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Dear Editor,  

we are now sending a revised version of the manuscript “Monitoring active fumaroles through time-lapse 

electrical resistivity 1 tomograms: an application to the Pisciarelli fumarolic field (Campi Flegrei, Italy).” By 

M. G. Di Giuseppe and A. Troiano. 

We considered your invite to take into account the observations of reviewer nr.2 and we added some 

sentences to the text. However, we cannot avoid pointing out the differences between our approach and 

that of the reviewer. On one side, we understand that in previous versions of the text there was no 

mention of the main mechanisms contributing to electrical conduction in rocks and the factors that 

influence the same. On the other hand, we believe that the core of our paper is the presentation of a 

specific application, considering a more detailed discussion about that to be out of focus. Also with regard 

to the position of the reviewer with respect to the autonomous value of electrical tomography, we disagree 

on both issues raised. On the one hand, direct petrophysical information would certainly be useful to 

support the interpretation of the sections, but for us it cannot be considered a necessary condition. The 

subsoil model obtained through time-lapse ERT, although essential because based just on the electrical 

picture of the subsoil (let’s say univariate), is self-standing, at least in our opinion. On the other hand, 

although more surveys certainly mean more knowledge, we believe that a method such as ERT has shown, 

in decades of applications, its validity independently of IP surveys, even in volcanic environments. 

 

We really hope that you could consider favourably this version of the manuscript and we wish to thank you 

for your attention. 

 

Best regards 

The authors. 



-Reviewer 2 
 
  - 

Review of “Monitoring active fumaroles through time-lapse electrical resistivity 1 
tomograms: an application to the Pisciarelli fumarolic field (Campi Flegrei, Italy).” By M. G. 
Di Giuseppe and A. Troiano. I will let the editor decide if he wants this manuscript to be 
published but I do not see new research in this work. The time lapse inversion approach is 
very crude, there is not discussion of the underlying petrophysics (with the fact that ERT 
cannot be independently interpreted) and there is a lack of coupling the geophysics with 
the process at play (a currently hot subject of research in hydrogeophysics). However this 
paper has been significantly improved with respect to the first version. I think this paper 
could be saved if it would contain a strong discussion between the time lapse ERT 
observations and the final plot corresponding to Figure 9. This implies a discussion on how 
the differential environmental variables (saturation, temperature, salinity) affect the 
resistivity. 
  
1. Many statements are too strong Example: “just integrating all the available knowledge 
hazardous events could be prevented in a reliable way.”. This is not demonstrated in the 
paper. This is only a wish from the authors. 
 
  
2. The summary is not a summary with the exception of the last sentence. It just 
providesvague statements about volcanological crisis forecasting. Please rewrite the 
summary so that it reflects and summarize the content of the manuscript. 
  
3. Intro: replace “Di Giuseppe et al., 2015;), » by « Di Giuseppe et al., 2015) » . Change 
« complicat ed.” By “complicated.” All these errors show that the manuscript has not been 
polished enough. 
 
4. The following sentence is not substantiated enough “A mapping of the electrical 
resistivity changes through ERT should be indicative of potentially hazardous dynamics in 
the area”. 
  
5. Regarding the sentence “The geophysical surveys based upon the electrical resistivity 
estimations are very effective tools for imaging tectonic and volcanic structures, and 
several contribution regarded the Campanian district ( Di Maio et al., 1998; Bruno et al., 
2007;Troiano et al., 2008, 2009; Byrdina et al., 2014; Di Giuseppe et al., 2015, 2017; 
Gresse et al., 2017).” Actually in a recent series of papers in JVGR (Soueid Ahmed et al., 
2018, Ghorbani et al., 2018; Revil et al., 2018a, b), it was advocated that ERT is not a 
stand alone technique because surface conductivity cannot be separated from the bulk 
conductivity and that surface conductivity usually is dominant in most volcanic setting. ERT 
requires IP (induced polarization) to be properly interpretated. I think this point should be 
discussed in details since the paper, in its actuall form, completely oversell what ERT can 
accomplish especially without a description of the underlying petrophysics. 
  
6. Line 200-205: it is shown in MANY papers that time lapse ERT required imperatively the 
use of dedicated inversion algorithm like sequential inversion or 4D inversion (including a 
regularization in time). Examples include: Karaoulis M., A. Revil, D.D. Werkema, B. 
Minsley, W.F. Woodruff, and A. Kemna, Time-lapse 3D inversion of complex conductivity 
data using an active time constrained (ATC) approach, Geophysical Journal International, 
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187, 237–251, doi: 10.1111/j.1365-246X.2011.05156.x, 2011. Karaoulis, A. Revil, J. 
Zhang, and D.D. Werkema, Time-lapse joint inversion of cross-well DC resistivity and 
seismic data: A numerical investigation, Geophysics, 77(4), D141–D157 doi: 
10.1190/GEO2012-0011.1, 2012. Meyerhoff, S.B., M. Karaoulis, F. Fiebig, R.M. Maxwell, 
A. Revil, J.B. Martin, W. D. D. Graham, Visualization of conduit-matrix conductivity 
differences in a karst aquifer using time-lapse electrical resistivity, Geophys. Res. Lett., 39, 
L24401, doi:10.1029/2012GL053933, 2012. Karaoulis M., A. Revil, D.D., Werkema, P. 
Tsourlos, and B.J. Minsley, IP4DI: A software for time-lapse 2D/3D DC-resistivity and 
induced polarization tomography, Computers & Geosciences, 54, 164-170, 2013.  This is 
just to cite few examples in my realm. It is well known and dmeoinstrated in many papers 
that inverting the snapshots independently and looking at the difference does not work 
because of the noise level in the data and inversion artefacts. This point should be 
discussed because agaion it gives the bad feeling that the authors oversell what they do 
and the implications of their work. Consequently I totally disagree with the statements in 
lines 224-229. Lines 228-229: this is not a good way to proceed. A better way is the 
sequential inversion is to take the result of the inversion of the previous snapshots as a 
strating model for the inversion of the next one. However it is demonstrated in the papers 
above that even this approach can propagatre artefacts in the sequence of inverted 
snapshots. It is also behing the 2.5+ time or 4D inversion proposed in the papers above or 
time lapse regularization on the Kalman filter approach. The sentence “As a final, and 
likely more corrected, option, the dataset could be inverted jointly, adopting a minimizing 
function, which reflects a metric function of both space and time (Johnson et al., 2010).” is 
grossly wrong since this paper does not deal with this issue indicating that the authors 
never read the paper they cite. 
 

A few sentences have been added to the text, in order to mention of the main mechanisms contributing to 

electrical conduction in rocks and the factors that influence the same. We understand that in previous 

versions of the text there was no references to such issues. However, we consider a more detailed 

discussion about that to be out of focus, believing that the core of our paper is the presentation of a 

specific application.  

Although direct petrophysical information would certainly be useful to support the interpretation of the 

sections, in our opinion it cannot be considered a necessary condition. The same for IP. We consider the 

model of Fig.9 a self-standing result, even if based just on the electric tomography of the subsoil. 

For what concerns the inversion procedure, we changed the citation of Johnson et al., 2010 and slightly 

modified the related sentence. 
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Monitoring active fumaroles through time-lapse electrical resistivity tomograms: an application to 1 

the Pisciarelli fumarolic field (Campi Flegrei, Italy). 2 

M. G. Di Giuseppe and A. Troiano  3 

Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli ‘Osservatorio Vesuviano’ 4 

Abstract 5 

 Volcanoes are usually monitored through observations of many physical and chemical phenomena. 6 

In the most dangerous cases, as the one of the Campi Flegrei caldera (Italy), great amount of data are 7 

collected, both in discrete or continuously, and regularly stored. However, how to transform such 8 

mass of data in a deeper understanding of the volcano dynamics is still an open question.  Dissimilar 9 

information are in fact always hard to compare, but just integrating all the available knowledge 10 

hazardous events could be prevented in a reliable way. Fluids, as water and gasses mobilized in the 11 

subsoil by the heat induced by deep magmatic sources, are widely recognized as the first engine of 12 

similar occurrences and the volcanic gas emissions represent, together with the seismic activity, one 13 

of the most considered precursors. At the same time, the electrical geophysical methods are the most 14 

applied in order to detect and characterize the fluid patterns in the subsoil. So, the integration of 15 

geoelectrical and geochemical observations should represents one of the most pursued approach in 16 

volcanoes monitoring. On the contrary, standard way to compare such data have been not yet codified. 17 

