

make coupled model’s global mean temperature comparable to observations. 1855 

 1856 

The present study also shows that despite using the same atmospheric state and 1857 

experimental protocol, the oceanic response from different models can be quite different as 1858 

revealed by the sizable intermodal spread in many of the prognostic variables. Enhanced model 1859 

horizontal resolution (to ¼º) fails to improve the mean state and the seasonal evolutions. This 1860 

result emphasizes the need to improve the model physics as well as providing a realistic 1861 

representation of bathymetry. The phase and strength of the IOD play an important role in 1862 

modulating regional as well as global climate (Saji et al., 1999; Webster et al., 1999), with the 1863 

seasonal evolution of the IOD sensitive to the representation of the model mean state. A recent 1864 

study also shows a model’s ability to capture the teleconnection to the positive IOD is closely 1865 

related to its representation of the mean state (Hirons and Turner 2018). Hence this study will 1866 

give significant insight into the IOD climate mode and its prediction.  1867 

 1868 

Recent studies by Li et al. (2016, 2017) noted that CMIP climate model projections of 1869 

increased frequency of IOD events (Cai et al., 2014), increased ISMR, or a change in the mean 1870 

state of the oceans are mostly artifacts of model errors that can significantly distort regional 1871 

climate projections. Shikha and Valsala (2018) showed that over the Indian Ocean, CMIP5 1872 

models develop internal warm and saline biases approximately between a depth range of 100 m 1873 

and 800 m in long term simulations, and these internal biases have implications in large scale 1874 

ocean dynamics via their linkage through ocean baroclinicity. These studies suggest that the 1875 

mean state and subsurface biases in the state-of-the-art coupled climate models can largely limit 1876 

the model’s skill for regional climate prediction. The present study showed that even in forced 1877 

ocean/sea-ice climate models, the subsurface temperature and salinity biases are persistent, with 1878 

particular examples being the thermocline temperature biases that result in the inability of these 1879 

modes to realistically represent the subsurface mean state. Therefore, more focused research is 1880  Jo
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needed to improve the model physics and the realistic representation of bathymetry in the 1881 

development of future climate models. 1882 

 1883 
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 1894 

Appendix: Acronyms  1895 

ACCESS: Australian Community Climate and Earth System Simulator    1896 

AS: Arabian Sea 1897 

AWI: Alfred Wegener Institute  1898 

BoB: Bay of Bengal 1899 

BL: Barrier Layer 1900 

CEC: Cross-Equatorial Cell 1901 

CERFACS: Centre Européen de Recherche et de Formation AvancéeenCalculScientifique 1902 

CESM: Community Earth System Model 1903 

CGCM: Coupled general circulation model 1904 

CLIVAR: ClimateVariability and Predictability 1905 

CMCC:CentroEuro-MediterraneosuiCambiamentiClimatici 1906 

CMIP3: Coupled Model Intercomparison Project Phase 3 1907 

CMIP5: Coupled Model Intercomparison Project Phase 5 1908 

CNRM:  Centre National de RecherchesMétéorologiques 1909  Jo
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CORE-II: Coordinated Ocean-ice Reference Experiments phase II 1910 

DRAKKAR:  Coordination of high resolution global ocean simulations and developments of the    1911 

                     NEMO modeling framework 1912 

EACC: East African Coastal Current  1913 

EEIO: Eastern Equatorial Indian Ocean  1914 

EICC:East India Coastal current  1915 

ENSO:El Niño Southern Oscillation 1916 

EUC: Equatorial Undercurrent  1917 

FSU: Florida State University 1918 

FSU2:Version2 of the FSU contribution 1919 

GFDL: Geophysical Fluid Dynamics Laboratory 1920 

GOLD: Generalized Ocean Layer Dynamics 1921 

GOOS:Global Ocean Observing System  1922 

HYCOM: Hybrid Coordinate Ocean Model 1923 

ICTP: International Centre for Theoretical Physics   1924 

IOC:Intergovernmental Oceanographic Commission  1925 

IOD: Indian Ocean Dipole  1926 

IODZM: Indian Ocean Dipole/Zonal mode 1927 

IOMOC: Indian Ocean Meridional overturning circulation  1928 

ISMR: Indian Summer Monsoon Rainfall  1929 

ITF: Indonesian through flow 1930 

ITCZ: Inter Tropical Convergence Zone 1931 

JRA55-do: Japanese 55-year atmospheric reanalysis (JRA-55) based surface dataset for driving     1932 

                  ocean–sea-ice models (JRA55-do) (Tsujino et al., 2018) 1933 

KIEL: Contribution from the Helmholtz Center for Ocean Research, Kiel, Germany 1934 

KPP: K-Profile Parameterization (Large et al.,1994) 1935 

LHF: Latent heat flux 1936 

MLD: Mixed layer depth 1937 

MOC: Meridional overturning circulation  1938  Jo
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NMC : Northeast Monsoon Current 1939 

NHF: Net Heat Flux  1940 

NOAA: National Oceanic and Atmospheric Administration  1941 

NOCS: National Oceanography Centre Southampton  1942 

OSCAR: Ocean Surface Current Analysis  1943 

Qa: specific humidity 1944 

RAMA: Research Moored Array for African-Asian-Australian Monsoon Analysis & Prediction  1945 

RMSD: Root-mean-square deviation  1946 

SC: Somali current  1947 

SD: Standard deviation 1948 

SE: Socotra Eddy  1949 

SEAS: South Eastern Arabian Sea  1950 

SEC: South Equatorial Current  1951 

SG: Southern Gyre  1952 

SIO: Southern Indian Ocean   1953 

SICC: South Indian Ocean Counter Current 1954 

SMC: Southwest Monsoon Current   1955 

SSS: Sea surface salinity  1956 

SST: Sea surface temperature  1957 

SSTC: Southern Subtropical Cell 1958 

STC: Subtropical Cell 1959 

SWIO: Southwest Indian Ocean  1960 

Ta: Air temperature  1961 

TIO: Tropical Indian Ocean  1962 

TR: Thermocline Ridge   1963 

WICC: West India Coastal current   1964 

WJ: Wyrtki Jet  1965 

WOA: World Ocean Atlas  1966 
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 Sea Surface Temperature biases are ~2 times smaller in forced simulations than the 2946 

coupled simulations.  2947 

 Coupled model shows large inter-model spread over the eastern equatorial Indian Ocean.  2948 

 Refinement in model horizontal resolution does not significantly improve simulations. 2949 

 Uncover a secondary pathway of northward cross-equatorial transport along 75 °E in the 2950 

Indian Ocean. 2951 

 All models are unable to capture the observed thick barrier layer over the north Bay of 2952 

Bengal. 2953 

 2954 

 2955 

 2956 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof


