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Please find attached a manuscript we wish to submit to Bulletin of Volcanology as a review 
paper. It is entitled “Tracking and understanding explosive volcanic emissions through cross-
disciplinary integration: Findings from an ESF-supported textural working group”, and 
involves 36 authors from 16 different European institutes. 
 
The review is the result of a MeMoVolc workshop held in Clermont Ferrand in 2012. 
MeMoVolc is an effort funded by the European Science Foundation, and managed by Tim 
Druitt and Augusto Neri, with the aim of bringing together European researchers spread 
across multiple European countries to focus on a number of current themes in volcanology. In 
that regard, the aim of the review is to present the state of the art for textural characterization 
of volcanic products, current limits and the potential for integration of deposit, geochemical 
and geophysical data to enhance our understanding of systems that feed explosive eruptions. 
It is the result of presentations and discussions during the two day workshop held in 6-7th 
November 2012, and involves all contributors. 
 
Because of its interdisciplinary nature, the review is quite long with a very long reference list 
that we have made complete up to 2014. We did not use figures, but have instead summarized 
the main points in five tables. This contribution is effectively an open dialogue where we have 
reported the state of the art from an European perspective with the idea of providing the 
reader a list of open questions, needs and recommendations. 
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Abstract 35 

A workshop entitled “Tracking and understanding volcanic emissions through cross-36 

disciplinary integration: A textural working group.” was held at the Université Blaise Pascal 37 
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(Clermont-Ferrand, France) on the 6-7th November 2012. This workshop was supported by 38 

the European Science Foundation (ESF). The main objective of the workshop was to establish 39 

an initial advisory group to begin to define measurements, methods, formats and standards to 40 

be applied in the integration of geophysical, physical and textural data collected during 41 

volcanic eruptions so as to homogenize procedures to be applied and integrated during both 42 

past and ongoing events. The working group comprised a total of 35 scientists from six 43 

countries (France, Italy, Great Britain, Germany, Switzerland and Iceland). The group 44 

comprised eleven advisors from the textural analysis field, eleven from deposit studies, seven 45 

geochemists and six geophysicists. The four main aims were to discuss and define: 46 

� Standards, precision and measurement protocols for textural analysis; 47 

� Identify textural, field deposit, chemistry and geophysical parameters that can best be 48 

measured and combined; 49 

� Agree on the best delivery formats so that data can be sheared between, and easily 50 

used by, each group; 51 

� Review multi-disciplinary sampling and measurement routines currently used, and 52 

measurement standards applied, by each community. 53 

The group agreed that community-wide cross-disciplinary integration, centered on defining 54 

those measurements and formats that can be best combined, is an attainable but key global 55 

focus. Consequently, we prepared a final document to be used as the foundation for a larger, 56 

international textural working group to serve as the basis of fully realizing such a pan-57 

disciplinary goal in volcanology. Thus, we here report our initial conclusions and 58 

recommendations. 59 

 60 

Introduction  61 

 62 

A major goal of modern volcanology is to relate conditions of magma ascent to the resulting 63 

eruption style using information preserved in volcanic deposits. Because it is impossible to 64 

directly observe magma ascent, vesiculation and fragmentation, one way of obtaining 65 

quantitative information on magma ascent dynamics is through textural quantification of the 66 

sampled products. Textural quantification involves full description of the vesicle and crystal 67 

properties of erupted products (e.g. Sparks 1978; Sparks and Brazier 1982; Whitham and 68 

Sparks 1986; Houghton and Wilson 1989; Marsh 1988, 1998; Cashman and Marsh 1988, 69 

Toramaru 1989, 1990; Cashman and Mangan 1994; Higgins 2000; 2006; Blower et al. 2002; 70 
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Burgisser and Gardner 2005; Shea et al. 2010a; Rust and Cashman 2011; Baker et al. 2012 71 

and references therein). The relationship between the textural character of the erupted 72 

products and magma viscosity, ascent rate, vesiculation process, fragmentation style and 73 

explosion dynamic relies on the fact that these latter mechanisms imprint characteristic and 74 

measurable properties on the volcanic products, as proved through theoretical and 75 

experimental studies (e.g. Rust and Cashman 2011; Gonnerman and Houghton 2012; 76 

Degruyter et al. 2012; Nguyen et al. 2013 and reference therein). The main assumption is that 77 

most of the pyroclast properties are acquired during ascent in the conduit, with little changes 78 

occurring after fragmentation or when the products are in the atmosphere, if the pyroclasts are 79 

lapilli size, i.e., less than 2-3 cm (e.g. Houghton and Wilson 1989; Nguyen et al. 2013). 80 

Specifically, the textural parameters of the pyroclastic components have been shown to yield 81 

insights into the dynamics of explosive eruptions, as reviewed in Table 1. 82 

However, the physical characteristics of individual pyroclasts must not be considered in 83 

isolation from detailed studies of (i) the deposits from which they were collected, (ii) their 84 

chemical properties, (iii) geophysical signatures of the related explosive event, and (iv) 85 

petrological and/or analogue experiments. Indeed, attempts to understand eruption dynamics 86 

have been increasingly coupled to traditional fieldwork and geophysical measurements made 87 

synchronously with sample collection. In 2004, a special issue of the Journal of 88 

Volcanological and Geothermal Research (Volume 137) focused on multidisciplinary 89 

approaches, proposing “simultaneous collection of multiple geophysical data sets, such as 90 

seismic, infrasonic, thermal and deformation data, as well as sampling of ejecta and detailed 91 

mapping”. The argument was that “complete constraint of a volcanic system is not possible 92 

using one data set, so that an integrated multiparametric approach involving simultaneous 93 

collection of multiple geophysical and petrological data sets will increase our ability to reach 94 

tightly constrained and confident conclusions regarding the mechanics and dynamics of 95 

volcanic systems and eruptions” (Harris et al. 2004). Since 2004, numerous studies have 96 

borne these predictions out, combining textural data with: 97 

i. Field deposits (e.g. Polacci et al. 2006a; Rust and Cashman 2007; 2011); 98 

ii. Petrological data (e.g. Larsen 2008; Shea et al. 2009; 2010b; Burgisser et al. 2010; 99 

Bai et al. 2011); 100 

iii. Chemical analyses (e.g. Piochi et al. 2005, 2008; Shimano and Nakada 2005; 101 

Noguchi et al. 2006; Costantini et al. 2010; Balcone-Boissard et al. 2010, 2011, 102 

2012; Shea et al. 2012; 2014) 103 
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iv. Geophysical measurements (e.g. Burton et al. 2007; Gurioli et al. 2008, 2013; 104 

2014; Polacci et al. 2009b; Andronico et al. 2008; 2009a; 2009b; 2013a, 2013b; 105 

Miwa et al. 2009; Miwa and Toramaru 2013; Colò et al. 2010; Landi et al. 2011; 106 

Pistolesi et al. 2011; Leduc et al. in press), and 107 

Together these studies have delivered complete pictures of explosive eruptions and their 108 

dynamics.  109 

In spite of this progress, we remain far from establishing the best method to sample 110 

pyroclasts, and to correlate and compare the multitude of parameters that can be measured 111 

using individual clasts and field deposits. In addition, no study has yet attempted to correlate 112 

all derivable textural parameters with the full range of multidisciplinary data available. To 113 

partially resolve these issues, a working group was set up including a mixture of experts 114 

currently active in the field of integration of textural, deposit and geophysical data, equally 115 

balanced between expertise in each of four theme areas: (i) textural studies, (ii) deposit 116 

analysis, (iii) chemistry and (iv) geophysics. Funded by the European Science Foundation, 117 

through the MeMoVolc program (http://www.memovolc.fr/), the initial grouping focused on 118 

European interests. 119 

The final objective was to ensure that data collected in the field and laboratory can be 120 

shared effectively and be ingested in multi-disciplinary sense into experiments, modeling and 121 

monitoring. In the longer-term, the group’s objective will be to publish and update standards, 122 

as well as to propose, support and organize field meetings to test integrated collection 123 

methodologies. The ultimate aim is to increase the number of open-access data-bases of 124 

standard and community-accepted quality, so as to make increasing resources available for 125 

cross-disciplinary correlations. 126 

 127 

Methodology 128 

 129 

Following a pre-meeting discussion and preparation of “a list of discussion points”, the group 130 

convened on 6-7 November 2012 at the Université Blaise Pascal (Clermont-Ferrand, France). 131 

The priorities of the two-day meeting were discussion and definition of: 132 

� Improved standards, precision and measurement protocols needed by the textural field. 133 

� Discussion and definition of best practices for textural studies in order to have 134 

comparable datasets from different types of eruptions. 135 
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� Definition of parameters obtained from textural, field deposit, geochemical and 136 

geophysical data that need to be measured, and the best delivery format if each 137 

discipline’s output is to be of use to the next. 138 

� Review multi-disciplinary sampling and measurement routines, as well as 139 

measurement standards. 140 

Because of the workshop time constraints, we decided to focus only on the study of explosive 141 

eruptions that generate sustained columns or fountains, and the associated fallout deposits. 142 

After a general introduction, we split into four subgroups: deposits, textural, geochemistry and 143 

geophysics. Before splitting, the core, communal issues to be explored were agreed on as 144 

follows: 145 

1.  Which are the best sampling and measurement strategies for the quantification of 146 

pyroclast textural features, and what are their precision and uncertainty? 147 

2. Which are the best sampling and measurement strategies for pyroclastic deposits to 148 

allow textural characterization of their components?  149 

3. How can we link chemistry, geochemistry and textural quantifications? 150 

4. How can we link geophysical data and the textural quantification? 151 

5. What is the best multi-disciplinary strategy to apply so as to combine output from each 152 

field in a meaningful way? 153 

Full-group, and then sub-group break-out discussions, comprised the first day. Overnight, 154 

report-back presentations and chair notes were prepared, so that the second day began with 155 

four presentations – one from each group. This was followed by round-table brainstorming to 156 

distill global objectives and priorities for a texturally-based working group with the objective 157 

of “tracking and understanding volcanic emissions through cross-disciplinary integration”. 158 

The reports of each sub-group are given here, as well as the report drawn up following the 159 

synthesis and post-meeting discussions. 160 

 161 

Sampling of pyroclasts and quantification of their textural features  162 

 163 

(i) Representative samples 164 

 165 

It is assumed that pyroclasts from tephra deposits reflect the degassing history of the magma, 166 

from the conduit to the plume. Therefore, part of the textural signature is assumed to reflect 167 

that acquired at the fragmentation (or explosion) zone. Consequently it can be used as an 168 

indicator for magma properties (composition, porosity, connectivity, permeability, vesicle and 169 
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crystal content, size, shape and distribution) at that time (Table 1). This assumption has two 170 

requirements: 171 

i. The textural signature that we believe were quenched immediately at the 172 

fragmentation point can be distinguished by the textural effects of post-fragmentation 173 

processes, including microlite formation and bubble nucleation, expansion, collapse, 174 

coalescence and Ostwald ripening that will change clast vesicularity or vesicle size 175 

and shapes once the pyroclast has been formed (e.g. Thomas et al. 1994; Cashman et 176 

al. 1994; Herd and Pinkerton 1997; Larsen and Gardner 2000; Gurioli et al. 2008; 177 

Costantini et al. 2010; Stovall et al. 2011, 2012). The time window for post-178 

fragmentation changes depends on magma composition, viscosity and fragmentation 179 

depth. 180 

ii. Because clast density is also a function of clast size (Houghton and Wilson 1989), only 181 

clasts of similar sizes must be used to avoid non uniform grain-size effects on textural 182 

parameters. 183 

We thus recommend choosing selected samples that are representative of the studied 184 

explosion, or unit, in terms of: 185 

i. Timing: This requires sampling of narrow stratigraphic intervals (Houghton and 186 

Wilson 1989) in which juvenile clasts of similar dimensions can be assumed to 187 

represent those parts of the magma fragmented at a particular time (n.b conduit 188 

processes can change over short timescales);  189 

ii. Distribution: This requires selection of more than one outcrop for each event; 190 

iii. Degree of fragmentation: This requires selection of a sampling methodology that is 191 

appropriate for the whole grain size distribution; 192 

iv. Componentry: If the juvenile fraction is heterogeneous, sampling should be done 193 

based on preliminary componentry analysis of the clast analyzed for density (e.g. 194 

Wright et al. 2011) 195 

In previous studies, only clast sizes of 16-32 mm, i.e. coarse lapilli (e.g. White and Houghton 196 

2006) have been considered for textural purposes. Such clasts were considered to be large 197 

enough to be easily sampled and studied, while being fully representative of the density 198 

variation of the majority of erupted pyroclasts and not having been affected by significant 199 

post-fragmentation phenomena (Houghton and Wilson 1998). These requirements are not 200 

always met. In basaltic magma, post-fragmentation effects can be a complication even for 201 

these sizes (e.g. Cashman et al. 1994; Costantini et al. 2010; Gurioli et al. 2008; Pioli et al. 202 

2014; Pistolesi et al. 2008; 2011; Stovall et al. 2011; 2012). In these cases, the challenge is to 203 
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identify, quantify and remove post-fragmentation effects in order to isolate textures generated 204 

during, or immediately, before fragmentation. For example, the original shapes of vesicles 205 

may be reconstructed artificially de-coalescencing large vesicles using the presence of 206 

residues of broken, or partially retracted, glassy septa.  207 

However, if we study an ash-dominate or a bomb-dominated event, textural analyses need 208 

to be performed on the fine or coarse juvenile fragments. More recently ash size particles (<2 209 

mm) has been investigated (Taddeucci et al. 2002, 2004; Cioni et al. 2008; D’Oriano et al. 210 

2011a; b Miwa et al. 2009; 2013; Miwa and Toramaro 2013; Proussevitch et al. 2011; 211 

Genareau et al. 2012; 2013; Colucci et al. 2013). For the ash size fraction, post-fragmentation 212 

expansion can be excluded (e.g. Proussevitch et al. 2011; Genareau et al. 2012; 2013; Colucci 213 

et al. 2013). Consequently analyses allow comparison between morphological and textural 214 

features of clasts sampled in proximal and distal areas. Ash particles can record most of the 215 

information related to magma ascent dynamics (e.g. decompression-driven microlite 216 

crystallization) and fragmentation (Cioni et al. 2008; D’Oriano et al. 2010; D’Oriano et al. 217 

2011a, b; Proussevitch et al. 2011; Genareau et al. 2012; 2013; Colucci et al. 2013). 218 

Advantages of studying ash is that it can also be statistically more representative of the 219 

variability of the magma properties and is less affected by density-driven settling within the 220 

plume. However, ash fragments record only small-scale vesicularity. The integration of 221 

observations made on the external shapes of clasts may give information about the presence 222 

and importance of a coarser vesicularity which drives magma fragmentation (e.g. 223 

Proussevitch et al. 2011; Genareau et al. 2012; 2013; Colucci et al. 2013). However, this may 224 

lack complete information about the abundance and size of the full vesicle population, if the 225 

eruptive products also include larger fragments. Furthermore, ash particles are not suitable for 226 

permeability studies, as they are often smaller than the bubbles forming the permeability 227 

network. However, the presence of coalesced vesicles in a preferred direction, and an 228 

abundance of ash clasts with an elongated shape, have been interpreted as an indication of the 229 

development of a network of permeability in the magma (D’Oriano et al. 2010a).  230 

Bombs may represent a plethora of information for pre-eruptive degassing and ascent rate 231 

(e.g. Hoblitt and Harmon 1993; Wright et al. 2007), to timing and degree of thermal 232 

interaction of magma with wall rock material prior to ejection (Rosseel et al. 2006; Sottili et 233 

al. 2009; 2010), and post-fragmentation changes owing to bubble growth, coalescence or 234 

shape changes (e.g. Herd and Pinkerton 1997). Finally, they can also provide vesicle shape 235 

and vesicle density number Nv in the quenched samples collected directly from the plume, i.e. 236 

quenched immediately upon fall out (Gurioli et al. 2014 and Leduc et al. in press).  237 
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 238 

(ii) Bulk textural measurements  239 

 240 

The fastest and most straightforward textural measurement of individual pyroclasts is density 241 

(vesicularity), which provides basic information on processes related to gas exsolution and 242 

escape (Houghton and Wilson 1989). Density of lapilli and small bombs are determined by 243 

comparing their weights in water and air following the Archimedes principle. Clasts can be 244 

made impermeable with silicone waterproofing spray or by immersion in cellulose acetate to 245 

seal small vesicles, or using a ParafilmTM wax. This technique is rapid and yields large arrays 246 

of data with a reproducibility within 10-30 kg m-3 and the accuracy within 30 kg m-3 (Barker 247 

et al. 2012). Following the same principles, a battery-powered device has been used to seal 248 

pumice or scoria in plastic bags at vacuum in the field (Kueppers et al. 2005).  249 

For pyroclasts characterized by fine vesiculation (with largest vesicles smaller than 2-3 250 

mm) the density can be measured with the glass beads method (Nakamura et al. 2008) that 251 

allows us to calculate the density as well as the volume of an object of irregular size. For large 252 

bombs (from 15 to 40 cm in diameter), the "natural waterproofing" approach was applied 253 

(Gurioli et al. 2013). Extensive tests showed that decimetric size bombs collected at Stromboli 254 

acquired a "natural waterproofing" from their quenched margins, and thus could be weighed 255 

in water without waterproofing. This represents a new easy, precise and fast strategy. 256 

Furthermore, the derived density distributions are used as filters to select a few clasts, 257 

representative of the low, modal and high density values, from each subpopulation observed 258 

(e.g. Shea et al. 2010a). Selected clasts are then used for textural quantification.  259 

Other bulk measurements aimed to quantify the fraction of isolated versus connected 260 

vesicles include vesicle connectivity, permeability (Klug and Cashman 1996; Klug et al. 261 

2002; Formenti and Druitt 2003; Rust and Cashman 2004; and references in Table 1) and 262 

electrical conductivity (Le Pennec et al. 2001; Bernard et al. 2007; Wright et al. 2009; Wright 263 

and Cashman 2014) of individual pyroclasts. The connectivity measurements are mostly 264 

performed using gas displacement Helium pycnometers, and they deliver first-order 265 

information on the outgassing capacity (i.e., potential for gas loss) of the magma near 266 

fragmentation (Klug et al. 2002; Formenti and Druitt 2003; Giachetti et al. 2010; Shea et al. 267 

2011; 2012). Permeability determines the rate at which samples can degas during 268 

decompression. Several methods exist for permeability measurements in volcanology. Rust 269 

and Cashman (2004) used a commercial permeameter to perform systematic steady-state gas-270 

flow experiments using porous samples and the relationship between flow rate and pressure 271 
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gradient was determined. They also introduced the Forchheimer equation into volcanology, 272 

which is a modified form of Darcy's law and includes the inertial effect of gas flow, and 273 

specified the importance of this effect in volcanic degassing processes. Mueller et al. (2005) 274 

used gas pressure decay with time after sudden decompression in a fragmentation bomb for 275 

the permeability measurements, without measuring gas-flow rate. A falling head permeameter 276 

developed by Burbié and Zinszner (1985) has also been used to measure the permeability of 277 

volcanic porous materials (Jouniaux et al. 2000; Bernard et al. 2007). Recently a low-cost gas 278 

permeameter was developed first by Takeuchi and Nakashima (2005) and then improved by 279 

Takeuchi et al. (2008), to measure permeability of natural samples and experimental products. 280 

Finally, electrical conductivity measures how well a material transports electric charge. 281 

Rocks, in general, are poor conductors, whereas ionic fluids are good conductors. Therefore a 282 

measurement of conduction through fluid-saturated rocks provides information about the 283 

connected pore pathway through the sample. Although the influence of pathway tortuosity 284 

and pore shape on permeability is useful for numerical simulations on gas percolation, it has 285 

been the object of only a few studies (Table 1). 286 

 287 

(iii) Comparison between 2D and 3D textural measurements  288 

 289 

There are two different methods currently available for extracting vesicle and crystal sizes, 290 

shapes and distributions in pyroclasts. The first is by conversion of 2D data from a planar 291 

surface (such as a thin section or photograph) to 3D data through stereology. The second 292 

method derives 3D data directly from X-ray tomographic reconstructions and visualization of 293 

clast textures without the need of stereological conversions (Song et al. 2001; Shin et al. 2005; 294 

Polacci et al. 2006b; 2008; 2009a; b; 2010; Degruyter et al. 2010b; Gualda et al. 2010; 295 

Giachetti et al. 2011; Baker et al. 2012), using computer software especially developed for 296 

geo-textural purposes (e.g. Ketcham 2005; Friese et al. 2013). Other 3D methods include 297 

serial sectioning (e.g. Bryon et al. 1995), serial focusing with optical microscope (Manga 298 

1998), serial grinding (e.g. Marschallinger 1998a, b, c; Mock and Jerram 2005), and 299 

constructing digital elevation models of individual ash grains to calculate vesicle volume 300 

(Proussevitch et al. 2011). 2D and 3D observations have different limitations and potential, 301 

and so these two methods are becoming complementary, not competitive (e.g. Giachetti et al. 302 

2011; Baker et al. 2011). 303 

 304 

2D method  305 
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Standard procedures for the 2D method have been recently published for vesicles (Shea et al. 306 

2010a) and crystals (Higgins 2000; 2006). 2D techniques can yield high-quality data in a 307 

relatively short time, and account for both vesicle and crystal sizes in the sample. They deals 308 

with relatively large numbers of samples, and the method can be applied to particle ranging in 309 

size from bombs (e.g. Gurioli et al. 2014) to ash (Miwa et al. 2009; 2013; Miwa and Toramaru 310 

2013). These measurements are best used when there is a broad size distribution to be 311 

measured. The main limitation of the method is that is based on assumption of spherical shape 312 

of the textural objects, following Sahagian and Proussevitch (1998). When this conversion is 313 

simply obtained by dividing the number of vesicle per unit area for the median value of 314 

diameter of each size class (Cheng and Lemlich 1983) no shape assumption is made. 315 

However, the 3D conversion is more precise when a shape is defined. Empirical corrections 316 

are commonly used for crystal analyses (Higgins 2000 and 2006), although for vesicles, 317 

whose shapes are less uniform, they risk introducing systematic, uncontrolled errors in the 318 

data (Sahagian and Proussevitch 1998; Proussevitch et al. 2007a; 2007b).  319 

 320 

3D method 321 

X-ray computed microtomography is the only available high-resolution, non-invasive 3D 322 

technique that allows reconstruction, visualization and processing of samples. Data 323 

acquisition is generally relatively straightforward, and several scales can be examined and 324 

combined, spanning from centimeter-sized to <1 micron objects, depending on the resolution 325 

(Giachetti et al. 2011). In addition, with the use of the so-called ‘local area’ tomography 326 

technique (Lak et al. 2008; Mancini 2010), it is possible to reach high-resolutions even with 327 

samples larger than the field of view of the camera. However, 3D quantification of textures 328 

can also be labor intensive, depending on the size of the volume that needs to be analyzed and 329 

on the textural parameters required. The results show the internal structures of samples, 330 

highlighting how objects and apertures are linked together. This is an excellent capability for 331 

studies on vesicle size, shape and distribution, collapse, deformation, coalescence, 332 

permeability, and tortuosity as well as for determining crystal volume, size and distribution 333 

and visualizing crystal aggregates in 3D (Polacci et al. 2009a; b; 2012; Bai et al. 2010; 2011 334 

Degruyter et al. 2010a, b; Zandomeneghi et al. 2010; Baker et al. 2012; Castro et al. 2012; 335 

Okumura et al. 2013). Vesicles with complex shapes are easily identified while they could 336 

results in two or more vesicles in a 2D section thus biasing vesicle size distribution (VSD) 337 

and number densities. The 3D method is particularly effective for determining vesicle number 338 

density if the study is focused on a specific size distribution range; vesicle number densities 339 
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over a wide range of sizes is achieved with nested studies where a series of scans are done 340 

with different sizes and resolutions. However, the resolution of the reconstruction is still 341 

critical. Klug et al. 2002 showed that vesicle walls may be as thin as 0.1µm. To achieve this 342 

sort of spatial resolution using tomography requires very small samples. When the attained 343 

resolution is 5-15 µm, thin vesicle walls are not resolved.  344 

There is currently no unique protocol for 3D measurements of different types of 345 

pyroclastic (or lava) samples; however the SYRMEP group of the Elettra Synchrotron Light 346 

Source (Trieste, Italy), together with the McGill University of Montreal and INGV Pisa (M. 347 

Polacci) is deploying protocols to be used with volcanic samples characterized by different 348 

vesicularities and crystallinities. 349 

 350 

(iv) Crystal size distribution 351 

 352 

Crystal size distribution (CSD) is a well-established tool for interpreting the physical 353 

processes and environmental variables that drive differentiation and crystallization in magma 354 

chambers and conduits (e.g. Marsh 1988; Cashman and Marsh 1988; Cashman 1992; Hammer 355 

et al. 1999; Cashman and McConnell 2005, Armienti 2008; also see references in Table 1). 356 

CSD coupled with vesicle distribution data yield deeper insights into the physical processes 357 

operating in the conduit (e.g. Gurioli et al. 2005; D’Oriano et al. 2005; Piochi et al. 2005; 358 

2008; Noguchi et al. 2006; Giachetti et al. 2010; D’Oriano et al. 2011a; Vinkler et al. 2012). 359 

The CSD method has been well tested and widely applied (Table 1), so that it is now quite 360 

straightforward to quantify CSD (Higgins 2000; 2006; and references in table 1).  361 

However, we must keep in mind that crystals are commonly anisotropic and therefore 362 

shape cannot be ignored. Most studies use the Higgins technique to account for shape. 363 

However, the Higgins method assumes that all crystals are the same shape. This is clearly not 364 

true, as small crystals are often more anisotropic than large crystals. Treating all crystals in the 365 

same way can introduce artifacts (see: Castro et al. 2003). In addition, there are still resolution 366 

issues for microlites, as well as problems in both back-scattered electron (BSE) and cathode 367 

ray tube (CRT) analyses when the crystals have a density (Z number) that is very close to that 368 

of the glass. Several methods can be used to facilitate the extraction and quantification of 369 

crystals. CSDs of larger crystals (phenocrysts, antecrysts, etc.) can be measured from 370 

transmitted light microscopy images of thin sections, and analyzed by using digital image 371 

analysis to automate and, thus speed up, the quantification process (e.g. Armienti et al. 1994; 372 

Launeau et al. 1994; Lumbreras and Serrat 1996; Goodchild and Fueten 1998; Launeau and 373 
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Cruden 1998; De Keyser 1999; Heilbronner 2000 Armienti and Tarquini 2002; Boorman et al. 374 

2004). Tarquini and Favalli (2010) used a slide scanner to acquire input imagery in 375 

transmitted light from thin sections, and a GIS software to analyze the data. 376 

Crystals can also be identified using a scanner and a polarizing filter placed at different 377 

angles (Pioli et al. 2014). Three pictures are then combined and their correlation allows the 378 

individual grains to be classified by their characteristic orientation. To measure smaller 379 

crystals (microphenocrysts and microlites), it is common to use a scanning electron 380 

microscope in backscattered electron (BSE) mode (Cashman 1992; Hammer et al. 1999; 381 

Cashman and McConnell 2005; Nakamura 2006; Ishibashi and Sato 2007; Salisbury et al. 382 

2008; Blundy and Cashman 2008; Wright et al. 2012). Development of rapid x-ray mapping 383 

techniques now allows CSD analysis of x-ray element maps, which provide information on 384 

crystal compositions, textures (crystal size, orientation, shape) and modes of minerals (e.g. 385 

Muir et al. 2012; Ludovic et al. in press) to be extracted. Another new technique uses an 386 

electron backscatter diffraction detector (EBSD) attached to the SEM to obtain crystal 387 

orientations, which can provide insights into shearing, accumulation and degassing processes 388 

(Prior 1999; Prior et al. 1999; Hammer et al. 2010). Chemical mapping is now routinely and 389 

widely used (e.g. Ludovic et al. in press). In contrast, EBSD is more difficult and time 390 

consuming taking hours as opposed to a few minutes for the chemical mapping. As described 391 

in the references cited, it produces a wealth of information on various minerals, although the 392 

lack of compositional contrast between glass and feldspar can be problematic. 393 

Crystal size distribution can also be obtained directly in 3D via X-ray computed 394 

microtomography. Using this approach it is possible to obtain the total crystal volume, as well 395 

as the crystal volume of each mineral phase present, therefore crystallinity, crystal size and 396 

shape (e.g. Zandomeneghi et al. 2010; Voltolini et al. 2011). Again, resolution can be a 397 

problem. First, crystals may span a large size range, which requires imaging at several 398 

different resolutions (e.g. Pamukcu et al. 2010; 2012). Additionally, as in BSE and EBSD 399 

analysis, the compositional similarity between some crystal phases, such as alkali feldspars, 400 

and silicic matrix glass can make automated analysis challenging (e.g. Baker et al. 2012). 401 

However, excellent results can be obtained by working in phase-contrast tomographic mode 402 

(Polacci et al. 2010) and by recently applying a procedure known as phase retrieval to the 403 

reconstructed sample volumes (Arzilli et al. 2013).  404 

 405 

(iv) Errors in textural analyses  406 

 407 
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Uncertainties encountered in textural analysis are due to several factors. Any textural 408 

parameter, such as porosity or crystal size, has intrinsic measurement errors. These are linked 409 

to the apparatus used, and are generally easy to quantify using standards. A good practice, 410 

when a new method is introduced, is to assess its intrinsic error with synthetic samples of 411 

well-known particle content, size and distribution (e.g. see review of Rust and Cashman 2004 412 

for permeability, and Baker et al. 2012 for 3D data from X-ray microtomography). Another 413 

type of uncertainty is linked to natural variability, which is generally approached by using the 414 

concept of Representative Elementary Volume (REV, Bear 1972). Parameters measured in 415 

small neighboring regions within a sample have a large variability. As the analyzed regions 416 

become larger, this variability decreases until a steady value is reached at the REV size. One 417 

complication is that the REV should be significantly smaller than the sample (which is not 418 

guaranteed for ash particles), and that some parameters have a REV at the deposit scale, 419 

which means that multiple clasts have to be analyzed. If the sample location is such that 420 

eruptive parameters were steady during deposition, application of REV at the deposit scale 421 

represents that of fragmentation within the conduit. Taking porosity as an example, one 2D 422 

SEM image will yield one porosity measurement with a typically small (~1 %) intrinsic error 423 

due to thresholding of the grayscale values that represent vesicles. Several 2D images of the 424 

same sample taken at different locations and/or different resolutions (larger than the REV) 425 

typically yield larger (~10 %) uncertainties that are caused by small-scale spatial 426 

heterogeneity. Finally, the density distribution of all clasts at that location indicates the 427 

variability of porosity at the conduit scale, which can be quite large (e.g. Houghton and 428 

Wilson 1998).  429 

Raw data in terms of size (area, long axis, short axis, perimeter) and orientation of crystals 430 

and vesicles yield negligible intrinsic errors because they are computed with programs on 2D 431 

binary images with high resolution (>106 pixels). The greatest source of intrinsic error here is 432 

thresholding, which is set by the operator (Baker et al. 2011). When converting 2D data to a 433 

3D projection, however, the error depends on the stereological model used (i.e. particle shapes 434 

have to be assumed, Cashman 1988) and is thus harder to estimate. 435 

Most 2D textural parameters have well-established techniques and protocols to quantify 436 

intrinsic errors: porosity and vesicle size distribution, including: 437 

� VSD (Toramaru 1990; Mangan et al. 1993; Klug and Cashman 1994; 1996; Klug 438 

et al. 2002; Adams et al. 2006b; Shea et al. 2010a), 439 

� CSD (Higgins 2006), fabric indicators (Launeau et al. 1990), 440 

� vesicle shape (Moitra et al. 2013), 441 
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� clast shape (Marshall 1987; Capaccioni and Sarocchi 1996; Dellino and Liotino 442 

2002; Riley et al. 2003; Ersoy et al. 2006). 443 

However, conversion from 2D to 3D distributions introduces errors linked to stereological 444 

assumptions. The Cheng and Lemlich (1983) method does not involve assumptions of object 445 

shape, but it still does not take into account the truncation effect (e.g. Pickering et al. 1995). 446 

Left-hand (small-scale) truncation is related to the sensitivity of the measurement process; 447 

small objects are increasingly difficultto detect as their size decreases. Right-hand (large-448 

scale) truncation occurs under several circumstances, that in general imply the difficulty of 449 

sampling of the large objects. The Sahagian and Proussevitch (1998) conversion assumes 450 

spherical shapes, but corrects for the cut effect. Giachetti et al. (2011) found that Nv obtained 451 

from the two methods from the same lapilli were the same to within 15 %, and that VSD were 452 

also very similar. They recommended the first method for vesicle analysis, as the second 453 

method may generate negative values for some size classes. 454 

In terms of parameters that we can derive from textural analyses, decompression rate is 455 

probably one of the most important to quantify due to its implications for eruption dynamics. 456 

To achieve this, microlite shape, number density and size distribution have been used in 457 

combination with experimental data for low-mass flux, effusive eruptions (Couch et al. 2003; 458 

Cashman and McConnell 2005; Szramek et al. 2006; Clarke et al. 2007; Martel 2012; Wright 459 

et al. 2012). That different generations of microlites (nucleated pre-eruptively in the reservoir 460 

or syn-eruptively formed in the conduit) can be distinguished on the basis of chemical 461 

composition (Martel et al. 2006) confers a high degree of reliability in this method. 462 

Decompression rates deduced from vesicle number density (e.g. Toramaru 2006), however, 463 

tend to be maximum estimates because there could be more nucleation events during ascent 464 

that add to the signature left by decompression. Maximum decompression rates associated 465 

with the final, rapid, stages of ascent could be calculated directly from the smallest bubbles 466 

formed during the final fragmentation event (Shea et al. 2011; 2012). However, the 467 

relationships between bubble shape, nucleation, coalescence, deformation and/or breakup is 468 

not well established. 469 

 470 

Quantification and sampling of pyroclastic deposits for the textural characterization of 471 

their components  472 

 473 

The sub-group discussion focused on all types of pyroclastic fall deposits, as studied for 474 

textural purposes, identifying four main needs or issues, as listed next. 475 
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 476 

(i) Preliminary field studies and sampling strategy  477 

 478 

Field-based studies of pyroclastic deposits aim to relate both the whole deposit 479 

characterization (thickness and grain size), and the physical properties of the constituent 480 

particles, to the eruption conditions. Textural studies are time consuming, especially when 481 

they provide complete size distributions of the vesicle and crystal population. For these 482 

measurements the choice of a limited number of “representative” clasts selected for the 483 

analysis is critical, particularly when using these data to model eruption processes and their 484 

variability in time and space. Obtaining such clasts requires a cautious sampling strategy with 485 

well-defined scientific goals during field work. These studies are best performed only on 486 

well-documented deposits, supported by a robust stratigraphic reconstruction and correlation, 487 

as well as an accurate compositional stratigraphy framework. When not familiar with the 488 

deposit, a preliminary survey at different locations is useful for the evaluation of the 489 

significance of the case-type outcrops used for analysis. Well defined sublayers (or Units) 490 

should be identified in the deposit on the basis of clear, unequivocal 491 

lithological/sedimentological features and cross-correlated over the whole dispersal area of 492 

the deposit. Stratigraphic data are critical for placing each studied layer within an appropriate 493 

temporal framework within the stratigraphic sequence.  494 

Pyroclasts can be collected after the eruption/explosion, from fall deposits of ancient 495 