The ERT tomograms capability to individuate that parts of the subsoil where gasses cumulate is well 18 

understood in literature. However, we look for indications about its proficiency in associating the 19 

electrical resistivity changes relative to these zones, once compared to the geochemical time series, 20 

to deep related contributes, distinguishing them from the seasonal ones.  The electrical signature of 21 

the fluid patterns, reconstructed through a time-lapse ERT approach, could be of relevance to better 22 

characterize the volcanic phenomena and their origins. In this paper a first test of ERT and 23 

geochemical time series integration was performed to enhance the understanding of the Pisciarelli 24 

fumarolic field evolution, now the most active area in the whole Campi Flegrei caldera. 25 
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 2 

Introduction 26 

Electrical resistivity tomography (ERT) represents a well-established technique, widely employed  to 27 

investigate fluid-induced variations in volcanological settings (Revil et al. 2008; Byrdina et al. 2009; 28 

Finizola et al. 2009; Finizola et al. 2010; Revil et al., 2011; Di Giuseppe et al. 2015). Many literature 29 

publications describe electrical investigations devoted to the definition of the structural setting of 30 

volcanoes ( Finizola et al., 2006; Revil et al., 2008; Aizawa et al., 2009; Fikos et al., 2012; Barde-31 

Cabusson et al., 2013; DiGiuseppe et al., 2017). When applied in time-lapse mode, e.g. performing 32 

tomograms reiteratively overtime, ERT maps the temporal changes in electrical resistivity, which 33 

could be related to the changes in the fluid patterns in the subsoil (Singha et al., 2015; Slater, 2007). 34 

Because fluids are often involved in relevant volcanic phenomena, time-lapse ERT should be 35 

considered in the monitoring of active areas in order to investigate highly hazardous but ambiguous 36 

phenomena. This particularly concern for silicic volcanoes, which commonly develop pervasive 37 

hydrothermal systems during their long repose periods. The resulting magma-hydrothermal 38 

interactions are still poorly understood ( Chiodini et al. 2016). In active calderas, widely investigated 39 

through electrical methods (Pribnow et al., 2003; Bruno et al., 2007; Di Giuseppe et al., 2015), the 40 

hydrothermal circulation is extremely intense, indeed, due to the major structural control, which 41 

makes the characterization of unrest phases even more complicated. In addition, the liquid and the 42 

gas interactions between mixtures of different chemical species, the most relevant among them being 43 

water and carbon dioxide, happen in the very shallowest part of the geothermal system, often creating 44 

active fumaroles. Once injected into the shallower formations from deeper magmatic sources, the 45 

CO2 will tend to rise upward because of its low density until it is trapped by low-permeability 46 

structures or by dissolution into the groundwater (Bachu et al., 1994).  The electrical resistivity of the 47 

mixture of grains and pores, which contain the fluids, changes over time, mainly due to fluid filling 48 

the pores driven by the fumarole dynamics, and the literature points out that fluids in volcanic 49 

environments affect electrical resistivity, generating detectable variations in the recordable signals 50 

(Rinaldi et al., 2011). In effects, one of the most sensible parameters to detect the approach of a new 51 
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 3 

eruptive phase is to examine the variations in the composition of discharged fluids. The isotopic 52 

signature, however, is often difficult to interpret in terms of system evolution, because several 53 

mechanisms may be responsible for differences in the proportion of magmatic gases and shallower 54 

fluid components. Indeed, such proportions can be altered before the fluids reach the surface, due to 55 

the mixing between fluids of different origin, or due to reactions that modify the original isotope 56 

composition. Time-lapsed ERT can reconstruct these changes (Giese et al. 2009; Kiessling et al. 2010; 57 

Würdemann et al. 2010; Schmidt-Hattenberger et al. 2011; Zhou et al. 2012), and help to characterize 58 

the fumarole dynamics. The dissolution of CO2 in groundwater and soil moisture indeed generates an 59 

enlargement of the low resistivity area after CO2 injection into the vent. An opposite relationship 60 

between CO2 concentration and electrical resistivity is observed when CO2, rather than dissolving in 61 

water, replaces the brine in the rock matrix, causing the apparent resistivity to increase (Le Roux et 62 

al., 2013). The integration between time-lapse ERT and geochemical observations could  help to 63 

characterize the phenomena related to the mixing of different chemical species, and to reconstruct 64 

interaction between fluids of magmatic origin and meteoric waters.  The relationship between the 65 

contributions of deeper magmatic sources and sources linked to seasonal fluctuations could be also 66 

investigated in that manner. Here a similar application is presented, carried out in the Pisciarelli area, 67 

which represents a part of the Campi Flegrei caldera (Italy) where vigorous gaseous emissions are 68 

present. Repeated tomograms, performed  bimonthly, furnished an image of the dynamics of fluids 69 

contributing to the fumarolic vent. An approach to the comparison of the  gaseous emission rates, 70 

temperature and rainfall rates is suggested, to which end  a characterization of the detected anomalies 71 

is provided.      72 

The Campi Flegrei caldera. 73 

The Campi Felgrei caldera (CFc) is one of the most hazardous volcanoes in Europe (Orsi et al., 2004) 74 

and it is inhabited by more than 300,000 people (Bevilacqua et al., 2015), including entire quarters 75 

of Naples (Fig.1a). Vertical ground movements with rates ranging from centimetres to metres per 76 

year are typical even during quiescent periods (Dvorak and Mastrolorenzo, 1991). Since 1950 the 77 
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 4 

area has been in a new phase of uplift after several centuries of subsidence dating back to 1538 A.D., 78 

when the last eruption occurred in the area (Di Vito et al., 1987). The most recent episodes of intense 79 

ground uplift were during 1970-72 and 1982-84, which caused a cumulative maximum uplift of over 80 

3.5 m, accompanied by intense seismicity. Apart from the ground uplift, the CFc unrest is 81 

characterized primarily by shallow hydrothermal manifestations (such as the vigorous gas emissions), 82 

which are most evident in the Solfatara crater and the nearby Pisciarelli areas (Fig.1b), with an 83 

involvement of the seismic activity. In effect, the recent literature on the interpretation of the unrest 84 

of the whole CFc points out the driving role played by processes involving these two areas ( De Natale 85 

et al., 1991; Chiodini et al., 2003; Troiano et al., 2011; Piochi et al., 2015a), which are continuously 86 

monitored and under observation for the risk strictly related to their potential expansion into a high-87 

density urban area. Many studies involve the mechanical effect of overpressure on a shallow magma 88 

chamber (Berrino et al., 1984; Bianchi et al., 1987; Amoruso et al., 2007;) or a sill-like deformative 89 

source (D’Auria et al., 2011). Other studies suggest that the unrest periods affecting the whole caldera 90 

could likely be related to the triggering of the local hydrothermal system caused by magma degassing 91 

episodes centred below the Solfatara - Pisciarelli area (De Natale et al., 1991; Chiodini et al., 2003; 92 

Todesco et al., 2003; De Natale et al.,  2006; Gottsmann et al., 2006; Lima et al., 2009; Shirzaei and 93 

Walter, 2010; Troiano et al., 2011). 94 

Geophysical applications allowed a detailed imaging of the subsurface structure of the Solfatara crater 95 

( Letort et al., 2012; Petrosino et al., 2012; Byrdina et al., 2014; Di Giuseppe et al., 2015; Isaia et al., 96 

2015; Gresse et al., 2017). The structure of the Pisciarelli site is less defined. Moreover, several 97 

monitoring techniques (geodetic, thermal and geochemical) are currently applied to the CFc, 98 

especially at the Solfatara and Pisciarelli areas (INGV, 2018), but a lack of knowledge persists about 99 

the distribution and dynamics of the geothermal fluids present in the area. Specifically, the Pisciarelli 100 

area has been the subject of a severe reactivation in the last few years, concomitant with an increase 101 

of ground uplift. The main manifestations are as follows: an enlargement of the fumarolized area, the 102 

opening of a new vent (which occurred in March 2008), the opening of a new boiling pool (which 103 
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 5 

occurred in March 2009 and which was probably accompanied by a small explosion because mud 104 

sputter occurred, covering the soil slope up to 3–4 m above the emission point), a further vigorous, 105 

roaring fumarole created (which appeared on the 20th of December, 2009, that represents the strongest 106 

gas emission of the entire area to date), the seismic swarm of about 190 events (recorded in the area 107 

during the 30th of March, 2010) and a new vent opened (during the 15th of November, 2010). Finally, 108 

in the January of 2013 the disappearance of the main fumarole that was recently opened and the 109 

appearance of a vent that emits high-pressure steam and liquid water up to 3-4 m high were observed. 110 

