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Abstract  
 
We analyse two high-quality Southern Californian earthquake catalogues, one with focal 
mechanisms, to statistically model and test for dependencies of the earthquake-size 
distribution, the b-values, on both faulting style and depth. In our null hypothesis, b is assumed 
constant. We then develop and calibrate one model based only on faulting style, another based 
only on depth dependence and two models that assume a simultaneous dependence on both 
parameters. We develop a new maximum-likelihood estimator corrected for the degrees of 
freedom to assess models’ performances. Our results show that all models significantly reject 
the null hypothesis. The best performing is the one that simultaneously takes account of depth 
and faulting style. Our results suggest that differential-stress variations in the Earth’s crust 
systematically influence b-values and that this variability should be considered for 
contemporary seismic hazard studies.  
 

1. Introduction 
 
The frequency-magnitude distribution (FMD) of earthquakes obeys a negative exponential 
model with increasing magnitude M, often referred to as the Gutenberg-Richter law (GR) 
(Gutenberg & Richter, 1944), with the slope b of the decay (b-value) ranging typically between 
0.5 and 1.5 (Wiemer and Wyss, 2000). This empirical relationship is one of the cornerstones 
of seismic hazard assessments, since it enables more frequent, smaller events (b > 1) to be 
related to infrequent, damaging events (b < 1). The b-value has been empirically shown to be 
inversely related to differential stress 'V. This finding has been confirmed in the laboratory 
(Amitrano, 2003; Goebel et al., 2013; Kwiatek et al., 2014) but is also consistent with 
observations of natural and induced earthquakes (Schorlemmer et al., 2005;  Gulia & Wiemer, 
2010; Bachmann et al., 2012; Tormann et al., 2015; Gulia et al., 2018).  
 
There are two major gradients of differential stress in the Earth’s crust, and both have been 
shown to also correlate with changes in the b-value:  
 

1) Differential stress increases with depth in the Earth's brittle crust, until it reaches more 
ductile regimes (Brace & Kohlstedt, 1980; Kirby, 1980). Mori & Abercrombie (1997),   
Gerstenberger et al. (2001) and most recently Spada et al. (2013) have shown that the 
b-value decreases with increasing depth, as expected, then increases again as one 
approaches the brittle ductile transition zone. Scholz (2015) has related this observation 
to the average stress gradient in the crust.  

2) Differential stress changes systematically between faulting regimes. The classical 
theory of faulting (Anderson, 1905) assumes that various states of stress are associated 
with different tectonic regimes around the source volume, with higher stress for 
compressive environments and lower stress for extensional environments. 
Schorlemmer et al. (2005) firstly evidenced differences in b for different tectonic 
regimes on rake angle O of the focal mechanisms (FMs). Recently, a functional trend 
of the b-value with O was statistically tested on a global scale (Petruccelli et al., 2018), 
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and described by the harmonic trend b | - sinO, whereby the minimum value of b is for 
thrust faulting regimes (b | 90°), the maximum value for normal faulting regimes (b | 
-90°), and intermediate values for strike-slip faults (b | 0, r180°).  

Despite the fact that b-values in the lab are known to depend on stress, seismotectonic and 
hazard analysis are not yet using these important physical constraints as input. We believe that 
this is so because there is a lack of calibrated and validated models, and a lack of trust in the 
robustness. Our paper addressed the gap and is the first to systematically evaluate and test the 
impact of each of these gradients, as well as the combination of both, on the b-value. We first 
extend the method for likelihood estimation and then define and analyse four models, or 
hypotheses, of different b-value dependencies, with different degrees of complexity (i.e. 
number of free parameters 𝑛 for each model). We then test the performance of each model, 
adjusted for degrees of freedom, and interpret the results. Finally, we comment on implications 
for hazard assessment.  
 
 

2  Data and methodology 
 

2.1  Southern California datasets  
 

FM catalogue: For our study, we used one of the largest, highest-quality focal mechanism 
(FM) datasets available worldwide, namely the one from Southern California (SC) (Hauksson 
et al., 2012; Yang et al., 2012), including data from 1981 to the end of September 2016. SC 
FM quality is divided into 4 classes, ranging from A (best) to D (worst), according to the 
azimuthal gap and the mean nodal plane uncertainty. For our analysis, our choice to retain only 
the first two classes, A and B, resulted in a reliable analysis (Fig. 1). For earthquakes occurring 
at the edge of the seismic network (classes C-D), the quality factor can be systematically biased, 
resulting in a lower probability (less than 50%) of detecting well-constrained mechanisms 
(Yang et al., 2012, see  Fig. 6). 
 
In line with Yang et al. (2012), we considered normal faulting mechanisms (NR) to be events 
with a rake angle of -135°≤ λ ≤-45° (green dots in Fig. 1a), thrust mechanisms (TH) to be 
events with a rake angle of 45° ≤ λ ≤ 135° (blue dots), and classified all other events as strike-
slip faults (SS, red dots). Since most of planes of strike-slip events are right-lateral (λ ~ r 180°), 
we computed the alternative plane for each earthquake, and then stacked the rake angles to 
obtain a complete set of possible rakes λ. The rake frequencies stacking procedure (for which 
each earthquake was counted twice) for b-value analysis - already applied on a global scale 
(Petruccelli et al., 2018) - lowered uncertainty, since it was always consistent with b analysis 
for principal/alternative planes. We considered the crustal depth range at which SC seismicity 
most frequently occurs (z = 5-15 km, Fig. 1b), excluding the shallowest earthquakes, as 
proposed by Spada et al. (2013), and also the deeper events, where a linear rheology, and 
thereby linearity between b and differential stress, might no longer be valid. The overall dataset 
was complete for M above 2.5 (Yang et al., 2012). Since we needed to divide our original 
dataset according to tectonic styles, we used a higher completeness threshold, confirming each 
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style-dataset to be complete over M = 3 (see FMD in Fig. 1c). We tested our results for the 
sensitivity of this choice and also analysed the influence of the quality criteria and missing 
events from faulting style (FS, see Supplementary Text S1).  
 
To verify the consistency of the b-value with depth gradient between catalogue subsets with 
FM and the full catalogue without FM, we also analysed the SC dataset of Hauksson et al. 
(2012) (HS) from 1981-2016 for the same study region and cut at a conservative completeness 
of Mc = 2.5 (Schorlemmer & Woessner, 2008; Hauksson et al., 2012). Accordingly, we did not 
need to consider a potential bias from changing ML definitions that affect lower-magnitude 
events during this time period (Tormann et al., 2010). No quality criteria were applied, and for 
this catalogue we used the full depth range, i.e. 0 – 20 km.  
 
 

2.2 Likelihood estimators for model evaluation  
 
In statistical seismology, the Maximum Likelihood Estimation (MLE) method is the standard 
approach used to compute the GR b-value. b-values are computed by maximising the logarithm 
of the likelihood function ℒ = ∏ 𝑓(𝑀𝑖)𝑁

𝑖=1 , where f(M) is the probability density function 
(PDF) that is the log-likelihood function 𝐿 = ln ℒ for the GR model (see Supplementary Text 
S2). The result of this analytical computation leads to the widely used analytical formula for 
estimating b-values (Aki, 1965) using the binning correction set out in of Bender (1983): 
 
𝑏 = log10 𝑒

𝑀̅−(𝑀𝐶−Δ𝑀
2 )

           (1) 

 
where 𝑀̅ is the mean magnitude, 𝑀𝐶 is the minimum magnitude of completeness and Δ𝑀 is 
magnitude binning. If b is expressed as a function of physical variables (see S2), the analytical 
formula (1) becomes unsuitable, since the number of parameters to estimate inevitably 
increases. To overcome this problem, we developed a novel modified MLE application to 
numerically estimate the 'best-fitting' point 𝑏̂ = max[𝐿] from a general GR log-likelihood 
function (see S1, S2) 
 

𝐿(𝑏) = ln{∏ 𝑓(𝑀𝑖|𝑏)𝑁
𝑖=1 } = ∑ ln {𝑏 ln 10 10−𝑏[𝑀𝑖−(𝑀𝑐−Δ𝑀

2 )]}𝑁
𝑖=1                  (2) 

 
where b is now a function with n free parameters 𝑝𝑗. It is clear that if n=1, the maximum of 
such a function can be obtained both analytically and numerically, and the two estimations 
coincide. An increase in the number of free parameters 𝑝𝑗 (j=1, 2…, n) results in an increase 
in the complexity of the modelled 𝑏(𝑝1, 𝑝2, … 𝑝𝑛) used to explain the physical reality. So in 
equation (2) we could explicitly express varying b-value dependence (on depth and tectonic 
styles separately or simultaneously) in equations 𝑏(𝑝1, 𝑝2, … 𝑝𝑛). Next, we could maximise the 
log-likelihood and obtain a score for each model. Finally, we could evaluate how well each 
model fit (see next paragraph) and rank them according to some statistical criteria (Neyman & 
Pearson, 1933; Akaike, 1974; Cavanaugh, 1997). Standard errors on the optimal parameters of 
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each model were computed as the square roots of the diagonal elements in the variance-
covariance matrix.  
 
 

2.3  Goodness-of-fit and significance in different models 
 
In general, the higher the number of model parameters, the better the model fit the data, hence 
the larger the likelihood (see Table 1). However, to select the best out of an available set of 
possible models, we had to account for the number of free parameters for each model by 
considering an appropriate penalty term for more complex models as opposed to simpler ones. 
This was achieved by applying the second-order Akaike Information Criterion AIC, often 
referred to as 'corrected' AICc (Akaike, 1974; Cavanaugh, 1997)  
 
𝐴𝐼𝐶𝑐 = [−2 log 𝐿 + 2𝑛] + 2𝑛(𝑛+1)

𝑁−𝑛−1
= 𝐴𝐼𝐶 + 2𝑛(𝑛+1)

𝑁−𝑛−1
     (3) 

 
which, in addition to the log-likelihood score (positive), also takes account of sample size N by 
increasing a relative penalty term for complex models (with a high number of free parameters 
n) for small datasets (low N). The AICc scores were such that the best model had the lowest 
𝐴𝐼𝐶𝑐 (see Table 1).  
 
Generally, two candidate models with different degrees of complexity (for example MA and 
MB, where A has less free parameters than B) could be evaluated based on the performance of 
a null hypothesis H(MA) with respect to the alternative H(MB). This concept can be expressed 
using the log-likelihood ratio 𝐿𝑅 = −2 𝐿(𝑀𝐴)

𝐿(𝑀𝐵) = 2[𝐿(𝑀𝐵) − 𝐿(𝑀𝐴)] (Neyman & Pearson, 

1933). If the LR criterion test was passed, the null hypothesis, under which the 'simple' MA 
performed better than the 'complex' MB, if L(MB) was sufficiently larger than L(MA) (LR < k, 
where k is a certain significance threshold) could be rejected. To determine whether such a 
difference in likelihood scores was statistically significant, assuming that the LR statistic 
approximately followed a F2 distribution (Wilks, 1938), we could then compute the critical 
value (p-value) of the test statistic from standard statistical tables making the degrees of 
freedom equal to the difference in the number of free parameters for the two candidate models 
(see Table 1, right-hand columns).  
 
Furthermore, even AIC differences could be turned into loglikelihood ratios according to 
(Burnham & Anderson, 2002) by computing the weight of evidence in favour of ith model as 
the actual best model for the situation at hand  
 

𝑤𝑖 = 𝐿𝑅(𝑀𝑖)
∑ 𝐿𝑅(𝑀𝑗)𝑁

𝑗=1
=

exp[−1
2𝐴𝐼𝐶𝑐𝑖]

∑ exp[−1
2𝐴𝐼𝐶𝑐𝑗]𝑁

𝑗=1
        (4) 
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3  Models and results 
 
We develop, calibrate and subsequently evaluated three categories of models: a no-variable model, 
single-variable models (Figs. 1, 2) and multi-variable models (Fig. 3). The no-variable was 
number 0, the single-variable models were number 1 and 2 (see Table 1 and Fig. 2) and the multi-
variable models were number 3.0 and 3.1 (see Table 1, Fig. 3 and Supplementary Text S3).  We 
then analysed the performance of each model and ranked them accordingly. For single variable 
models, we also re-analysed the b-value using depth and faulting-style dependencies established 
in the literature for both our datasets against the null hypothesis of a single, constant b-value.  
 
Model 0 (M0): This model assumed a constant b-value for the entire dataset and served as the 
null hypothesis. M0 estimates only one parameter and can be represented in Fig. 2a and 3a as 
a straight line. The numerically estimated value for FM, b = 0.91, coincides with the analytical 
value obtained using the method presented by Aki (1965) (Fig. 1c), with similar errors, 
illustrating that the two approaches are interchangeable. The lowest log-likelihood, highest 
AICc and a very low weight make this the worst performing model.      

 
3.1 Single-variable models 

 
Model 1 (M1):  This model assumed that b-values depend linearly on depth (or differential 
stress), in line with Scholz (2015) and Spada et al. (2013), and can be illustrated as a line with 
a negative gradient in Fig. 2a and 3a. M1 has two free parameters to estimate, the intercept and 
the slope with respect to depth. On FM data, compared to M0, the log-likelihood increases, 
AICc decreases and the LR p-value is significant. Accordingly, M1 significantly improves the 
description of the dataset. The depth-slope is similar to the one that would arise from the 
dependence on differential stress hypothesis by Scholz (2015) (see Supplementary Text S4 and 
table ST1).  
 
M1 was also evaluated for the full HS catalogue (Fig. 2a) with comparable results: its M1 log-
likelihood (-2327.1) is better than M0 (-2369.6), M1 AICc (4658.2) is lower than the M0 (4741.3), 
and the p-value is very small, which makes a highly significant difference. Because the HS data 
was very rich, we also evaluated the temporal stability of the results (Fig. 2b) by subdividing the 
dataset into a first period (75% of the data) and second period (the remaining 25%), and ended up 
with almost identical equations for both datasets (Fig. 2b). The equations also remained consistent 
when changing the partition sizes of the training and testing datasets (even at 50y50). The overall 
depth gradient of b does not depend on temporal selections. Applying a pseudo-prospective 
approach (i.e., using the learning period to make forecasts, then evaluating the likelihood for the 
testing period), we found that L(M0) = -552.98, L(M1) = -547.15, giving Model 1 a relative weight 
of 99.2%.  
 
Model 2 (M2): This model assumed that the b-value is constant with respect to depth, but 
varies for different faulting styles. M2 has three free parameters to estimate: the b-values for 
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the three styles. The three faulting-styles' b-values are represented in Fig. 3a as straight lines. 
The values we obtained were consistent with the estimations provided by Yang et al. (2012): 
the AICc was lower than for M0 and M1, and the difference carried a significant p-value, so 
faulting style proved to be a more relevant parameter than depth determining b-values.  

 

3.2 Multi-variable models  

Multi-variable models assume that b depends on both faulting style and depth (Fig. 3 a, b). As a 
first step, we investigate for the first time simultaneously the depth and faulting-style dependency 
of the b-value in the FM catalogue. In a Euclidean rake -depth (O, z) space (Fig. 3c), we used polar 
parametrisation (see Fig. 3d) to find the closest 500 events (Fig. 3e) and computed the 
corresponding b-value (Fig. 3f). The results are presented in Figure 3c, clearly showing both rake 
and depth dependence. Building on this finding, we develop the first multi-variable models to 
describe these dependencies.  
  
Model 3.0 (M3.0): Each tectonic style can be described by taking a different equation of 
decreasing b-value as a function of depth (or differential stress) for a total of six free 
parameters.  This is represented in Fig. 3a as three lines with different slopes. This model 
generates the highest L-value overall, the lowest (and hence best) AICc, a significant LR p-value 
with respect to all other models and a relative weight in excess of 60%, making it the best 
predictive model. In line with faulting theory (Anderson, 1905),  a steeper depth gradient was 
found for TH, an intermediate depth gradient for SS and a lower depth gradient for NR. 
According to our equations (see Supplementary Text S5), the b-value decreases by about 0.04 
every 10 km for NR, by about 0.15 every 10 km for SS, and by about 0.2 every 10 km for TH.  

Model 3.1 (M3.1): This model assumed a sinusoidal dependence of b on rake, similar to that 
proposed by Petruccelli et al., (2018) but we now add the depth dependency with b-stress 
gradient N, modulated by sin O :  

𝑏(𝜆, 𝑧) = 𝑏0 − 𝜅 2𝜇𝜌𝑔
√𝜇2+1−𝜇 𝑠𝑖𝑛 𝜆

𝑧          (5) 

Equation 5 offers a generalised view of the simultaneous dependencies of b-value on tectonic 
styles (i.e. rake angle λ) and depth and is plotted in Fig. 3b. M3.1 has three free parameters to 
estimate (offset b0, overall stress gradient N and friction P). The estimated value for the 'overall' 
stress gradient  
𝜅 is in line with the SS stress-gradient ks of M3.0 (see ST4). The estimated best friction value 
𝜇̂ of Model 3.1  was  somewhat lower than the assumed value usually assumed (0.6-1.0), but 
consistent with previous estimations (Carpenter et al., 2011; Zoback et al., 1987). However, 
recent advances infer that the fault zones may actually present much lower frictional 
coefficients (Collettini et al., 2019). M3.1 fit the data only slightly worse than M3.0, making it 
the second-best model. However, in line with Burnham & Anderson (2002), the low likelihood 
ratio between M3.0 and M3.1 (1.92) indicated a weak support for model 3.0 being best. In other 
words, uncertainty in choosing between models 3.0 and 3.1 is likely to be high. Conversely the 
high -likelihood ratios between M3.0 and M3.1 and the other models (larger than 12 and 6 
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respectively) permit the conclusion that other models (0, 1 and 2) are very unlikely to perform 
best. 
 
Since Models 3.0 and 3.1 are not independent, we can also compute the relative weights 
between models M0, M1, M2 and only M3.0 (around 0.0%, 0.1%, 7.0%, 93.0%) as well as 
only M3.1 (0.0%, 0.1%, 12.0%, 88.0%). These could be used as weightings in a PSHA logic 
tree where models are assumed to express epistemic uncertainties and should be ideally 
mutually exclusive and cumulatively exhaustive. 
 
 
4  Discussion and conclusions 
 
What is the best predictor of the b-value of the frequency-magnitude distribution in SC (Fig. 
1): depth, faulting style or a combination of both these parameters? To address this important 
yet until today unanswered question, we first needed to create a generalised MLE enabling 
model parameters to be estimated, then develop and calibrate adequate models and finally 
compare the models' performance. We defined and compared four different models (Figs. 2, 3 
and Table 1), or - with varying degrees of freedom - hypotheses that expressed different 
dependencies. We also compared them to the null hypothesis of a constant b-value.  
 
All models rejected the null hypothesis (M0), so it can be assumed that b = const. is a 
comparatively poor model and should not be considered in hazard studies. A very clear and 
statistically highly significant depth dependence for b-values (M1) emerged from both the FM 
and HS data and also persisted over time. More hazard studies should take account of this b-
depth gradient, which has previously only rarely been considered. An even better predictor of 
b-values was faulting style (M2), which significantly outperformed depth-dependence. For 
hazard-related studies, faulting style was sometimes linked to different ground-motion 
prediction equations but never explicitly to b-values. However, our findings cannot be 
immediately applied in hazard assessment because we assessed faulting-style dependence for 
regional sets of earthquakes, not individual source zones. It is worth noting that depth and 
faulting style are usually correlated. The Anderson (1905)'s theory of faulting relates the 
faulting style to the differential stress, and consequently to depth. Indeed, globally but also for 
California, thrust faulting requires large differential stress and it occurs usually at greater depth 
than normal faulting. Another limitation of our work is that the subset of events with high-
quality FM we analysed is relatively small, and FM quality itself may depend systematically 
on magnitude, faulting style and depth, potentially biasing our analysis. Our quality check (see 
S1) and the overall consistency of the results with other data sets, other regions and a physical 
theory suggested no such bias, though.  
 
The best predictor by far was found to be a combination of both faulting style and depth (M3.0 
and M3.1). In Fig. 3c, a first ever depiction of dependence on depth and rake neatly illustrates 
that while rake is a dominating factor, depth also plays a role. The difference between M3.0 
and 3.1 is quite small so either one is a feasible approach for modelling depth and rake 
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dependence.  To the best of our knowledge, this study was the first to simultaneously model 
and examine both depth and faulting-style dependence. It also provided yet further 
confirmation that b-values' laboratory-observed stress dependency also applies in the Earth's 
crust. We used the so-called Akaike weights to quantify the relative importance (Eq. 4), but 
also to suggest how our model results could be employed in a logic tree-approach common in 
PSHA to express epistemic uncertainties (Woessner et al., 2015). While M0 received zero 
weight, both Models 3 scored weightings of 95%, suggesting that they presented data in the 
best way by far. There are different ways to include our results in future PSHA studies: for 
example, the a-priori, overall b-value often assigned to a region, or a so-called super-zone 
(Woessner et al., 2015) can be dependent on the preferred faulting style, or on depth. 
Contemporary hazard studies will compare the a-priori value to local (area source or zoneless) 
estimates, and update the prior using the uncertainty in the local estimate in a Bayesian sense 
(e.g., Wiemer et al., 2009; Woessner et al., 2015; Broccardo et al., 2017). Likewise, hazard 
calculations commonly use a depth dependent activity rate, and this could be readily extended 
to also use a depth-dependent b-value.  
 
We did not analyse spatial or temporal variations in b-values, which are often subject to steep 
gradients (Tormann et al., 2012; 2015) that can be predictive (Schorlemmer et al., 2004; Hiemer 
& Kamer, 2016; Gulia et al., 2018). Our goal was to investigate the most basic gradients, but 
in a statistically rigorous way. Future work should consider even more complex space-time-
depth-rake dependencies, ideally in a conceptual framework of stresses in the Earth's crust.  
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Table 1: Summary of statistical analyses on the b-value models for FM dataset. From top 
to bottom (rows): models MB (see section 2.3, an alternative hypothesis being that the increase 
in n is statistically significant)  From left to right (columns): b-value hypothesis, number of 
free parameters n, models numbering, models equations, best fit parameters, loglikelihood 
values, AICC values and corresponding weighting w and ranking R, LR ratio test for p-values 
(p = probability of being wrong if the null hypothesis MA = best is rejected at 5% significance) 
between MB models and MA models (the null hypothesis being that the increase in n is not 
statistically significant). Note how LR test were only performed on models of different 
complexity, such that n(MB) > n(MA). 

 
 LR test (p-value, %) 

� MODELS MA � 
 b-value n Model equation Estimated parameters 𝐋(𝐛̂) 𝐀𝐈𝐂𝐜 𝐰 R 0 1 2 3.1 

 
  
 

M 
O 
D 
E 
L 
S 
 

MB 
 
  
 

Constant 1 0 𝒃 = 𝒃𝟎 b0 =  0.912 ± 0.012 -1539.7 3081.4 0% 5th  - - - - 

Depth  2 1 𝒃(𝒛) = 𝒃𝟎 −
𝒅𝒃
𝒅𝒛 𝒛 b0 = 1.067 ± 0.012 ;  

db
dz = 0.017 ± 0.001 km−1 

-1532.9 3069.8 <0.1% 4th 0.02 - - - 

Faulting 

style 

3 2 𝒃𝑺𝑻𝒀𝑳𝑬 = 𝒃𝟎,𝑺𝑻𝒀𝑳𝑬 bNR = 1.067 ± 0.043   

bSS = 0.914 ±  0.013  

bTH = 0.815 ± 0.028 

-1527.4 3060.7 5.0% 3rd  <0.01 0.09 - - 

 

 

 

Faulting 

style 

and 

depth 

3 3.1 𝒃(𝝀, 𝒛)

= 𝒃𝟎

− 𝜿
𝟐𝝁𝝆𝒈

√𝝁𝟐 + 𝟏 − 𝝁 𝒔𝒊𝒏 𝝀
𝒛 

 
b0 = 1.046 ± 0.012  

κ = (8.58 ± 0.63)10−4 

μ = 0.524 ± 0.036 

-1525.4 3056.9 32.5% 2nd  <0.01 0.09 - - 

6 3.0  

 

𝒃𝑺𝑻𝒀𝑳𝑬(𝒛) = 𝒃𝟎,𝑺𝑻𝒀𝑳𝑬 

− (
𝒅𝒃
𝒅𝒛

)
𝑺𝑻𝒀𝑳𝑬

𝒛 

b0, NR = 1.101 ± 0.043  
db
dz0,NR

= 0.004 ± 0.005 km−1  

bSS = 1.046 ± 0.013   
db
dz0,SS

= 0.015 ± 0.001 km−1  

b0,TH = 1.023 ± 0.028   
db
dz0,TH

= 0.021 ± 0.003 km−1  

  

-1521.8 3055.6 62.5% 1st <0.01 0.02 1.07 6.58 
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Figure 1: SC FM dataset (1981-2016, z=5-15, km, Mc =3, A-B mechanisms). a) SC FM 
map. Almost all data fall inside the authoritative region of Southern California Seismic 
Network (SCSN - see the dashed line). Orange shading indicates the Known Geothermal 
Resource Area (KGRA) of SC. UCERF3: Uniform California Earthquake Rupture Forecast 
Version 3. NA: North America. PA: Pacific.  b) Hypocentral depth PDFs (depth binning at 
2 km). 90% of seismicity for each family denotes the seismogenic depth border. z min z max : 
minimum and maximum selected depth for further analyses. c) Normalized FMDs of data in 
a). White, black-outlined empty markers represent the sum of all three families.   
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Figure 2: Models 0, 1 MLE analysis a) for FM and HS catalogues separately and b) for HS 
training (75% data) and testing (25%) subsets only. While M0 offset (dashed lines) and M1 

gradients (bold lines) were estimated using all the available data(parameters for FM presented in 
Table 1, while parameters for HS are presented in the bottom, right-hand corner), the b-value 
versus depth error bars (solid lines) were obtained by sampling data inside moving windows (step 
= 1 km) of constant (2 km) width (vertical errorbar) applying the classical MLE method (Aki, 
1965) (see Supplementary Text S2) with uncertainties regarding b (horizontal error bars) given by 
Shi & Bolt (1982), following Spada et al. (2013). Inset box: HS normalised cumulative FMDs for 
indicated b-values (circles at z = 6 and 12 km).  
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Figure 3: Representation of models M0-M3 in rake-depth space. a) b-models in depth space. 
Model 0: black dashed line. Model 1: black solid line. Model 2: coloured dashed lines. Model 3.0: 
coloured (same as Model 2) solid lines. b) Model 3.1: (O, z) contour (with b-isolines indicated) 
and surface (shaded) plots. c) b-value mapping surface into the rake-depth space. Each b-value 
was computed (using Eq. 1) by sampling its 500 neighbours (see d), e)). A, B and C indicate 
sampled distribution-point (see d) and e)) d) Polar parametrisation (O, z) for nearest neighbour 
algorithm and points A, B, C in c). The parametrisation entailed setting 𝑏(O, 𝑧)𝐻  =  𝑧 𝑐𝑜𝑠 O and  
𝑏(O, 𝑧)𝑉  =  𝑧 𝑐𝑜𝑠 O (H = horizontal component, V = vertical component). z is the depth -vector 
(acting as a radius), while rake indicates the orientation, and then FM. The doughnut -shape arises 
from the exclusion of shallower events. e) Events sampled in depth-rake space around points A, 
B and C, shown in d). f) FMDs for the samples A, B and C shown in in c), d) and e).  
   
 
 
 

 