(unobserved) or recent (observed) eruptions, preferably within hours to days of the event (e.g. 496 

Gurioli et al. 2008; 2013). Sampling may also take place during eruptive activity, with 497 

samples collected directly with a specific device placed inside the fallout field. Three simple 498 

collection methods that can be applied to active fallout, as currently used, were listed: (1) the 499 

hand collection method involves collecting (and quenching) bombs or lapilli as they fall out 500 

of the plume by people standing in the active fall out field (e.g. Lautze and Houghton, 2007, 501 

2008; Gurioli et al. 2014); (2) the “tarp”, “space blanket” or “cleaned surface” strategy 502 

whereby plastic sheets are laid out close to the vent, or preexisting antropical or natural 503 

surfaces are considered. In both cases the pyroclasts falling in a known area are collected (e.g. 504 

Rose et al. 2008; Swanson et al. 2009; Andronico et al. 2009a; 2013; Eychenne et al. 2012; 505 

Houghton et al. 2013, Harris et al. 2013b); (3) the bucket strategy by which a large number of 506 

buckets are distributed across a discrete area of fallout for a certain period of time (e.g. 507 

Yoshimoto et al. 2005; Bustillos and Mothes 2010). When possible, the aim it is to collect a 508 

sufficient number of samples to estimate the magnitude of the explosive event through 509 
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extraction of the mass load per unit area; and to obtain a sufficient number of clasts for 510 

chemical and textural characterization. Other promising methods are just coming on-line, such 511 

as automatic ash sampling collectors (e.g. Bernard 2013; Shimano et al. 2013).  512 

 513 

(ii) Definition of essential, basic physical properties of the deposit to the study 514 

 515 

Most textural studies aim at characterizing magma heterogeneity and ascent dynamics, and at 516 

understanding the fragmentation process, beginning from the quantification of the juvenile 517 

componentry within the deposit (Table 1). Therefore, the clasts are usually sampled in a 518 

deposit at single locations (reference sections). It is important to bear in mind that variability 519 

across the deposit is filtered by transport and sedimentation, which primarily depends on 520 

eruption intensity, along with related plume dynamics and other properties such as wind 521 

direction and velocity. Therefore, clast properties can vary both in time (from the base to the 522 

top of a vertical sequence) and in space (from the main axis of dispersal to lateral outcrops at 523 

the edge of the fall out zone across the cloud, and from proximal to distal sites). Volcanic 524 

plumes (and clouds) are thus complex systems, whose properties do not vary linearly with the 525 

main eruption parameters. They are also affected by external variables, such as wind direction 526 

and intensity. This latter variability adds additional complexity to the clast type distribution. 527 

For this reason, the deposit should be preliminarily characterized at least in terms of 528 

stratigraphy, dispersal, thickness variation and volume (e.g. Fisher and Schmincke 1984; Cas 529 

and Wrigth 1987; Thordarson et al. 2009; Cioni et al. 2011). Estimation of plume height, 530 

eruption duration, volume and magma eruption rate can then also be derived for past eruptions 531 

from such analyses (e.g. Carey and Sparks 1986; Pyle 1989; Fierstein and Nathenson 1992; 532 

Sparks et al. 1997; Bonadonna et al. 1998; Freundt and Rosi 1998; Bonadonna and Costa 533 

2012; Fagents et al. 2013).  534 

 535 

(iii) Selecting the outcrop 536 

 537 

Basic criteria for sample outcrop selection can be reduced to three points. First: minimize the 538 

effect of wind direction. Outcrops located along the main dispersal axis are preferred to lateral 539 

exposures, unless the effect of wind is the target of study. For this reason, in the case of 540 

changes in wind direction or eruption intensity during different phases of the same eruption, it 541 

is more appropriate to sample each tephra layer at different ‘equivalent’ locations rather than 542 

to collect all samples at a single type outcrop. If sampling is restricted to a single location, the 543 
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inferred dispersal pattern and distance from the main dispersal axis of each layer should be 544 

noted and taken into account when analyzing clast variability among different layers. 545 

Clear textural variations among the juvenile clasts, in terms of color, general morphology, 546 

vesicularity, vesicle shape, crystallinity should be evaluated in the preliminary field survey, so 547 

that any lateral and vertical variability within the deposit is already defined following field 548 

reconnaissance. This ensures that, when clast types are chosen in the laboratory, the main 549 

textural types are easily identified and separated. It is also important to avoid excessive 550 

subdivisions, which can unnecessarily complicate interpretations and lead to redundant 551 

measurements. 552 

Finally, if one of the goals of the study is quantification of the proportion of distinct 553 

textural clast types, it is important to remember that sedimentation from the volcanic plume is 554 

affected by clast density, shape and size (Bonadonna et al. 1998; Pfeiffer et al. 2005; Barsotti 555 

et al. 2008; Eychenne et al. 2013, and references therein). This is especially relevant when a 556 

single explosion produces a juvenile population with a wide range of physical and textural 557 

features: their relative distribution within the deposit can vary laterally in the deposit as well 558 

as with distance from the vent. Thus, at any single site, the sample is not necessarily 559 

representative of the abundance within the eruption mixture. This is especially true in the case 560 

of small plumes and mid-intensity eruptions (e.g. Rose et al. 2008; Cioni et al. 2008; 2011; 561 

D’Oriano et al. 2011a; Andronico et al. 2013a and references therein). While the textural 562 

features of the different clast types can be studied at a single outcrop, the relative proportions 563 

between clast types need to be determined across the whole deposit by integrating 564 

componentry data on samples collected at outcrops at differing azimuths and distances from 565 

the source. 566 

 567 

(iv) Sampling  568 

 569 

After identification of the “type locality/ies”, where the deposit shows the best and most 570 

complete exposure, a suitable approach is random collection of a statistically relevant number 571 

of clasts from a single layer. Several techniques can be used, ranging from sieving in the field 572 

to find the dominant clast size (for coarse clasts), or sampling the bulk deposit for later clast 573 

selection in the laboratory (for small clasts). In the case of fine-grained deposits, it can be 574 

useful to apply sampling techniques that preserve structural and textural characteristics of the 575 

whole deposit. Samples can be retrieved using tubes or boxes manually pressed into the 576 

deposits, or carfully carved out and surround-wrapped deposit blocks. In situ and/or 577 
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laboratory impregnation techniques of deposits exist for a broad range of grain sizes and 578 

compositions (Bouma 1969), some of which are applicable to fragile or loose volcanic 579 

deposits. The applicability of such techniques to fine-to-medium grained volcanic deposits 580 

should be tested, since they would allow both 2D (e.g. X-ray radiography and thin section 581 

analysis) and 3D analysis (X-ray tomography and anisotropy of magnetic susceptibility) to be 582 

applied, as frequently used for hard rocks or single clasts (e.g. Lanza and Meloni 2006). 583 

The number of samples collected should be defined depending on the purpose of the 584 

study. Fixing the number of samples per stratigraphic layer based on the layer characteristics 585 

dynamics (e.g. extent of zoning/fluctuations in grain-size, componentry, etc.) for 586 

characterizing eruption dynamics, or focusing on the layer thickness for conduit dynamic 587 

characterizations are two examples of such pre-selection decisions. Before selecting clasts, 588 

basic grain-size studies (when the bulk deposit is collected) on each sampled layer (median 589 

and sorting of grain-size distribution) and componentry analysis should be carried out to 590 

ensure effective sub-sampling for textural studies. Componentry analysis is the subdivision of 591 

the sample into three main components: juvenile and non-juvenile materials and crystals. 592 

Following Fisher and Schmincke (1984), juvenile components are vesiculated or dense 593 

fragments that represent the primary magma involved in the eruption; non-juvenile material 594 

includes accessory and accidental fragments that are not related to the fresh magma. The free 595 

crystals in the deposits can be juvenile or not. Finally, after choosing the size intervals of the 596 

clasts for physical and textural measurements (i.e. bulk and solid density, vesicularity, 597 

microtextures, permeability), it is useful to compare the grain-size distribution of each interval 598 

with the total grain-size distribution of the sampled layers, especially when the grain-size 599 

distribution is highly variable within the sampled stratigraphy. This strategy allows checking 600 

of sample representativeness. For example, sampling may be from (i) bimodal or complex 601 

multimodal distributions, or (ii) anomalous, poorly sorted deposits. In the second case, 602 

features that can be indicative of contamination from other sources, such as ballistic 603 

components, elutriated ash from pyroclastic density currents or from reworking (e.g. Fierstein 604 

et al. 1997, Eychenne et al. 2012). It is useful, whenever possible, to show variance, or 605 

invariance, of the textural features by comparing data collected in the selected size class with 606 

textural data appositely made on different size classes. This should, at-least, be carried out for 607 

a few selected cases. 608 

 609 

How to link chemistry, geochemistry and textural quantifications: the rock (bulk, glass, 610 

crystal) geochemistry group report  611 
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 612 

This group based their discussion on three fundamental observations:  613 

1. all procedures required to acquire geochemical data and run high petrological 614 

experiments are well defined; 615 

2. all measurements have associated error and error propagations which can be dealt with 616 

systematically; 617 

3. internet databases are already available (e.g. Georoc and Germ) and incremented on a 618 

regular basis (e.g. GeoReM: http://georem.mpch-mainz.gwdg.de/; Earth: 619 

http://earthref.org/; GEOROC: http://georoc.mpch-mainz.gwdg.de/georoc/). 620 

Therefore, the approach undertaken was to 621 

(1) list what geochemistry can provide in terms of initial parameters and conduit 622 

processes, 623 

(2) identify the potential areas of textural study where geochemistry can be of help, and 624 

(3) discuss a few contentious points. 625 

 626 

(1) Initial parameters and conduit processes 627 

 628 

Geochemical and petrological analysis of pyroclastic products can constrain the initial 629 

conditions operating in the shallow crustal holding chamber through to the surface via the 630 

conduit system. In transit through this system, the textural features of the pyroclasts quenched 631 

upon eruption are imprinted. These were listed as: 632 

� Defining magma pre-eruptive storage conditions (in terms of pressure and 633 

temperature) from mineral-melt equilibria or disequilibria (e.g. Rutherford et al. 1985; 634 

Scaillet and Evans 1999; Pichavant et al. 2002; Blundy and Cashman 2008); 635 

� Assessing initial viscosity, temperature, melt composition and volatile, budget 636 

including input of gases from deeper sources (e.g. Wallace 2001; Blundy and Cashman 637 

2008; Métrich et al. 2010); 638 

� Defining the evolution of volatile contents (specifically CI, F, S, H2O, CO2) using 639 

electron probe, ion probe (SIMS), Raman and FTIR in melt inclusion and host 640 

minerals, while combining results with vesiculation studies and gas relsease 641 

measurements (e.g. Wallace 2005; Métrich and Wallace 2008). In such a way we can 642 

determine whether the magma was saturated, over-saturated or under-saturated at a 643 

certain depth, and how these conditions affect vesiculation in the conduit (e.g. 644 

Anderson 1991; Hurwitz and Navon 1994; Dixon 1997; Roggensack et al. 1997); 645 
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� Measuring residual volatiles in glasses and bulk-rock samples to reveal how degassed 646 

the magma is (Newman et al. 1988; Villemant and Boudon 1998; Shea et al. 2014); 647 

� Providing variable diffusion of stable elements (6Li, 7Li, H/D, 10B, 11B) or radiogenic 648 

isotopes (210Pb-226Ra), which are used as tracers for degassing and interaction with 649 

hydrothermal fluids (e.g. Berlo et al. 2004; Kent et al. 2007; Humphreys et al. 2008b; 650 

Schiavi et al. 2010; Berlo and Turner 2010; Vlastélic et al. 2011); 651 

� Measuring mineral diffusion profiles and deriving pre-eruptive residence times, ascent 652 

rates and cooling rates (e.g. Kahl et al. 2011); 653 

� Providing crystal shapes, zoning schemes, and dissolution stages, while determining 654 

which magmatic process and physical parameters control crystal shape/zoning (e.g. 655 

Hammer and Rutherford 2002; Rutherford and Devine 2003; Blundy et al. 2006; Costa 656 

et al. 2008; Streck 2008); 657 

In addition, petrological investigations can provide: 658 

- Experimental observations on phase equilibria (mineral-melt-vapor), crystallization 659 

paths and liquid line of descent (e.g. Hammer and Rutherford 2002; Couch et al. 2003; 660 

Blundy et al. 2006; Hammer 2008); 661 

- Calibration of decompression rates. While this has been carried out for rhyolitic 662 

systems (e.g. Mourtada-Bonnefoi and Laporte 2002, 2004; Mangan and Sisson 2005; 663 

Gardner 2007; Cichy et al. 2011; Cluzel et al. 2008) and phonolitic systems (e.g. 664 

Larsen 2008; Shea et al. 2010b), there are ongoing studies on basaltic systems (Bai et 665 

al. 2008; Lesne et al. 2011; Pichavant et al. 2013); 666 

- Diffusion coefficients of relevant chemical elements, including volatiles, to improve 667 

kinetic modeling (Dohmen et al. 2007; Chakraborty 2008); 668 

- Relationships between crystal morphologies, cooling rates and degree of undercooling 669 

(e.g. growth of crystals with hopper and swallow tail shapes experiencing rapid late-670 

stage crystallization; Faure et al. 2003, 2007); 671 

- Surface flux of volatiles (i.e. what leaves the system; see reviews by Fischer 2008; 672 

Pyle and Mather 2009) compared with melt inclusion data (i.e. what is in the system 673 

initially; e.g. Le Voyer et al. 2010; Rose-Koga et al. 2012; Schiavi et al. 2012). 674 

 675 

2) Where geochemistry can help textural study  676 

 677 
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Measurements of volatile contents in quenched, phenocryst-hosted melt inclusions provide 678 

estimates of initial (shallow crustal) values (e.g. Kent 2008). These are minimum estimates, 679 

because H2O can leak from melt inclusions during ascent by intracrystalline diffusion as the 680 

far-field environment of the crystal evolves (Chen et al. 2011, 2013). Melt inclusion volatile 681 

contents can be inverted to equivalent saturation pressures using multi-species (e.g., H2O-682 

CO2; H2O-Cl) solubility laws (using, for example, VOLATILCALC, MELTS). These, in turn, 683 

can be used to calculate total pressures (and hence depth) by assuming volatile saturation, or 684 

minimum pressures if the sample is under-saturated in volatiles. Progressive closure of melt 685 

inclusion networks in growing phenocrysts can result in zone-dependent melt inclusion 686 

volatile contents that record the evolution of pressure conditions as magmas migrate form 687 

depth (Blundy and Cashman 2008, and references therein). Combining melt major element 688 

and volatile compositions with phenocryst contents allows calculation of initial magma 689 

physical properties (viscosity, density, surface tension, etc.). Derivations of such parameters 690 

are necessary for modeling of magma ascent, vesiculation and groundmass crystallization.  691 

Pre-ascent storage conditions can also be inferred from phase-equilibria studies of natural 692 

compositions. Comparison of natural and experimental phase abundances and compositions, 693 

combined with constraints of volatile content (from melt inclusions) and temperature (from 694 

e.g. Fe-Ti oxides) allows estimation of total pressure if the degree of volatile saturation is 695 

established through use of mixed-volatile experiments (Pichavant et al. 2007; Cadoux et al. 696 

2014). 697 

Residual volatile content (H2O, CO2, SO2, Cl, F … … …) measured in the glass or 698 

directly from gases emitted at the vent, can be correlated with textures (e.g. Piochi et al. 2005; 699 

2008; Balcone-Boissard et al. 2011, 2012; Shea et al. 2012, 2014; Burton et al. 2007; Polacci 700 

et al. 2009b; Miwa and Toramaru 2013). They can also be compared with pre-eruptive volatile 701 

contents obtained from melt inclusion investigations to evaluate both the extent and efficiency 702 

of syn-eruptive degassing (e.g. Shimano and Nakada 2005; Noguchi et al. 2006, Métrich et al. 703 

2001; 2010). Residual water content or Cl content (when Cl partitions into a H2O vapor phase, 704 

so that it can thus be used as an indicator of degassing processes; Balcone-Boissard et al. 705 

2010) is typically plotted against Vg/Vl, where Vg is the volume of vesicles corrected for 706 

phenocrysts and Vl is the volume of melt and microlites (Villemant and Boudon 1998, 707 

Balcone-Boissard et al. 2011, 2012). An important issue is to assess the extent of post-708 

eruption hydration. Recently, thermal gravimetric studies have proved to be quite effective in 709 

alowing this correction; a correction based on oxygen or hydrogen isotopic compositions (e.g. 710 

Giachetti and Gonnerman 2013; Shea et al. 2014). Recent studies on hydrogen isotopes, 711 
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correlated with SEM glass textures permit us to identify magmatic water from meteoric water 712 

generated by re-hydratation (Kyser and O’Neil 1984). Hydration can also be assessed from 713 

the ratio between water species (molecular H2O vs. OH) in residual glass, as determined by 714 

FTIR data or Raman analyses (Hammer et al. 1999; Le Losq et al. 2012). 715 

Ascent and decompression in the conduit can result in chemical changes that can be 716 

quantified by a range of microbeam analytical techniques (EPMA, LA-ICPMS, FTIR, µ-717 

Raman). As the pressure drops, H2O will migrate out of melt inclusions and crystals (Le 718 

Voyer et al 2010; Hamada et al 2010), and light elements (Li, B) will try to re-establish 719 

equilibrium between crystals, host melt and any vapor or brine phase present (Berlo et al. 720 

2004). At the same time, H2O and CO2 will migrate out of melt inclusions to be apparent as 721 

re-entrant tubes at the edges of crystals (Liu et al. 2007; Humphreys et al. 2008a). Each of 722 

these processes will establish diffusive gradients frozen into the pyroclast. These can be 723 

measured and modelled using experimentally determined kinetic laws to infer decompression 724 

rates during ascent (e.g. Gonnermann and Manga 2013). These decompression rates can then 725 

be compared with those derived from other approaches, including those based on analyses of 726 

microlite sizes and shapes, vesicle number densities, and hornblende-breakdown reactions 727 

(e.g. Martel 2012; Cluzel et al. 2008; Giachetti et al 2010; Shea et al. 2011). 728 

 729 

3) Contentious points 730 

 731 

Care needs to be taken when converting decompression rate to magma ascent rate, and 732 

especially when comparing decompression rates obtained using different methods. Pressure 733 

gradients in conduits are highly nonlinear due to the strong effect of dissolved H2O on magma 734 

viscosity, particularly at low H2O contents (Gonnermann and Manga 2013). Moreover, 735 

different processes will likely record different decompression rates, according to the time 736 

available for the process to take place. For example, microlite growth is relatively slow, so 737 

that microlite size and shape distributions are likely to record an average decompression rate 738 

during ascent (Martel 2012). Bubble nucleation and growth, on the other hand, can occur very 739 

rapidly, so that Nv may record just the peak decompression rate immediately beneath the 740 

fragmentation zone (Cluzel et al. 2008; Giachetti et al 2010). Comparison therefore requires 741 

caution. However, integration of decompression rates as obtained from different textural and 742 

chemical characterizations, when combined with mass eruption rate estimation from deposit 743 

analysis or direct observations, can provide quantitative insights into the processes involved in 744 

magma ascent from the deep source to the surface. 745 
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Another outstanding issue is the role of dense clasts. That is, did they originate from (i) 746 

magma quenched at depth prior vesiculation, (ii) vesicle collapse phenomena, or (iii) volatile-747 

poor magma? It is important to provide a correct interpretation because each conclusion 748 

relates to very different mechanisms. In several eruptions it has been found that the densest 749 

clasts can be depleted in water through syneruptive bubble collapse and coalescence (Rust and 750 

cashman 2007; Piochi et al. 2008, Shea et al. 2014). In Plinian eruptions at Vesuvius (Pompeii 751 

and Avellino) the densest clasts have been interpreted as being due to magma that has lost 752 

water during transition from closed-to open-system degassing (Balcone-Boissard et al. 2011; 753 

2012). Water depletion can also result from syn-eruptive processes, such as clast recycling at 754 

magmatic temperature and intrinsic magmatic redox conditions, as shown by the experiments 755 

of D’Oriano et al. (2012).  756 

Another key question in the geochemical investigation of volcanic rocks is whether it is 757 

possible to assume that the compositions (including volatile content) that we measure 758 

(whether it be in the bulk rock, glass, minerals) represents equilibrium or disequilibrium 759 

processes and/or if equilibrium or disequilibrium conditions pertain to local subsystems or to 760 

the whole magmatic body that we are investigating (see for example Pichavant et al. 2007). 761 

Chemical species with different diffusivities, for example, record equilibrium or non-762 

equilibrium conditions (De Campos et al. 2008). Equilibrium kinetics is also composition 763 

dependent because it is dictated in part by melt viscosity which, itself, is related to viscosity. 764 

This issue will generally affect silicic to intermediate magmas more than basaltic 765 

compositions. However, we note that even for basaltic systems crystal-fluid-bubble magma 766 

mixtures can achieve viscosities that range over six or seven orders of magnitude, up to 106 Pa 767 

s (e.g. Gurioli et al. 2014), depending on the degree of cooling, degassing and crystallization. 768 

Such rheological variation even within a single composition, and its effect on eruption 769 

mechanisms, deserves equal attention.  770 

 771 

How to link the geophysical data and the textural quantification: the geophysics group 772 

report 773 

 774 

There are a wide array of remote sensing and geophysical approaches that can be used to 775 

parameterize an explosive event both within the conduit and outside of the conduit. Within the 776 

conduit geophysical signals, are generated by fluid and gas flow in the magma-filled part of 777 

the conduit and during fragmentation. Magma-gas ascent dynamics and supposed conduit 778 

conditions, extracted from geophysical data for this part of the system, are particularly 779 
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difficult to validate because the processes cannot be directly observed. They are thus 780 

effectively “invisible” to direct observation. By outside of the conduit we mean measurements 781 

of the emitted mixture of gas and particles as it (i) exits the vent, (ii) ascends above the vent 782 

as a plume, and then (iii) drifts away from the vent as the cloud. Models and dynamic 783 

parameters extracted for geophysical and remote sensing data for this part of the system are a 784 

little easier to validate because they can be directly observed.  785 

The invisible part of the system is the realm of studies using seismic, pressure 786 

(infrasonic), and deformation data. All three data sets have long been shown capable of 787 

detecting the geophysical signature of explosive events spanning weakly explosive Hawaiian-788 

to-Strombolian events through Plinian events. Seismic data sets are available, for example, for 789 

gas-pistoning events, puffing, fountains, and strombolian eruptions at mafic systems (e.g., 790 

Goldstein and Chouet 1994; Ripepe et al. 1996; Sciotto et al. 2011; Ripepe and Braun 1994); 791 

as well as events that generate somewhat larger plumes generated during silicic eruptions as at 792 

Santiaguito, Soufriere Hills, Redoubt to name a few. Associated pressure impulses (as 793 

typically recorded by infrasound and barometers) have long been recorded for such energetic 794 

events, famous examples include the pressure response to the 1883 eruption of Krakatoa and 795 

the 1967 caldera-forming eruption of Fernandina (Simkin and Howard 1970). Magma-gas 796 

ascent has also been shown to generate rapid, but recordable, deformation signals detected by 797 

tiltmeters (Aoyama and Iguchi 2008; Genco and Ripepe 2010; Iguchi et al. 2008; Zobin et al 798 

2007).   799 

The measurement of velocities, masses and size distributions of particles leaving the vent 800 

have typically been measured by visible and thermal video (e.g., Chouet et al. 1974; Ripepe et 801 

al. 1993; Harris et al. 2012; Delle Donne and Ripepe 2012; Taddeucci et al. 2012; Bombrun et 802 

al. 2014; Gaudin et al., 2014a,b) and Doppler radar (e.g., Dubosclard et al 1999; Hort and 803 

Seyfried 1998; Vöge et al 2005; Gouhier and Donnadieu 2008; 2011; Gerst et al 2013). While 804 

infrasonic array methods are also available to location of the emission in x,y space (Ripepe 805 

and Marchetti, 2002). Plume front velocities, density and entrainment rates have also been 806 

successfully tracked using visible and thermal cameras, as well as radiometers, for a few 807 

stronger, ash-rich, buoyant plumes at Stromboli, Santiaguito and Eyjafjallajökull (Patrick 808 

2007; Sahetapy-Engel and Harris 2009; Bjornsson et al. 2013; Valade et al. 2014); See 809 

Chapter 9 of Harris (2013) for review.  810 

Satellite remote sensing has long been used to track and measure cloud properties as the 811 

cloud drifts and disperses. These data are available for all cloud sizes, from those associated 812 

with small Strombolian and fountaining events (e.g. Heiken and Pitts 1975; Dehn et al 2000; 813 
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2002) to sub-Plinian and Plinian events (e.g., Holasek and Self 1995; Koyaguchi and Tokuno 814 

1993; Holasek et al. 1996). Cloud dispersion dynamics are especially well revealed by 815 

geostationary satellite data with nominal imaging of one image every 15 minutes, and higher. 816 

Basic cloud properties that can be measured by satellite data include cloud dimensions, drift 817 

velocity and height (e.g., Robock and Matson 1982; Denniss et al. 1998; Aloisi et al. 2002; 818 

Zakšek et al 2013); with Prata (1989) and Wen and Rose (1994) having introduced a method 819 

to potentially extract particle size distribution and mass from “split window” (10-12 µm) 820 

thermal data.  In the last five years, while especially modified ground-based thermal cameras 821 

have been adapted to extract ash particle size and plume mass (Prata and Bernardo 2009) 822 

newly available technology such as LiDAR and PLUDIX were shown of value in detecting, 823 

tracking and measuring fine particles in the Eyjafjallajökull’s cloud (e.g. Bonnadonna et al. 824 

2011). Disdrometers and ash collectors, however, currently show greater potential for 825 

measuring particle size and terminal velocity (Marchetti et al. 2013; Shimano et al. 2013) than 826 

PLUDIX, which was designed more for meteorological applications (Caracciolo et al. 2006; 827 

Prodi et al.  2011). 828 

For the gas content of the cloud, satellite-based sensors such as TOMS, AIRS, OMI, 829 

MODIS, GOME and IASI, and have been used to obtain SO2 content in the far field; that is 830 

once the gas cloud has decoupled from the ash cloud (e.g. Krueger et al. 1990; Carn et al. 831 

2003; 2005; Watson et al. 2004; Yang et al. 2007; Thomas et al. 2011; Rix et al. 2012; Walker 832 

et al. 2012). Ground-based sensors, such as COSPEC, FLYSPEC and DOAS (e.g. Caltabiano 833 

et al. 1994; Horton et al. 2005; Oppenheimer et al. 2011), have been used to measure SO2 834 

fluxes relatively close to the source, see Williams-Jones et al (2008) for full review. These 835 

approaches have been recently supplemented by SO2 camera systems, which allow 2D images 836 

of SO2 concentrations to be collected at ~1 Hz rates (Mori and Burton 2006). Such studies 837 

have, though, tended to focus on passive degassing and gas-puffing systems, because the 838 

presence of ash interferes with UV-light transmission on which the technique relies, making 839 

measurements problematic. Recently, however, SO2 cameras have been used to measure the 840 

gas masses and fluxes involved in discrete explosive events (Mori and Burton 2009; Holland 841 

et al 2011; Barnie et al. 2014). 842 

However, none of these techniques directly collects or makes contact with the magma or 843 

particles they measure; this is, after all what defines these techniques as “remote sensing”. 844 

They thus the need for quality ground truth data to validate particle velocities and sizes 845 

extracted from what is, basically, an electronic response, as well as to test the assumptions and 846 

models used to convert received “power” to a more meaningful and useful parameter (such as 847 
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mass). At the same time, any single data set can be inverted to support a conduit or plume 848 

dynamic model; but results need to fall within constraint provided by ground truth data. In 849 

this case, ground truth is provided by analyses of the magma and particles themselves to 850 

extract parameters such as magma temperature, chemistry, density, crystallinity and vesicle 851 

content, plus vesicle shape and size, as well as particle density, size, shape and roughness. 852 

Geophysical-data-derived magma ascent, explosion-source and fragmentation models 853 

likewise need to be consistent with independent (physical-volcanology-data-derived) 854 

measurements for the same processes if they are to be valid. We explored these needs through 855 

mostly focusing on weakly explosive, basaltic cases; these being the cases usually targeted, 856 

because they provide a reliable and easy-to-measure source for testing new technology, 857 

methods and algorithms for ground-based geophysical enquiry. 858 

 859 

The basic need:  Realistic assumptions and validation 860 

The basic response of a remote sensing instrument is a voltage which, through calibration, can 861 

be converted a higher level physical value, such as spectral radiant intensity or power. To 862 

convert this value to higher level and more volcanologically-useful parameters (such as 863 

particle size distribution, mass flux or plume density) requires an increasingly complex 864 

system of assumption stacking. Thus, to adequately reduce geophysical data, a number of 865 

input parameters are required and many assumptions need to be made all of which can be 866 

provided by the physical volcanological community. Data sets from the physical 867 

volcanological community, especially if provided simultaneously with geophysical data 868 

collection during an active event, or provided as a library typical of that event, can also be 869 

used to “ground truth” or check the precision and reality of the geophysically applied input 870 

and output. 871 

 872 

(i) Seismic and infrasonic data 873 

Seismic signals that accompany explosions are primarily short period (high frequency > 1 Hz) 874 

signals which are typically termed “explosion quakes”. These usually have high amplitudes 875 

and mostly include frequencies up to a few hertz, with a possible higher frequency acoustic 876 

phase (McNutt 1986, Mori et al 1989, Braun and Ripepe, 1993). Below these frequencies, 877 

short period (SP) signals are often hidden by Very-Long Period (VLP) components with much 878 

lower amplitudes (Neuberg et al., 1994; Kaneshima et al. 1996). In-spite of an enormous 879 

amount of work, it remains unclear as to how we can explain the VLP seismic component, 880 

which itself is only one part of the seismic signal. It also remains unclear as to whether, and/or 881 
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how, SP and VLP components are related to the magnitude and intensity of an explosion, 882 

although attempts have been made using tremor (Brodsky et al 1999; Nishimura and McNutt 883 

2008; Prejean and Brodsky 2011). Clearly, coupling with the physical volcanology 884 

community could help narrow down much uncertainty, and allow progress towards better 885 

models to untangle the seismic signal associated with discrete explosive events. 886 

Delay times in the arrival of seismic, infrasonic and thermal signals have been commonly 887 

used for assessing the depth at which various physical processes occurring in explosive 888 

basaltic systems (e.g. Ripepe and Braun 1994; Ripepe et al. 2001; 2002; Harris and Ripepe 889 

2007). However if, for example, the thermal-infrasound delay is to be used to obtain the 890 

fragmentation depth, then sound speed in the conduit needs to be assumed. This will be highly 891 

variable with conditions in the empty portion of the conduit, including mixture density, gas-892 

to-particle ratio, and temperature of the mixture through which the sound is propagating. Thus 893 

we need to know these variables if we are to provide a realistic sound speed value and hence a 894 

plausible depth. For geophysical modelling of the shallow explosion mechanism and depth we 895 

thus need to constrain two fundamental parameters. First, the magma crystal and 896 

bubblecontent (as well as size, shape and distribution), plus fluid chemistry and temperature, 897 

to define magma rheology properties and bubble ascent dynamics. Second, the exact mix and 898 

character of the mixture of gas and particles that ascends the final section of the conduit to 899 

exit the vent and feed the emission. 900 

 901 

(iii) Plume emission parameterization 902 

Velocities, mass fluxes and particle size distributions (PSDs) for lapilli through bomb sized 903 

particles have been derived from high spatial and temporal resolution video data obtained 904 

using both near-infrared and thermal cameras (Chouet et al., 1974; Ripepe et al., 1993; Harris 905 

et al., 2012; Delle Donne and Ripepe 2012; Bombrun et al., 2014). 906 

Generally, these studies have focused on Stromboli.  In such camera data, the lower limit 907 

of a particle size that can be extracted is limited by pixel size. This is typically centimeter in 908 

dimension, depending on the detector instantaneous field of view and distance to the target 909 

(Harris 2013). A pixel mixture model can be applied to obtain the size of a sub-pixel particle, 910 

but it needs to assume a temperature for the particle and then uses the pixel-integrated 911 

temperature to solve for pixel portion occupied by that particle (Harris et al. 2013a). 912 

Symmetry then needs to be assumed to convert from particle area to particle volume, and a 913 

density needs to be assumed to derive particle mass (Bombrun et al. 2014). For ash-rich 914 

plumes, methods have been applied to extract total plume mass and air entrainment properties 915 
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from ascent dynamics of buoyant thermals (Wilson and Self 1980; Patrick 2007; Valade et al. 916 

2014).  However, all methods need particle shape, particle density, plume density and/or size 917 

distribution data to: (i) determine whether the input assumptions are valid; and (ii) ground 918 

truth the remote-sensing-data derived size and mass data (Harris et al. 2013).  The advantage 919 

is, if a validated method can be developed, particle size distribution, mass and mass flux data 920 

for the vent leaving plume can potentially be provided multiple times per second using 921 

camera data. (e.g. Taddeucci et al. 2012; Bombrun et al. 2014).   922 

Deducing the erupted mass from Doppler radar data, requires the assumption of a particle 923 

size distribution for the eruption. Because this particle size distribution is unknown, an 924 

average particle size can be constrained from the Doppler radar measurement, typically using 925 

the eruption velocities themselves using either terminal fall velocities (Hort et al 2003) or by 926 

discriminating between ballistics (larger than a few millimeters or 1 cm, depending on the 927 

radar wavelength) and fine ash particles (<1 mm) using their temporal velocity evolution 928 

(Valade and Donnadieu 2011). Both methods can be used to obtain an estimate for the erupted 929 

mass of ballistics. We thus need to know whether the constrained average particle size can be 930 

used for mass retrieval, whether the assumption is a good approximation, and what the 931 

difference between the derived value and true value is. 932 

The radar is able to measure particles of all sizes, provided there are enough particles 933 

available to return a signal. The relationship between particle size and number of particles 934 

required for a signal that exceeds the noise level, however, is not linear. It also depends on the 935 

radar wavelength and the distance between the radar and target. The smaller the radar 936 

wavelength, and/or the smaller the distance between the radar and target, the smaller the 937 

number of fine particles needed for a return signal. For particles <1 mm, halving the particle 938 

size increases the number of required particles by a factor of 64. Doubling the size of particles 939 

to >1 cm means that only ¼ of the number of particles are needed to return the same signal 940 

amplitude. In addition, radar can measure at points (gates) across the entire plume thickness. 941 

Currently, the radar’s best role is to provide radial velocity measurements, with well-stated 942 

limits as to the particle size to which these data relate, through the entire plume thickness. 943 