These manifestations make the Pisciarelli unrest quite peculiar. It is indubitably linked to the global 111 

CFc unrest, as evidenced by the geochemical species emitted (Chiodini et al., 2011). However, the 112 

local aspect of the CFc dynamic in this area has to be carefully taken into account. The Pisciarelli 113 

neighbourhood has a high degree of urban development and minor events could represent a high risk 114 

for a great number of inhabitants. 115 

A mapping of the electrical resistivity changes through ERT should be indicative of potentially 116 

hazardous dynamics in the area. Such parameters are,  in fact, sensitive to properties such as salinity, 117 

porosity and phase changes of fluids flowing into the porous space, which contribute to the 118 

characterization of the fluid circulation in the subsurface.  119 

 120 

The state of the Solfatara – Pisciarelli area. 121 

After the last major unrest period observed in the CFc, during 1982-1984, the ground deformation 122 

trend showed a subsidence period until 2004-2005, when a new uplift phase started. Since 2010-2011 123 

the deformation rate shows a further increase, leading to a cumulative uplift of more than 20 cm. The 124 

ground uplift is also accompanied by widespread fumarolic activity occurring in the whole CF caldera 125 

area. However, these unrest manifestation are all focused in the centre of the CFc (Figure1a), near 126 

the Solfatara - Pisciarelli area (D'Auria et al., 2011), where the evidences of volcanic effects are 127 

particularly present now. For such a reason, the ascription of a central role in the CFc unrest dynamic 128 
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 6 

for these two areas has grown, and has been the subject of the many detailed numerical studies, 129 

mentioned earlier.  130 

 131 

The geophysics surveys contributed to defining the structural outline of the Solfatara – Pisciarelli 132 

area (SP), and represented a crucial task for understanding volcanic activity. Recent surveys 133 

highlighted the main structural asset of the area. The first magnetotelluric surveys (Troiano et al., 134 

2014) detected a near-vertical steam/gas-saturated plume-like structure, which reaches the free 135 

surface where the main fumarole fields are active, emerging from a high temperature (>300 °C), over 136 

pressured, gas-saturated plate-like reservoir, which extends down to at least 3 km in depth. 137 

Subsequent ERT surveys clarified the shallower structure of the Solfatara volcano, outlining a 138 

complex hydrothermal system, formed by a mix of upwelling fluids, gases, and meteoric water 139 

(Byrdina et al., 2014; Di Giuseppe et al., 2015; Gresse et al., 2017). Isaia et al. (2015), when 140 

considering this structural framework, ended in the suggestion that the Solfatara volcano could be a 141 

maar-diatreme structure, characterized by a shallow crater cut in the pre-eruptive basement, and a 142 

deep diatreme (down to 2–3km).  143 

 144 

Physical and chemical observations are now performed in the whole CFc  as part of the volcanic 145 

monitoring and both the Solfatara crater and the Pisciarelli area represent the great majority of the 146 

areas surveyed. Regular thermic, seismic, gravimetric, geochemical and geodetic monitoring is 147 

carried out in the area. In particular, the geochemical data had a central role in the debate on the CFc 148 

unrest (Chiodini et al., 2012, 2016; Moretti et al., 2017). A general increase of the deep magmatic 149 

component into the emitted volatiles was observed (INGV, 2018). In particular, for what concerned 150 

the SP area, the following features were observed: 151 

 an increasing trend in the CO2/H2O, generally indicating a growth in the magmatic component 152 

into the fumarolic fluids   153 

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360



 7 

 an increasing CO concentration, that generally characterize volcanic systems at high 154 

temperature, whereas hydrothermal contributions would be usually related to lower levels of 155 

this component 156 

 an increase of the CO-CO2 equilibrium temperature, representing the shallower hydrothermal 157 

system conditions 158 

 and an increasing trend in the CO2/CH4 ratio  159 

 160 

Further considerations about the fluid dynamics in the area arise also from the geophysical 161 

observations. Di Giuseppe et al. (2015) discussed a migration of the shallow fluid volume eastwards 162 

during the few past decades, and supposed that water might have invaded spaces previously saturated 163 

with steam, gas or a combination thereof below the Solfatara main vents, at the same time as fluxes 164 

steam, gas or both were invading voids opening to the east. This last observation strictly  followed 165 

the recent relocation of the fumarolic activity from the Solfatara area toward the Pisciarelli area, 166 

located eastward to the outer slopes of the Solfatara (Figure1b) (Troiano et al., 2014). This relocation 167 

was marked by a temperature increasing,  new vents and boiling pools opening, the occurrence of 168 

seismic activity and by the impressively fast changes in the morphology of this zone.  169 

 170 

Unfortunately, the source of such relocation is yet largely unknown and a lack of knowledge persists 171 

about the fluid dynamics in that part of the CFc hydrothermal system. Current geophysical details of 172 

the connections between the Solfatara and Pisciarelli zones are still largely crude, and the 173 

geochemical data from Pisciarelli suffers of some criticism, as discussed in Chiodini et al. (2011), 174 

who suggested that these data could be heavily modified by seasonal cycles. They would then be not-175 

totally conclusive for investigations into the future changes caused by deep volcanic processes.  176 

 177 

The ERT survey in the Pisciarelli area. 178 
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 8 

Two main electrical conductivity mechanisms characterize a fluid-saturated porous medium (Rinaldi 179 

et al., 2011). The first one is caused by the fluid flow inside the pores, through electro-migration of 180 

charges into the connected pore space. A second conduction mechanism occurs at the pore water–181 

mineral interface in the electrical double layer, that is caused by a migration of the weakly adsorbed 182 

counterions (usually cations).  The DC electrical conductivity of the porous rock can be expressed as 183 

a combination of those two contribution, namely the surface electrical conductivity at the water–184 

mineral interface and the pore fluid electrical conductivity. Changes in those  two quantities are 185 

mainly due to variations into the fluid filling the pore, considering that wet rocks usually have 186 

conductivities sensibly higher that dry rocks (Rinaldi et al., 2011 and references therein). Surface and 187 

pore fluid conductivities depends linearly from temperature (Vaughan et al., 1993, Revil et al., 1998, 188 

Roberts, 2002). Moreover, a dependence from the rock matrix permeability and from salinity of the 189 

pore fluids is also observed (Jardani and Revil, 2009). Many mechanisms can be advocated when 190 

changes are observed in the bulk conductivity of the rocks. The first element to consider is the 191 

compositional nature of the fluids flowing into the system. The pore space of the rocks is indeed 192 

occupied by a mixture of multiphase fluids, as water and CO2 in liquid and vapour phase. Such 193 

mixture is altered by the interaction between meteoric waters and fluids rising from the deep because 194 

of volcanic effects, which has direct effects upon the underground resistivity. When fluid changes 195 

their distribution into the shallower part of the hydrothermal system, the diffusion of the gas phases 196 

(both water vapor and CO2) and the temperature variations alter the electrical conductivity both at 197 

the pore surface and within the porous space. Also the boiling phenomena into the fluids reinforce 198 

the observed gradient in conductivity between liquid saturated and gas saturated areas, concentrating 199 

the brine and increasing salinity in the remaining liquid part. As further effect, the fracturing induced 200 

by the fluid dynamics and thermal expansion also alter the electrical conductivity of the subsoil, 201 

modifying the rock permeability.  202 

The geoelectrical surveys are very effective tools for unveil the dynamics of tectonic and volcanic 203 

settings, and several contribution already regarded the Campanian district ( Di Maio et al., 1998; 204 
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Bruno et al., 2007;Troiano et al., 2008, 2009; Byrdina et al., 2014; Di Giuseppe et al., 2015, 2017; 205 

Gresse et al., 2017).  206 

For the first time, ERT surveys were carried out into the Pisciarelli fumarolic field after the January 207 

2013 event, when a vent that emitted high-pressure steam and liquid water up to 3-4 metres high was 208 

observed, in order to get an insight about the geothermal fluid circulation in the very shallow aquifer. 209 

A first survey was performed along a 70 m long survey line, aligned with the main fumarole and the 210 

permanent thermal pool in the west-east direction (Figure2), while crossing the part of the area subject 211 

to abrupt morphological changes and major emissive activity. A dipole-dipole electrode configuration 212 

was adopted, with a 2.5 m spacing, which was compact and sensitive to both lateral location and 213 

depth of  bodies that are the source of anomalies (Ward, 1988). An Iris Syscal Pro instrument was 214 

used as multichannel resistivimeter. The same instrument was employed as power source, being able 215 

to output a direct current with a  maximum voltage and current of 800 V and 2 A, respectively.  216 

The selected survey arrangement took into account the morphology and harsh environment 217 

characterizing the Pisciarelli area, which represented a limitation imposed on a classical ERT 218 

application. It was only possible to arrange a short survey line, with a consequent limit in the expected 219 

depth of investigation. Despite this restriction, the use of a time-lapse approach, which consists in 220 

performing identical ERT surveys several times in the same place, makes the ERT useful to 221 

investigate the evolution of the Pisciarelli structures. The time-lapse approach was followed in several 222 

ERT applications presented in the literature. As an example, Wallin et al. (2013)  imaged the inland 223 

intrusion of river water in a contaminated acquifer. Nickschick et al. (2017) observed the changes in 224 

the subsurface structure beneath heavily CO2 degassing spots in the Hartsouv Mofete field (Czech 225 

Republic). In the volcanic Pisciarelli environment, time-lapse ERT may possibly resolve the 226 

modifications of fluid phases and/or distribution induced by the contribution of a heat component or 227 

a hot gaseous component, both likely present if a magmatic source is active in the area. 228 
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The ERT survey was regularly repeated, starting in January 2014  ending April 2015. It is worth 230 

noting  that the successive repetitions of the January 2013 survey were performed along a slightly 231 

longer survey line (100 m long) with respect to the first January 2013 survey and that the bimonthly 232 

interval was chosen in order to evaluate the possible influence of seasonal effects on the hydrothermal 233 

system, as indicated by the geochemical monitoring. The ERT lines were inverted using ERTlab3D® 234 

commercial software, including topography. The inverse algorithm, described by LaBrecque et al.  235 

(1999) uses a regularized solution, looking for the optimal value of the parameter vector P and the 236 

stabilization parameter  for which minimizing the functional Y(P)=2(P)+PTRP results in 237 

2(P)=2
prior . The parameters P are the natural logarithms of the conductivity of the mesh elements 238 

and R, the solution roughness, acts as the stabilizing functional. 2
prior is equal to the number of data 239 

points and2
 is given by 2

 = (D - F(P))TW (D - F(P)), where D is the vector of known data values, 240 

F(P) is the forward solution and W is a data weight matrix. The diagonal elements of W are the 241 

reciprocals of the data variances and the off-diagonal elements are zero. This assumes non-correlated 242 

data errors. When ERT data was inverted in time-lapse mode, different approaches were 243 

contemplated. As first consideration, with every dataset collected independently of the others, each 244 

tomogram can be assumed to be a representation of a constant state of the shallower geothermal 245 

system at the collection time. With this in mind, it is possible to invert each dataset independently, 246 

isolating changes in the electrical resistivity by post inversion model differencing. A second option 247 

to consider is the inversion on the differences between the background and subsequent datasets, e.g. 248 

the resistivity obtained by the inversion of the first dataset, considered as background data, can be 249 

considered as the a priori model in the difference inversion. In this case systematic errors such as 250 

those errors due to in field configuration and discretization in the forward modelling algorithm tend 251 

to null and the result is that the difference data is likely fitted more closely than the individual 252 

potentials, resulting in fewer inversion artefacts (LaBrecque and Yang, 2001). A time-lapse 253 

regularization can also be considered (Oldenborger et al., 2007), whereby the reference model for the 254 

first inversion is an uniform model and the reference model for all subsequent experimental stages is 255 
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the model obtained via inversion of the data from the previous stage. Such approaches require, at 256 

least in principle, fewer model modifications to fit the data and the objective function penalizes large 257 

perturbations from previous models as opposed to large perturbations from background. Thus, such 258 

inversion is ultimately able to build up more structure in the final models, while still satisfying the 259 

data to the same level of the previous options. As a final, and likely more corrected, option, the dataset 260 

could be inverted adopting 4D approaches (Kim et al., 2009; Karaoulis et al., 2011), which consider 261 

a four-dimensional space–time model, introducing regularizations reflecting a metric function of both 262 

space and time. In the present case, time-lapse minimization was adopted during the inversion of the 263 

dataset. The final models for each dataset, are reported in Figure 3a. Average root-mean-squares 264 

(RMS) varying from 1.1 up to 1.9  resulted, which we considered satisfactory. In order to support the 265 

reliability of the images, it is common to look at S, the so-called inverse problem’s sensitivity matrix, 266 

which take into account the effects on the data by infinitesimal changes into the model resistivity. 267 

The sensitivity has been estimated for all the tomograms presented in Figure 3. 268 

 269 

The ERT Dataset. 270 

The sequence of inverted  resistivity images obtained in the timelapse survey is shown in Figure 3. 271 

The tomograms showed diffuse lateral and vertical heterogeneities within a resistivity range of about 272 

three orders of magnitude.  273 

 274 

The bimonthly-recorded resistivity sections showed four main electrical anomalies: 275 

A. the first anomaly lying at about 20 m along the profile (corresponding to the blue vertical 276 

dashed line in the figure), located at depths verying between 60-70 m a.s.l.;   277 

B. a second zone displaced at around 35 m along the profile (corresponding to the black dashed 278 

line in the figure), located at depths between 50-65 m a.s.l.; 279 

C.  a third zone centred at around 55 m along the profile (corresponding to the red dashed line in 280 

the figure), located between 50-65 m a.s.l.;  281 
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D. A fourth zone centred at around 70 m along the profile (corresponding to the green dashed 282 

line in the figure), located at around 60 m a.s.l.;  283 

 284 

A further anomalous zone appears at the very end of the profile. This last feature does not lye in the 285 

vegetation-free zone and could likely be linked to some anthropic artefact. The anomalies’ evolution, 286 

in shape and resistivity, is reported in Figure 4, for each of the collected datasets.  287 

Following the approach of Wallin et al. (2013), from the ERT tomograms, the time series of electrical 288 

resistivity have been extracted for each of the electrical anomalies depicted in Figure 4, while taking 289 

into consideration the mean values of the parameter in the elementary cells that compose the related 290 

part of the tomograms. These resistivity time series are reported in Figure 5. 291 

The anomalies observed in the subsurface underneath the Pisciarelli degassing site changed over time, 292 

as a consequence of changes in several parameters on which the resistivity depends. In particular, the 293 

high pressure of fluids (CO2 and water carried along), likely mobilized by a deeper source, is capable 294 

of altering the host rocks mechanically and/or chemically. The fluid’s power is capable of moving 295 

material from lower levels or widening the pores within materials. Moreover, according to 296 

Annunziatellis et al. (2008), gases like CO2 are capable of migrating not only vertically, but also 297 

horizontally in soil as density-driven flows or advective forces, leading to horizontal changes in the 298 

anomalies. In addition, temperature fluctuations, for instance induced by the inflow of deep-lying hot 299 

fluids or by fluids  mixing of in the uppermost part of the hydrothermal system, can induce significant 300 

changes in resistivity. Considering such connections, a comparison between the changes of electrical 301 

resistivity in the anomalous zones and some superficial observations was attempted. The parameters 302 

considered here are the temperature, CO2 fluxes and rainfall rates. The CO2 fluxes and the 303 

temperatures of the emitted gasses were recorded in the Pisciarelli main vent during 2007-2016 304 

(INGV, 2018) in correspondence with the FLXOV3measuring station. These quantities are reported 305 

in Figure 6a and 6b, respectively, where are limited to the years 2014-2015. Also the long-term 306 

temperature trend is reported in Figure 6a, which was deduced by applying the Seasonal Trend 307 
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Decomposition (STL) algorithm on the infrared imaging recorded in proximity of the upper part of 308 

the west side of the vent ( Vilardo et al., 2015; INGV, 2018). The two temperature estimates, which 309 

refer to emitted gasses and surface thermal features of the area affected by diffuse degassing, 310 

respectively, are biased. However, they show a very close relationship in pattern of variability. The 311 

monthly rainfall rates, relative to the meteorological station of Pozzuoli (furnished by the ‘Protezione 312 

Civile Regione Campania’) are reported in Figure 6c. All data are reported as recorded in the 313 

corresponding measuring stations, but a brute comparison between these quantities can be misleading, 314 

due to the very different nature and variability of such records. Therefore, the way to compare 315 

information so different as the ERT tomograms and the surface observations (geochemical data, 316 

temperature and rainfall rates) has to be carefully investigated and a normalization criterion has to be 317 

adopted to result in a valid comparison. In order to place all these signals on a comparable scale, the 318 

so-called z-score (Klemelä, 2009) was calculated for each record separately. The z-scores were 319 

obtained by removing the mean value from each time series and dividing by the relative standard 320 

deviation. In such way, samples having zero means and unit variances are obtained. The z-scores for 321 

all the variables mentioned above (and shown in Figure 5 and 6) are reported in Figure 7. 322 

Discussion. 323 

 324 
The resistivity trends of the different anomalies over time, in terms of z-scores, are shown in Figure 325 

8a. Thus emerges a peculiar behaviour of anomaly B, that shows a resistivity oscillating more in time 326 

with respect to the other anomalies, all presenting a comparable increasing attitude. In Figure 8b, the 327 

resistivity of anomaly B is compared with the rainfall rate and temperature. The B resistivity appears 328 

to be correlated with the temperature and anti-correlated with the rainfall. This suggests that the 329 

character of the B anomaly may be influenced by seasonal effects, probably driven by the influx of 330 

cold rainwater into the system. The warmer and drier months see an increase in resistivity and vice 331 

versa. Figure 8c shows, for anomaly C, how the linear increasing trend of resistivity instead appears 332 

to be less correlated to temperature and rainfall rates.  333 
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Considering on turn the geochemical data, the main vent showed an increasing amount of CO2 334 

emission, varying by about one order of magnitude from 2007-2016 (INGV, 2018). Superimposed 335 

on this accumulation tendency, a clear annual cyclic oscillation was distinguishable, that has been 336 

stronger in more recent years. Chiodini et al. (2011), reporting on the CO content of the Pisciarelli 337 

fumarole, until 2011, concluded that at Pisciarelli, strong seasonal effects and the possibility of re-338 

equilibration of the fumarolic fluids at very shallow depths concealed the deep geothermo-barometric 339 

signals. In addition, the comparison of the z-scores of CO2 emission, IR temperature and rainfalls, 340 

reported in Figure 8d shows a strong correlation between CO2 emission and rainfalls. The comparison 341 

between CO2 emission and resistivities, reported in Figure 8e, suggests a link between the 342 

parameters. Such correlation could be likely due to a buffering and/or cumulation of the gas flowing 343 

from the geothermal system to the atmosphere in those zones. At least in principle, the contribution 344 

of chemical effects to observed changes in resistivity, such as fracture sealing or rock alteration, 345 

cannot be excluded. However, we note that these effects should not show any periodicity. Moreover, 346 

concerning the sealing, the dynamics of Pisciarelli allows a reasonable opening rather than closing of 347 

fractures. On other hands, the dominants among the new chemical species, e.g. sulfur and alunite as 348 

indicated in Piochi et al. (2015b), should induce a decrease in the bulk rocks resistivity. In contrast, 349 

the non-cyclical anomalies retrieved through the time-lapse ERT imaging present an increasing 350 

attitude. The comparison with the surface data helps to strengthen the hypotheses on the phenomena 351 

that determine the observed variations in the electrical structures. 352 

Recognizing the relevance and meaning of the anomalies and their evolution over time in electrical 353 

images is not, however, trivial, especially considering the interplay between rainwater and 354 

hydrothermal fluids, which can generate elaborate patterns. In the case of Pisciarelli, this interaction 355 

has a feedback in the tomographic sections. The first element is the direct link between anomaly B 356 

and the surface. The second element is the diffusion over time of a low resistivity zone along the top 357 

of anomaly C, which interacts with a vertical conductive plume apparently rising up in the boundary 358 

zone between the C and D anomalies. The B anomaly corresponds to the thermal pool and it shows a 359 
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seasonal character, while the boundary between the C and D anomalies corresponds to a fault zone 360 

with surface manifestations and the maximum of fracture detected in the field (Isaia et al., 2015). In 361 

our interpretation, rainwaters stored into the thermal pool penetrate into the subsoil through the 362 

narrow channel, permeating the available space, the results of which are laterally confined by the C 363 

anomaly, in turn acting as a permeability barrier. Moreover, part of the same waters dislocate also 364 

along the top of the C anomaly, which again acts as a permeability barrier, ending to interact with 365 

other fluids, of deeper origin, rising along the pre-existing fractures. This interpretative framework is 366 

summarized in Figure 9, where a sketch map is superimposed over the tomographies.  367 

Conclusion 368 

In this paper the results of a time lapse ERT monitoring in the volcanically active Pisciarelli site are 369 

shown. Being that pre-eruptive changes are frequently extremely rapid, and the Pisciarelli area is 370 

extremely urbanized, this site represents one of the strong sources of volcanic risk in the whole CFc 371 

and looking for pre-eruptive indicators could be relevant to prevent potentially highly destructive 372 

consequences. This is particularly true due to the non-totally conclusive findings of the routine 373 

monitoring performed in the area. 374 

Even though the imaging we have performed brings only a small amount of large-scale information 375 

about the feeding system, due to the limited resolution at depths, the ERT imaging highlighted several 376 

anomalous zones. The interpretation of such patterns is quite difficult, being related to complex 377 

phenomena such as the interaction between the fluid components of different origins present in the 378 

vent. However, the comparison with other monitoring data (temperature, geochemical data and 379 

rainfall rates) permitted us to discern the areas dominated by seasonal effects from the ones more 380 

influenced by other, most significant contributions, linked to gas injected into the  system from deep 381 

locations which cumulates in the subsoil. Moreover, such comparison can be a guideline toward a 382 

more confident interpretation of the patterns shown by fluids during such times, helping to understand 383 

what features are more related to the apport of meteoric waters into the subsoil and what could be 384 

more correlated to the inflow of fluids of deeper origins. The boundary surfaces along which the 385 
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fluids displace and the fractures where fluids rise are also revealed. The reconstruction of such 386 

features, obtained through the imaging of the underground electrical resistivity changes reveal the 387 

complex interactions between the environment and the deeper volcanic sources. In this sense, the 388 

presented results point out some general aspects.  The indirect information obtained through 389 

geophysical imaging proves an vehicle to underline the underground phenomena, explaining the 390 

dynamics of large volumes of subsoil without any arbitrary extrapolations, typical of techniques based 391 

on surface observations. A further methodological aspect has to be underlined. No geophysical 392 

method is self-consistent, in the sense that just the integration of information about all the physical 393 

characteristics of rocks allows the understanding of the phenomena occurring and the creation of 394 

unique lithological models. In spite of this, however, our results show how the single electrical 395 

technique has a relevant proficiency. The model presented in Fig.9 evidence the self-standing ERT 396 

capability to define and detail the phenomena at least in their essential lines. The results presented 397 

here can be considered the first test about the aptitude of time-lapse ERT to understand the evolution 398 

of an active fumarole, thanks to a significant contribution to the characterization of subsoil structures 399 

and the understanding of their evolution during time. In any case, even if the tomograms indicate that 400 

this promising approach of  time-lapse ERT monitoring to sheds light on the potentially dangerous 401 

evolution of the investigated system, because the phenomena involved are extremely complex, the 402 

evaluation of such aspects deserves more effort and rigorous modelling. As further development, the 403 

establishment  of permanent and longer surveying lines could substantiate the results. In particular, a 404 

continuous acquisition of the tomograms could end in longer time series of electrical resistivity 405 

changes, which could be compared to the geochemical ones following combined statistical 406 

approaches, such as wavelet coherence analysis.    407 

 408 

Figure captions. 409 
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Fig.1. a) Map of the Campi Flegrei caldera (Italy). b) Map of the Solfatara–Pisciarelli complex, 410 

framed with the black box in panel a). The ERT survey area is enclosed in the black box and the 411 

survey profile is evidenced with the red line. The geodetic reference system is UTM-WGS84. 412 

 413 

Fig.2. Aerial view of the Pisciarelli area, where the time-lapse ERT surveys were realized (red dashed 414 

line). Locations of the main anomalies retrieved by ERT are indicated, with the colored capital letters. 415 

The geodetic reference system is UTM-WGS84.  416 

 417 

Fig.3. ERT resistivity sectionsrelative to the profile sketched in Fig.2. For every section, the relative 418 

date is indicated. A common logarithmic scale is used for all the resistivity sections. The main features 419 

discussed into the text (already shown in figure 2) are also indicated with the coloured dotted lines; 420 

 421 

Fig.4. Detail of the four main electrical anomalies retrieved through time-lapse ERT. For every 422 

section, the relative date is indicated. A common logarithmic scale is used for all the resistivity 423 

sections. The main features discussed into the text are also labelled with coloured capital letters. 424 

  425 

Fig. 5. Comparison between the electrical resistivity time series (in m) as function of time, which 426 

were obtained extracting the mean value of the parameter in correspondence of the four areas shown 427 

in figure 4. 428 

 429 

Fig. 6. a) temperature of the gas emitted at the Pisciarelli main vent (left axes, °C) and temperature 430 

extracted from infrared thermal images through the application of the STL algorithm (right axis, °431 

C) during 2014-2015. (b) CO2 fluxes emitted at the Pisciarelli main vent (in gm-2d-1) during 2014-432 

2015. (c) Monthly rainfall rates (in mm month-1) recorded at the Pozzuoli meteorological station of 433 

the ‘Protezione Civile Regionale’ agency. 434 
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 435 

Fig.7.  The z-scores extracted by the variables mentioned in Figure 5 (electrical resistivity time series) 436 

and Figure 6 (temperature, CO2 fluxes and rainfall rates). Z-scores were obtained by removing the 437 

mean value from each time series and dividing by the relative standard deviation.  438 

 439 

Fig. 8. Z-scores extracted by the observed variables, compared as follow: (a) electrical resistivity 440 

time series relative to the four anomalous zones shown in Figure 2. (b) electrical resistivity time series 441 

relative to the B electrical anomaly, surface IR temperature and rainfall rates. (c) electrical resistivity 442 

time series relative to the C electrical anomaly, surface IR temperature and rainfall rates. (d) CO2 443 

fluxes, surface IR temperature and rainfall rates. (e) electrical resistivity time series relative to the 444 

four anomalous zones, CO2 fluxes.     445 

 446 

 447 

Fig.9. Conceptual model of the Pisciarelli fumarolic zone. This W-E model crosses the main vent and 448 

the thermal permanent pool. The interpretative elements are reported in the legend. Electrical 449 

resistivity isolines, relative to the April 2015 tomogram are superimposed, maintaining the same 450 

common logarithm scale of Figure 3. 451 

 452 

 453 
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Klemelä, J., 2009. Smoothing of multivariate data : density estimation and visualization. John Wiley & Sons. 562 

LaBrecque, D.J., Morelli, G., Daily, W., Ramirez, A., Lundegard, P., 1999. 37. Occam’s Inversion of 3-D 563 

Electrical Resistivity Tomography, in: Three-Dimensional Electromagnetics. Society of Exploration 564 

Geophysicists, pp. 575–590. doi:10.1190/1.9781560802154.ch37 565 

LaBrecque, D.J., Yang, X., 2001. Difference Inversion of ERT Data: a Fast Inversion Method for 3-D In Situ 566 

Monitoring. J. Environ. Eng. Geophys. 6, 83–89. doi:10.4133/JEEG6.2.83 567 

Le Roux, O., Cohen, G., Loisy, C., Laveuf, C., Delaplace, P., Magnier, C., Rouchon, V., Cerepi, A., Garcia, 568 

B., 2013. The CO2-Vadose project: Time-lapse geoelectrical monitoring during CO2 diffusion in the 569 

carbonate vadose zone. Int. J. Greenh. Gas Control 16, 156–166. doi:10.1016/J.IJGGC.2013.03.016 570 

Letort, J., Roux, P., Vandemeulebrouck, J., Coutant, O., Cros, E., Wathelet, M., Cardellini, C., Avino, R., 571 

2012. High-resolution shallow seismic tomography of a hydrothermal area: application to the Solfatara, 572 

Pozzuoli. Geophys. J. Int. 189, 1725–1733. doi:10.1111/j.1365-246X.2012.05451.x 573 

Lima, A., De Vivo, B., Spera, F.J., Bodnar, R.J., Milia, A., Nunziata, C., Belkin, H.E., Cannatelli, C., 2009. 574 

Thermodynamic model for uplift and deflation episodes (bradyseism) associated with magmatic–575 

hydrothermal activity at the Campi Flegrei (Italy). Earth-Science Rev. 97, 44–58. 576 

doi:10.1016/j.earscirev.2009.10.001 577 

Moretti, R., De Natale, G., Troise, C., 2017. A geochemical and geophysical reappraisal to the significance 578 

of the recent unrest at Campi Flegrei caldera (Southern Italy). Geochemistry, Geophys. Geosystems 18, 579 

1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380



 24 

1244–1269. doi:10.1002/2016GC006569 580 

Nickschick, T., Flechsig, C., Meinel, C., Mrlina, J., Kämpf, H., 2017. Architecture and temporal variations 581 

of a terrestrial CO2 degassing site using electric resistivity tomography and self-potential. Int. J. Earth 582 

Sci. 1–12. doi:10.1007/s00531-017-1470-0 583 

Oldenborger, G.A., Knoll, M.D., Routh, P.S., LaBrecque, D.J., 2007. Time-lapse ERT monitoring of an 584 

injection/withdrawal experiment in a shallow unconfined aquifer. GEOPHYSICS 72, F177–F187. 585 

doi:10.1190/1.2734365 586 

Orsi, G., Di Vito, M.A., Isaia, R., 2004. Volcanic hazard assessment at the restless Campi Flegrei caldera. 587 

Bull. Volcanol. 66, 514–530. doi:10.1007/s00445-003-0336-4 588 

Petrosino, S., Damiano, N., Cusano, P., Di Vito, M.A., de Vita, S., Del Pezzo, E., 2012. Subsurface structure 589 

of the Solfatara volcano (Campi Flegrei caldera, Italy) as deduced from joint seismic-noise array, 590 

volcanological and morphostructural analysis. Geochemistry, Geophys. Geosystems 13, n/a-n/a. 591 

doi:10.1029/2011GC004030 592 

Piochi, M., Mormone, A., Balassone, G., Strauss, H., Troise, C., De Natale, G., 2015a. Native sulfur, sulfates 593 

and sulfides from the active Campi Flegrei volcano (southern Italy): Genetic environments and 594 

degassing dynamics revealed by mineralogy and isotope geochemistry. J. Volcanol. Geotherm. Res. 595 

304, 180–193. doi:10.1016/j.jvolgeores.2015.08.017 596 

Piochi, M., Mormone, A., Balassone, G., Strauss, H., Troise, C., De Natale, G., 2015b. Native sulfur, sulfates 597 

and sulfides from the active Campi Flegrei volcano (southern Italy): Genetic environments and 598 

degassing dynamics revealed by mineralogy and isotope geochemistry. J. Volcanol. Geotherm. Res. 599 

304, 180–193. doi:10.1016/j.jvolgeores.2015.08.017 600 

Pribnow, D.F.., Schütze, C., Hurter, S.J., Flechsig, C., Sass, J.H., 2003. Fluid flow in the resurgent dome of 601 

Long Valley Caldera: implications from thermal data and deep electrical sounding. J. Volcanol. 602 

Geotherm. Res. 127, 329–345. doi:10.1016/S0377-0273(03)00175-6 603 

1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440



 25 

Revil, A., Cathles III, L.M., Losh, S., Nunn, J.A., 1998. Electrical conductivity in shaly sands with 604 

geophysical application. J. Geophys. Res., 103 (B10) (1998), pp. 23925-23936 605 

Revil, A., Finizola, A., Piscitelli, S., Rizzo, E., Ricci, T., Crespy, A., Angeletti, B., Balasco, M., Barde 606 

Cabusson, S., Bennati, L., Bolève, A., Byrdina, S., Carzaniga, N., Di Gangi, F., Morin, J., Perrone, A., 607 

Rossi, M., Roulleau, E., Suski, B., 2008. Inner structure of La Fossa di Vulcano (Vulcano Island, 608 

southern Tyrrhenian Sea, Italy) revealed by high-resolution electric resistivity tomography coupled 609 

with self-potential, temperature, and CO 2 diffuse degassing measurements. J. Geophys. Res. 113, 610 

B07207. doi:10.1029/2007JB005394 611 

Revil, A., Finizola, A., Ricci, T., Delcher, E., Peltier, A., Barde-Cabusson, S., Avard, G., Bailly, T., Bennati, 612 

L., Byrdina, S., Colonge, J., Di Gangi, F., Douillet, G., Lupi, M., Letort, J., Tsang Hin Sun, E., 2011. 613 

Hydrogeology of Stromboli volcano, Aeolian Islands (Italy) from the interpretation of resistivity 614 

tomograms, self-potential, soil temperature and soil CO2 concentration measurements. Geophys. J. Int. 615 

186, 1078–1094. doi:10.1111/j.1365-246X.2011.05112.x 616 

Roberts, J.J., 2002. Electrical properties of microporous rock as a function of saturation and temperature. J. 617 

Appl. Phys., 91 (3). 618 

Schmidt-Hattenberger, C., Bergmann, P., Kießling, D., Krüger, K., Rücker, C., Schütt, H., Group, K., 2011. 619 

Application of a Vertical Electrical Resistivity Array (VERA) for monitoring CO2 migration at the 620 

Ketzin site: First performance evaluation. Energy Procedia 4, 3363–3370. 621 

doi:10.1016/j.egypro.2011.02.258 622 

Shirzaei, M., Walter, T.R., 2010. Time-dependent volcano source monitoring using interferometric synthetic 623 

aperture radar time series: A combined genetic algorithm and Kalman filter approach. J. Geophys. Res. 624 

115, B10421. doi:10.1029/2010JB007476 625 

Singha, K., Day-Lewis, F.D., Johnson, T., Slater, L.D., 2015. Advances in interpretation of subsurface 626 

processes with time-lapse electrical imaging. Hydrol. Process. 29, 1549–1576. doi:10.1002/hyp.10280 627 

Slater, L., 2007. Near Surface Electrical Characterization of Hydraulic Conductivity: From Petrophysical 628 

1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500



 26 

Properties to Aquifer Geometries—A Review. Surv. Geophys. 28, 169–197. doi:10.1007/s10712-007-629 

9022-y 630 

Todesco, M., Chiodini, G., Macedonio, G., 2003. Monitoring and modelling hydrothermal fluid emission at 631 

La Solfatara (Phlegrean Fields, Italy). An interdisciplinary approach to the study of diffuse degassing. 632 

J. Volcanol. Geotherm. Res. 125, 57–79. doi:10.1016/S0377-0273(03)00089-1 633 

Troiano, A., Di Giuseppe, M., Petrillo, Z., Troise, C., De Natale, G., 2011. Ground deformation at calderas 634 

driven by fluid injection: Modelling unrest episodes at Campi Flegrei (Italy). Geophys. J. Int. 187, 833–635 

847. doi:10.1111/j.1365-246X.2011.05149.x 636 

Troiano, A., Di Giuseppe, M.G., Patella, D., Troise, C., De Natale, G., 2014. Electromagnetic outline of the 637 

Solfatara-Pisciarelli hydrothermal system, Campi Flegrei (Southern Italy). J. Volcanol. Geotherm. Res. 638 

277, 9–21. doi:10.1016/j.jvolgeores.2014.03.005 639 

Troiano, A., Di Giuseppe, M.G., Petrillo, Z., Patella, D., 2009. Imaging 2D structures by the CSAMT 640 

method: Application to the Pantano di S. Gregorio Magno faulted basin (Southern Italy). J. Geophys. 641 

Eng. 6, 120–130. doi:10.1088/1742-2132/6/2/003 642 

Troiano, A., Petrillo, Z., Di Giuseppe, M.G., Balasco, M., Diaferia, I., Di Fiore, B., Siniscalchi, A., Patella, 643 

D., 2008. About the shallow resistivity structure of Vesuvius volcano, in: Annals of Geophysics. 644 

doi:10.4401/ag-3043 645 

Vaughan, P.J., Udell, K.S., Wilt, M.J., 1993. The effects of steam injection on the electrical conductivity of 646 

an unconsolidated sand saturated with a salt solution. J. Geophys. Res., 98 (B1) (1993), pp. 509-518 647 

Vilardo, G., Sansivero, F., Chiodini, G., 2015. Long-term TIR imagery processing for spatiotemporal 648 

monitoring of surface thermal features in volcanic environment: A case study in the Campi Flegrei 649 

(Southern Italy). J. Geophys. Res. Solid Earth 120, 812–826. doi:10.1002/2014JB011497 650 

Wallin, E.L., Johnson, T.C., Greenwood, W.J., Zachara, J.M., 2013. Imaging high stage river-water intrusion 651 

into a contaminated aquifer along a major river corridor using 2-D time-lapse surface electrical 652 

1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560



 27 

resistivity tomography. Water Resour. Res. 49, 1693–1708. doi:10.1002/wrcr.20119 653 

Ward, S.H., 1988. The Resistivity and Induced Polarization Methods, in: Symposium on the Application of 654 

Geophysics to Engineering and Environmental Problems 1988. Environment and Engineering 655 

Geophysical Society, pp. 109–250. doi:10.4133/1.2921804 656 

Würdemann, H., Möller, F., Kühn, M., Heidug, W., Christensen, N.P., Borm, G., Schilling, F.R., 2010. 657 

CO2SINK—From site characterisation and risk assessment to monitoring and verification: One year of 658 

operational experience with the field laboratory for CO2 storage at Ketzin, Germany. Int. J. Greenh. 659 

Gas Control 4, 938–951. doi:10.1016/j.ijggc.2010.08.010 660 

Zhou, X., Lakkaraju, V.R., Apple, M., Dobeck, L.M., Gullickson, K., Shaw, J.A., Cunningham, A.B., 661 

Wielopolski, L., Spangler, L.H., 2012. Experimental observation of signature changes in bulk soil 662 

electrical conductivity in response to engineered surface CO2 leakage. Int. J. Greenh. Gas Control 7, 663 

20–29. doi:10.1016/j.ijggc.2011.12.006 664 

 665 

  666 

1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620



 28 

 667 

Figure 1.  668 
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Figure 2. 672 
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Figure 4. 679 
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Figure 5. 682 
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Figure 6. 685 
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Figure 7. 689 
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Figure 8a. 693 
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Figure 8b. 697 
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Figure 8c. 701 
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Figure 8d. 705 
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 Time lapse ERT surveys were performed in the Pisciarelli site 

 ERT and superficial data integration was performed to study the site 

 Mutual relationship between the parameters and their interdependence is analysed 

 Seasonal anomalies and features linked to volcanic contributions are marked 

 A conceptual model of the fumarolized area is presented 
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Monitoring active fumaroles through time-lapse electrical resistivity tomograms: an application to 1 

the Pisciarelli fumarolic field (Campi Flegrei, Italy). 2 

M. G. Di Giuseppe and A. Troiano  3 

Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli ‘Osservatorio Vesuviano’ 4 

Abstract 5 

 Volcanoes are usually monitored through observations of many physical and chemical phenomena. 6 

In the most dangerous cases, as the one of the Campi Flegrei caldera (Italy), great amount of data are 7 

collected, both in discrete or continuously, and regularly stored. However, how to transform such 8 

mass of data in a deeper understanding of the volcano dynamics is still an open question.  Dissimilar 9 

information are in fact always hard to compare, but just integrating all the available knowledge 10 

hazardous events could be prevented in a reliable way. Fluids, as water and gasses mobilized in the 11 

subsoil by the heat induced by deep magmatic sources, are widely recognized as the first engine of 12 

similar occurrences and the volcanic gas emissions represent, together with the seismic activity, one 13 

of the most considered precursors. At the same time, the electrical geophysical methods are the most 14 

applied in order to detect and characterize the fluid patterns in the subsoil. So, the integration of 15 

geoelectrical and geochemical observations should represents one of the most pursued approach in 16 

volcanoes monitoring. On the contrary, standard way to compare such data have been not yet codified. 17 

The ERT tomograms capability to individuate that parts of the subsoil where gasses cumulate is well 18 

understood in literature. However, we look for indications about its proficiency in associating the 19 

electrical resistivity changes relative to these zones, once compared to the geochemical time series, 20 

to deep related contributes, distinguishing them from the seasonal ones.  The electrical signature of 21 

the fluid patterns, reconstructed through a time-lapse ERT approach, could be of relevance to better 22 

characterize the volcanic phenomena and their origins. In this paper a first test of ERT and 23 

geochemical time series integration was performed to enhance the understanding of the Pisciarelli 24 

fumarolic field evolution, now the most active area in the whole Campi Flegrei caldera. 25 
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Introduction 26 

Electrical resistivity tomography (ERT) represents a well-established technique, widely employed  to 27 

investigate fluid-induced variations in volcanological settings (Revil et al. 2008; Byrdina et al. 2009; 28 

Finizola et al. 2009; Finizola et al. 2010; Revil et al., 2011; Di Giuseppe et al. 2015). Many literature 29 

publications describe electrical investigations devoted to the definition of the structural setting of 30 

volcanoes ( Finizola et al., 2006; Revil et al., 2008; Aizawa et al., 2009; Fikos et al., 2012; Barde-31 