 944 

Questions, points and issues 945 

In short, the question from the geophysical to the textural community is:  “Just what does the 946 

magma look like at the point of fragmentation?” Then, we need to know everything possible 947 
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(physically) about those fragments if we are to reduce and model our data correctly. To help 948 

with this, the geophysics group concluded that: 949 

- Basic measurements of geophysical parameters (such as seismic energy, acoustic 950 

energy, energy partitioning, spectral radiance, radar power) are the most 951 

straightforward geophysical measurements to consider for correlations with 952 

parameters derived from physical volcanology. 953 

- By completing multi-disciplinary correlations we improve our understanding of 954 

explosion dynamics, and only with a complete set of measurements can we have a 955 

complete and well-constrained understanding of the system (e.g., Gurioli et al. 2013; 956 

2014; Leduc et al 2014).  957 

- There is a wealth of textural and geophysical data for Strombolian events, and some 958 

data for larger events. These have been used to define the characteristic geophysical 959 

and textural signatures that allow us to distinguish each event type (e.g. Patrick et al. 960 

2007; Leduc et al 2014). Focus on such eruptive phenomena is a result of low energy 961 

events being more frequent, more approachable, and thus easier to capture as at the 962 

case type location: Stromboli (Harris and Ripepe 2007). 963 

- There is an unfortunate, but understandable, lack of multi-disciplinary data for larger 964 

(Vulcanian-to-Plinian) events; because they are rarer. With multi-disciplinary 965 

approaches becoming more routine, this situation is improving.   966 

Thermal and SO2 sensor arrays are becoming increasingly common components of permanent 967 

monitoring arrays at many persistently active sites (Harris 2013). However, it is extremely 968 

unlikely that such technology will ever be installed on every potentially active volcano; all of 969 

which will give seismic and pressure signals detectable by distant stations. Thus, from an 970 

operational point of view, it is more realistic to push forward with operational correlations 971 

between seismic-infrasonic metrics and textural deliverables to understand the ongoing 972 

progression of global volcanic events. In doing this, we must remember that many 973 

geophysical signals tend to be time-averages (e.g. tremor amplitude). Thus, we need to 974 

consider geophysical measurements that describe single, discrete explosions if we are to 975 

reasonably compare with textural variations between many individual emission events, or 976 

emission phases, that characterize the total eruption, total energy being one prime example 977 

(e.g. Marchetti et al 2009).  978 

In terms of progress, we are at an exciting point in our ability to track and understand 979 

explosive volcanic emissions through true cross-disciplinary integration of deposit, 980 

geochemical, textural and geophysical data. Studies are increasingly bringing together 981 



30 
 

multiple approaches in the field (e.g. Rosi et al. 2006), in the laboratory (Clarke et al. 2009), 982 

at large-scale artificial experiments (Sonder et al. 2013) and during field deployments (Harris 983 

et al. 2013b). As a community we appear to be converging on the correct, multi-disciplinary 984 

approach around which we are uniting. This can only be aided by further funding, and 985 

contribution to, pan-disciplinary workshops, meetings and working groups with the objective 986 

of totally understanding the system and constraining measurements with the least amount of 987 

uncertainty. 988 

If we are to progress further with our understanding of fragmentation and plume ascent 989 

processes, we must develop a new multi-disciplinarily mentality. This requires us to break the 990 

borders between different disciplines, to move beyond combining simple geophysical 991 

interpretations and to bring in constraint that spans the entire community. We are, today, just 992 

at the beginning of this new age; an age which links texture to seismology (Miwa et al. 2009; 993 

Miwa and Toramaru 2013; Gurioli et al. 2014) and infrasound (Colò et al. 2010, Landi et al. 994 

2011); as well as petrology to geophysics (Saunders et al. 2012; Martí et al. 2013). 995 

 996 

Questions, needs and recommendations 997 

 998 

In terms of issues that need to be resolved, if we are to improve our understanding of volcanic 999 

emissions through a truly cross-disciplinary integration (with a focus on textural metrics), we 1000 

sum up in Tables 3, 4 and 5. While Table 3 summarizes the main open questions identified by 1001 

this working group, Table 4 collates the needs, in terms of work that needs to be done, to 1002 

attempt to address these questions. Finally, Table 5 provides recommendations as to how we 1003 

may move forward to begin to solve these, currently, recognized gaps in our capability. 1004 

The list of key issues and questions defined by each sub-group, as complemented by the 1005 

final round-table discussion and follow up discussion allows us to distil the following 1006 

community-wide points and initiatives as priorities: 1007 

1. We need to define, and adhere to, standard sampling, data collection, experimental and 1008 

methodological procedures to allow full integration of the four disciplines; 1009 

2. In doing this we need to understand each other needs, and then follow each other’s 1010 

well-recognized sampling etiquette if we are to work together as a truly integrated 1011 

team. 1012 

3. We have to collate all data and measurements that can be provided by each discipline 1013 

and evaluate what do we need more from each field at some central host site; 1014 
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4. Always, quantification and statement of the precision on the measurements must be 1015 

made, and a set of standards produced to allow data quality control has to be adhered 1016 

to; 1017 

5. The community needs to explore and discuss the best means to improve quality 1018 

measurements and the amount of data available, while collecting "missing" data; 1019 

6. Guidelines need to be agreed on regarding essential key parameters that need to be 1020 

extracted (versus those that are less important), and common standards need to be 1021 

fixed that allow these key parameters to be exported from one group to another.  1022 

7.  Central to this is creation of an open access data bank to support essential 1023 

geophysical, deposit, textural and geochemical data integration and sharing. This 1024 

means creation of a repository of data grouped by eruptive style and/or geographic 1025 

location into which members can make deposits and withdrawals;  1026 

8. All of this should be ideally be integrated into a GIS platform to allow for easy cross-1027 

correlation and comparison of different type of parameters. 1028 

To an extent, points one through three (listed in the recommendations section) have been 1029 

addressed here; we now need to turn to the final four points as our next step. 1030 

 1031 

DynVolc: an integrated database 1032 

 1033 

Inspired by this effort, a database – DynVolc (Dynamics of Volcanoes) – is now operative 1034 

at http://wwwobs.univ-bpclermont.fr/SO/televolc/dynvolc/index.php. This data base is part of 1035 

an observation system within the services provided by Observatoire de Physique du Globe de 1036 

Clermont-Ferrand (OPGC). It is an attempt to provide a much needed integration, and 1037 

accessible, library for all multi-disciplinary data sets for explosive eruptive events described 1038 

herein. This database is an integrated collection of data from physical and geophysical 1039 

observations of dynamic volcanic processes. 1040 

Inspired and supported by this group effort, the –DynVolc database spans the full range of 1041 

explosive, and effusive, activity types. Its intent is to provide a library of standards for case 1042 

type eruptive styles. For each eruptive style, the data base provides, and links (among other 1043 

things): 1044 

� field data (i.e., results of field mapping, outcrop and sample descriptions); 1045 

� key deposit features (thickness, areal dispersion, sedimentary structure, grain size); 1046 

� clast characterization (componentry, morphology, density, porosity, permeability); 1047 
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� clast texture (connectivity, vesicle and crystal size and size distributions); 1048 

� chemical analyses of samples (bulk and glass chemistry); 1049 

� associated geophysical measurements (e.g., fragmentation depth, ejection and ascent 1050 

velocity, fragment and gas mass, seismic and acoustic energies). 1051 

Integration of these data does not only allow improved, and better constrained, insights into 1052 

the dynamics driving each eruptive style, but also it also allows improved definition of the 1053 

rheological and degassing conditions associated with each activity style. At the same time it 1054 

provides a library of key physical parameters that need to be assumed by geophysical data 1055 

reduction methods, as well as during model-based enquiry. 1056 

Central to this initiative will be the transformation of this database in a communal 1057 

databank, involving a web-based GIS platform to allow huge amounts of cross-correlation, 1058 

and comparison between parameters relating to different processes and cross-correlation 1059 

between same events.  It is intended as an open data base into which all can input, and 1060 

withdraw, citable cross-disciplinary information for scientific analysis.  At the same time, 1061 

through this library, we can provide cross-community time series, baseline and monitoring 1062 

data for the full range volcanic activity. 1063 

 1064 
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Table 1 Quantification of explosive dynamics from textural parameters of the pyroclast 
components 
Textural parameters Quantification References 

Clast shape,  morphology 
and size 

Discriminate between different fragmentation mechanisms 

Wohletz 1983; 1986; 1987;  
Heiken and Wohletz 1985;  
Sheridan and Marshall 1983; 1987; 
Dellino and La Volpe 1996a; b;  
Palladino and Taddeucci 1998;  
Büttner et al. 1999; 2002 
Kueppers et al. 2006 
Dellino et al. 2001; 2012 
Zimanowski et al. 2003 

Conduit stratigraphy and processes 

Taddeucci et al. 2002;  
D’Oriano et al. 2005;  
Cioni et al. 2011 
Perugini et al. 2011 
Andronico et al. 2009b; 2013a; 
Lautze et al. 2012; 2013 

State of the magma at the fragmentation 

Carey et al. 2000;  
Dellino and Liotino 2002;  
Maria and Carey 2002; 2007;  
D’Oriano et al. 2011  
Ruth and Calder 2014 

Link between vesicularity and particle morphology, and particle 
morphology with cloud dispersal and sedimentation 

Wilson and Huang 1979 
Dellino et al. 2005; 
Alfano et al. 2011; 
Mele et al. 2011 

Clast density and 
vesicularity 

Lateral variability of magma within the conduit 

Houghton and Wilson 1989; 
Kennedy et al. 2005 
Kueppers et al. 2005 
Mueller et al. 2011 
Barker et al. 2012 

Dense juvenile   

Presence of outgassed magma 

Sable et al. 2006;  
Lautze and Houghton 2005; 2007; 
2008; 
Polacci et al. 2008; 2009a; b; 2012;  
Gurioli et al. 2005; 2014;  
Shea et al. 2011; 2012; 2014 
Cimarelli et al. 2010 

Presence of a plug 

Hoblitt and Harmon 1993 
D’Oriano et al. 2005;  
Sable et al. 2009;  
Adams et al. 2006a; 2006b 
Giachetti et al. 2010;  
Barker et al. 2012;  
Lavallée et al. 2012 

Clast permeability and 

connectivity Degassing history experienced by the magma 

Eichelberger et al. 1986 
Klug and Cashman 1996; 
Saar and Manga 1999;  
Jouniaux et al. 2000 
Blower 2001a, b 
Klug et al. 2002 
Melnik and Sparks 2002;  
Rust and Cashman 2004; 2011;  
Mueller et al. 2005; 2008 
Wright et al. 2006; 2007; 2009;  
Plats et al. 2007 
Bernard et al. 2007; 
Takeuchi et al. 2008; 
Nakamura et al. 2008  
Bouvet de Maisonneuve et al. 2009;  
Yokoyama and Takeuchi 2009;  
Bai et al. 2010; 2011;  
Degruyter et al. 2010a; 2010b; 2012 
Vinkler et al. 2012 
Polacci et al. 2012; 2014 
Nguyen et al. 2014 
Pioli et al. 2008 
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Formenti and Druitt 2003;  
Giachetti et al. 2010;  
Shea et al. 2011; 2012 

Clast conductivity Input parameters for numerical percolation simulations 

Le Pennec et al; 2001 
Bernard et al. 2007 
Wright et al. 2009 
Wright et Cashman 2014 

Vesicle shape and size 

Bubble coalescence, ripening or collapse signatures 

Klug and Cashman 1996;  
Mangan and Cashmann 1996;  
Gurioli et al. 2005;  
Shin et al. 2005 
Sable et al. 2006;  
Polacci et al. 2008;  
Castro et al. 2012 

Shear conditions in the conduit 
Convection in the conduit 

Marti et al. 1999 
Polacci et al. 2001; 2003;  
Rust et al. 2003;  
Okumura et al. 2006; 2008;  
Bouvet de Maisonneuve et al. 2009;  
Wright and Weinberg 2009;  
Laumonier et al. 2011;  
Shea et al. 2011; 2012 
Carey et al. 2013 

Eruptive style Moitra et al. 2013 

Vesicle size distributions 
(VSDs) 

Vesicle nucleation processes and growth in magmas 

Klug and Cashman 1994;  
Shea et al 2010a;  
LaRue et al. 2013, and references 
therein 

Total number of nucleation, coalescence or ripening events 

Gaonac’h et al. 1996a; b 
Klug and Cashman 1996;  
Herd and Pinkerton 1997;  
Blower et al. 2001; 2002;  
Gaonac’h et al. 2003; 2005;  
Lovejoy et al. 2004,  
Yamada et al. 2008;  
Bai et al. 2008 
Costantini et al. 2010 

Post-fragmentation evolution as indicator of : 
i) fountaining mechanisms 
ii) transportation and dispersal of the pyroclasts in submarine 
environment  

Polacci et al; 2006a 
Gurioli et al; 2008 
Stovall et al. 2011; 2012 
Schipper at al. 2010 
Rotella et al. 2013 

Vesicle Number density 
(Nv) 

Link with magma mass eruption rate (MER), 
link with column height 

Polacci et al. 2006b 
Toramaru 2006;  
Gurioli et al. 2008;  
Carey et al. 2009; 
Houghton et al. 2010 
Rust and Cashman 2011;  
Alfano et al. 2012 

Magma decompression rate 

Mangan and Sisson 2000;  
Toramaru 2006;  
Cluzel et al. 2008;  
Shea et al. 2010b; 2011; 2012 
Wright et al.  2012 

Link vesicularity with external trigger mechanisms (crystallinity, 
pressure changes) 

Belien et al. 2010 
Carey et al. 2012 
Gurioli et al. 2014 

Crystal size distribution 
(CSD) 

Crystal size (mean, modal, and maximum crystal size), crystallization 
kinetics (nucleation and growth rates),  
annealing, crystal accumulation, and fractionation 

Cashman and Marsh, 1988;  
Marsh 1988; 1998; 2007 
Cashman 1993;  
Armienti et al. 1994;  
Higgins 2000; 2002a;b; 2006; 2011; 
Wilhelm and  Worner, 1996;  
Bindeman 2003;  
Gualda 2006; 
Gualda and Rivers 2006 
Mock et al. 2003;  
Simakin and Bindeman, 2008 
Spillar and Dolejs 2013 



Magma ascent rate 

Cashman 1992 
Rutherford and Hill 1993;  
Rutherford and Devine 2003;  
Noguchi et al. 2008 
D’Oriano et al. 2011 

Pre-eruptive decompression paths 

Hammer et al. 1999;  
Szramek et al. 2006;  
Clarke et al. 2007 
Innocenti et al. 2013 

Magma storage conditions prior to eruption and residence times 

Mangan 1990;  
O’Driscoll et al. 2007; 
Cigolini et al. 2008 
Simakin and Bindeman 2008;  
Magee et al. 2010;  
Shea et al. 2009 

Water exsolution rate meter Toramaru et al. 2008 

Magma mixing Morgan et al. 2007; 
Jerram et al. 2003 

Crystal+Vesicle size and 
percentage 

Three phases magma rheology,  
fluid mechanical behavior of magma 

Gurioli et al. 2014;  
Noguchi et al. 2006 

 



Table 2 Working groups 
Deposits group (chair: Jean-Luc Le Pennec; secretary: Laura Pioli) 

Daniele Andronico, Raffaello Cioni, Jean-Christophe Komorosky, Ulrich Kueppers, Dominique Lafon, 

Jean-Luc Le Pennec, Raphael Paris, Laura Pioli, Marco Pistolesi, Roberto Sulpizio 

Textural group (chair: Alan Burgisser; secretary: Alison Rust) 

Hélène Balcone-Boissard, Pierre Boivin, Georges Boudon, Alan Burgisser, Sarah Cichy, Lucia Dominguez, 

Claudia Doriano, Lucia Gurioli, Alison Rust 

Geochemistry group (chair: Thor Thordarson; secretary: Estelle Rose-Koga) 

Patrick Bachelery, Francesca Forni, Didier Laporte, Estelle Rose-Koga, Olgeir Sigmarsson, Thor 

Thordarson 

Geophysics Group (chair/secretary: Andrew Harris)  

Jean Battaglia, Andrew Harris, Karim Kelfoun, Jean-François Lenat, Thierry Menand, Lea Scharff  
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Table 3 Open questions 
Is it possible to derive the total grain size distribution, and how? 
How much information do we lose in sampling (for textural purpose) along 
main axes of dispersal, rather than lateral?  
How representative are different types of pumice (tubular, non-tubular, dense)?  
When we focus, for textural quantification, on some narrow grain size interval 
which information do we lose from the bigger and the smallest fragments? 
Which is the inter-relationship between bubbles and crystals? 
Why do vesicle number densities (Nv) from single explosions show such wide 
ranges? 
How can we isolate the contribution to Nv due to decompression processes 
from the contribution due to prior gas exsolution or post fragmentation vesicle 
expansion? 
Because Nv can vary over orders of magnitude during single eruptions, which 
Nv values do we consider representative of the event, and how can we narrow 
down the variability? 
Nv can correlate with magma decompression rate, but keeping in mind the three 
previous points, which Nv has to be chosen if such correlations are to succeed? 
Is there a direct correlation between Nv and magma decompression rate for 
mildly explosive activity? 
How does rheology change? Which rate of change will affect eruption intensity 
and transitions in the style of eruptive activity? 
Is microlite content sensitive to the glass composition? 
How to define microlite in a standard way? 
How does microlite crystallisation affect rheological evolution and the 
composition of the melt and bubble nucleation +residual volatile concentration? 
And vice-versa  
How to compare estimations of decompression rate obtained by different 
techniques? 
What controls the diffusion of Li in crystals, and what is the effect of a brine 
phase? 
Can we estimate pressure at the instant before fragmentation (to allow better 
interpretation of velocity data)? 
Can we estimate strain rate at the fragmentation time? 
Can we extract anything about conduit shape, dimensions and geometry? 
What is the most relevant geophysical parameter that can be correlated with 
vesicle number density and other textural measures? 
What measure of explosion “energy” can we extract from seismic data to add to 
the integration? Integration of what? 
How does the time-varying velocity and mass flux distribution relate to the 
vesicle number density, vesicle size distribution, and gas flux, and are we able 
to really explain the link in a confident way? 
Is the geophysical community ready for measuring a large Vulcanian, Sub-
Plinian, Plinian eruption? 
Is it possible for a geophysical group located far from an active volcano, to 
have the funds and logistical means to quickly reach the site and deploy in case 
of a sudden large eruption? 
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Table 4 Needs 
Quantify error/variability of all the field data 
Provide the field measurements techniques for a correct comparison with existing 
databases 
Improve sample collection in active fallout field for bombs, lapilli and ash 
Make machines capable of collecting pyroclasts from single explosions 
Find a standard method to determine the total grain size distribution for fallout deposits 
Make analogue experiments long enough to reproduce bubble growth or coalescence, 
and evolving magma physical and rheological properties 
Build a synthetic library for analog and high temperature experiments 
Set up a working group to define and solve outstanding problems for the deposit 
community 
Definition of the representative elementary volume: 
(i) at the deposit scale (inter clast);  
(ii) at the sample (ash, lapilli, etc.); 
(iii) at the microscale for image analyses (for VSD and CSD)  
Provide a standard procedure for the 3D tomography analyses 
Increase links between texture and: 
(i) total grain size distribution of the related deposits 
(ii) clast morphology  
(iii) glass chemistry 
(iv) water, CO2, SO2, HCL, HF (depending on the composition) analyses; 
(v) geophysical parameters of the related explosion/eruption 
Complete more detailed sampling and textural studies of selected eruptions to increase 
the breadth and depth of the available textural data base.  
Increase textural data for:  
(i) pyroclastic density current deposits  
(ii) lava flows 
(i) Define pumice types (e.g., tube vs normal, crystals vs no crystals),  
(ii) their abundance  
(iii) identify pumice end members and make a classifications of types  
Produce more data of:  
(i) permeability  
(ii) connectivity 
(iii) tortuosity  
Provide a dataset of raw and elaborated images, of primary and secondary parameters 
high resolution chemical mapping in order to extract what you are interest in as elements 
Cross-correlation, and comparison of textural parameters relating to different processes, 
and cross-correlation between same events (e.g. gas jetting versus impulsive events 
explain the difference), may allow us to understand which measures work together under 
certain conditions; and those that do not. 
Link what we see and measure at the surface of remote sensing (geophysical) 
instruments through the unknown “empty”, but hot gas and particle filled, conduit 
section to the magma conditions in the filled (and/or fragmenting) part of the column 
Check if the source condition and explosion mechanism models are valid for all sets of 
measurements 
Geophysical data for sub-Plinian and Plinian events are rarer, and we need to think how 
we are to build a statistically significant geophysical data base for the Vulcanian field 
upwards 
For each event type we need thousands of geophysical measurements and coincident 
samples, for individual, well-defined, explosions.  This will built a statistically robust 
data set 
Define an integrated response method that allows simultaneous geophysical 
measurement and a sample return, which (for crisis response) can ideally run in near-real 
time 
 

��$��



Table 5 Recommendations 
Textural studies should be performed on well constrained deposits  
(in terms of stratigraphy, dispersal, thickness variation, volume) 
Develop a sampling strategy based on the goal of the study. For example, when the purpose of 
the study is the characterization of magma properties during different eruption phases it could be 
more appropriated to sample each tephra layer at different locations rather than selecting a single 
type outcrop 
To minimize the effect of wind direction, outcrops located along the dispersal axis should be 
preferred to lateral exposures, but it is necessary to analyze what to expect outside this main axis 
and in distal locations 
Check density juvenile variation with distance. If there is variation, then it is recommended to 
weight the proportion of each clast type 
After having selected the outcrop, it is necessary to get a statistically relevant number of clasts 
collected at random from the deposit 
For textural purposes, the sample has to be defined in terms of: 
• Grain size 
• Componentry 
• Morphology 
Sample the dominant grain size (bombs, lapilli, ashes) representative of the explosion/eruption. If 
all the components are presents , it is recommended to perform textural analyses at different grain 
scale  
Differentiate the primary vesiculation quenched at the fragmentation/explosion level from syn-
eruptive expansion and coalescence and post-expansion features 
Gain knowledge of the global (total) variability of the juvenile population 
Crystals and vesicles should always been studied together to understand the relationships 
between them and them and matrix 
Vesicle number density and total grain size distribution correlation should be performed at 
eruptions with different distributions of vesicles 
Standard methods and derived parameters should be made available through a web-based data 
base, or repository of material attached to articles. 
Combine textural and geochemical analyses on the same samples so as to properly link texture 
and geochemistry 
Correlate degassing (initial volatile budget versus surface gas measurements+residual content to 
make the total budget) with textures 
Combine integrated textural and geochemical study with experimental petrology to derive key 
parameters (e.g. partition coefficients, decompression rates, etc.) 
Contribute to understanding textures over differing timescales by using, for example, diffusion 
profiles in zoning of mineral and melts 
Because seismic and acoustic arrays are extensive, and arrays of gas spectrometers are now 
present on several volcanoes, we recommend, for a global, operational coupling to concentrate 
on, and validate, correlations with seismic and acoustic data. 
In terms of seismicity, RMS integrates multiple pulses and is dominated mostly by background 
tremor, and not specific explosions, it is thus not a good metric to correlate, unless at specific 
volcanoes as Mt Etna (Alparone et al. 2003). 
Assuming a constant size and shape in geophysical inversions, and not incorporating existing 
textural data is irresponsible 
Sensitivity of model has to guide texture researchers to measure the key and most important 
parameters, thereby reducing the errors on the most important inversion parameters. 
Design and execute a community-wide experiment at a key, case-type volcano, or (initially) using 
a synthetic, controlled explosion. 
Make a larger-scale experiment that brings all groups together 
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