Cabusson et al., 2013; DiGiuseppe et al., 2017). When applied in time-lapse mode, e.g. performing 32 

tomograms reiteratively overtime, ERT maps the temporal changes in electrical resistivity, which 33 

could be related to the changes in the fluid patterns in the subsoil (Singha et al., 2015; Slater, 2007). 34 

Because fluids are often involved in relevant volcanic phenomena, time-lapse ERT should be 35 

considered in the monitoring of active areas in order to investigate highly hazardous but ambiguous 36 

phenomena. This particularly concern for silicic volcanoes, which commonly develop pervasive 37 

hydrothermal systems during their long repose periods. The resulting magma-hydrothermal 38 

interactions are still poorly understood ( Chiodini et al. 2016). In active calderas, widely investigated 39 

through electrical methods (Pribnow et al., 2003; Bruno et al., 2007; Di Giuseppe et al., 2015), the 40 

hydrothermal circulation is extremely intense, indeed, due to the major structural control, which 41 

makes the characterization of unrest phases even more complicated. In addition, the liquid and the 42 

gas interactions between mixtures of different chemical species, the most relevant among them being 43 

water and carbon dioxide, happen in the very shallowest part of the geothermal system, often creating 44 

active fumaroles. Once injected into the shallower formations from deeper magmatic sources, the 45 

CO2 will tend to rise upward because of its low density until it is trapped by low-permeability 46 

structures or by dissolution into the groundwater (Bachu et al., 1994).  The electrical resistivity of the 47 

mixture of grains and pores, which contain the fluids, changes over time, mainly due to fluid filling 48 

the pores driven by the fumarole dynamics, and the literature points out that fluids in volcanic 49 

environments affect electrical resistivity, generating detectable variations in the recordable signals 50 

(Rinaldi et al., 2011). In effects, one of the most sensible parameters to detect the approach of a new 51 
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 3 

eruptive phase is to examine the variations in the composition of discharged fluids. The isotopic 52 

signature, however, is often difficult to interpret in terms of system evolution, because several 53 

mechanisms may be responsible for differences in the proportion of magmatic gases and shallower 54 

fluid components. Indeed, such proportions can be altered before the fluids reach the surface, due to 55 

the mixing between fluids of different origin, or due to reactions that modify the original isotope 56 

composition. Time-lapsed ERT can reconstruct these changes (Giese et al. 2009; Kiessling et al. 2010; 57 

Würdemann et al. 2010; Schmidt-Hattenberger et al. 2011; Zhou et al. 2012), and help to characterize 58 

the fumarole dynamics. The dissolution of CO2 in groundwater and soil moisture indeed generates an 59 

enlargement of the low resistivity area after CO2 injection into the vent. An opposite relationship 60 

between CO2 concentration and electrical resistivity is observed when CO2, rather than dissolving in 61 

water, replaces the brine in the rock matrix, causing the apparent resistivity to increase (Le Roux et 62 

al., 2013). The integration between time-lapse ERT and geochemical observations could  help to 63 

characterize the phenomena related to the mixing of different chemical species, and to reconstruct 64 

interaction between fluids of magmatic origin and meteoric waters.  The relationship between the 65 

contributions of deeper magmatic sources and sources linked to seasonal fluctuations could be also 66 

investigated in that manner. Here a similar application is presented, carried out in the Pisciarelli area, 67 

which represents a part of the Campi Flegrei caldera (Italy) where vigorous gaseous emissions are 68 

present. Repeated tomograms, performed  bimonthly, furnished an image of the dynamics of fluids 69 

contributing to the fumarolic vent. An approach to the comparison of the  gaseous emission rates, 70 

temperature and rainfall rates is suggested, to which end  a characterization of the detected anomalies 71 

is provided.      72 

The Campi Flegrei caldera. 73 

The Campi Felgrei caldera (CFc) is one of the most hazardous volcanoes in Europe (Orsi et al., 2004) 74 

and it is inhabited by more than 300,000 people (Bevilacqua et al., 2015), including entire quarters 75 

of Naples (Fig.1a). Vertical ground movements with rates ranging from centimetres to metres per 76 

year are typical even during quiescent periods (Dvorak and Mastrolorenzo, 1991). Since 1950 the 77 
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 4 

area has been in a new phase of uplift after several centuries of subsidence dating back to 1538 A.D., 78 

when the last eruption occurred in the area (Di Vito et al., 1987). The most recent episodes of intense 79 

ground uplift were during 1970-72 and 1982-84, which caused a cumulative maximum uplift of over 80 

3.5 m, accompanied by intense seismicity. Apart from the ground uplift, the CFc unrest is 81 

characterized primarily by shallow hydrothermal manifestations (such as the vigorous gas emissions), 82 

which are most evident in the Solfatara crater and the nearby Pisciarelli areas (Fig.1b), with an 83 

involvement of the seismic activity. In effect, the recent literature on the interpretation of the unrest 84 

of the whole CFc points out the driving role played by processes involving these two areas ( De Natale 85 

et al., 1991; Chiodini et al., 2003; Troiano et al., 2011; Piochi et al., 2015a), which are continuously 86 

monitored and under observation for the risk strictly related to their potential expansion into a high-87 

density urban area. Many studies involve the mechanical effect of overpressure on a shallow magma 88 

chamber (Berrino et al., 1984; Bianchi et al., 1987; Amoruso et al., 2007;) or a sill-like deformative 89 

source (D’Auria et al., 2011). Other studies suggest that the unrest periods affecting the whole caldera 90 

could likely be related to the triggering of the local hydrothermal system caused by magma degassing 91 

episodes centred below the Solfatara - Pisciarelli area (De Natale et al., 1991; Chiodini et al., 2003; 92 

Todesco et al., 2003; De Natale et al.,  2006; Gottsmann et al., 2006; Lima et al., 2009; Shirzaei and 93 

Walter, 2010; Troiano et al., 2011). 94 

Geophysical applications allowed a detailed imaging of the subsurface structure of the Solfatara crater 95 

( Letort et al., 2012; Petrosino et al., 2012; Byrdina et al., 2014; Di Giuseppe et al., 2015; Isaia et al., 96 

2015; Gresse et al., 2017). The structure of the Pisciarelli site is less defined. Moreover, several 97 

monitoring techniques (geodetic, thermal and geochemical) are currently applied to the CFc, 98 

especially at the Solfatara and Pisciarelli areas (INGV, 2018), but a lack of knowledge persists about 99 

the distribution and dynamics of the geothermal fluids present in the area. Specifically, the Pisciarelli 100 

area has been the subject of a severe reactivation in the last few years, concomitant with an increase 101 

of ground uplift. The main manifestations are as follows: an enlargement of the fumarolized area, the 102 

opening of a new vent (which occurred in March 2008), the opening of a new boiling pool (which 103 
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 5 

occurred in March 2009 and which was probably accompanied by a small explosion because mud 104 

sputter occurred, covering the soil slope up to 3–4 m above the emission point), a further vigorous, 105 

roaring fumarole created (which appeared on the 20th of December, 2009, that represents the strongest 106 

gas emission of the entire area to date), the seismic swarm of about 190 events (recorded in the area 107 

during the 30th of March, 2010) and a new vent opened (during the 15th of November, 2010). Finally, 108 

in the January of 2013 the disappearance of the main fumarole that was recently opened and the 109 

appearance of a vent that emits high-pressure steam and liquid water up to 3-4 m high were observed. 110 

These manifestations make the Pisciarelli unrest quite peculiar. It is indubitably linked to the global 111 

CFc unrest, as evidenced by the geochemical species emitted (Chiodini et al., 2011). However, the 112 

local aspect of the CFc dynamic in this area has to be carefully taken into account. The Pisciarelli 113 

neighbourhood has a high degree of urban development and minor events could represent a high risk 114 

for a great number of inhabitants. 115 

A mapping of the electrical resistivity changes through ERT should be indicative of potentially 116 

hazardous dynamics in the area. Such parameters are,  in fact, sensitive to properties such as salinity, 117 

porosity and phase changes of fluids flowing into the porous space, which contribute to the 118 

characterization of the fluid circulation in the subsurface.  119 

 120 

The state of the Solfatara – Pisciarelli area. 121 

After the last major unrest period observed in the CFc, during 1982-1984, the ground deformation 122 

trend showed a subsidence period until 2004-2005, when a new uplift phase started. Since 2010-2011 123 

the deformation rate shows a further increase, leading to a cumulative uplift of more than 20 cm. The 124 

ground uplift is also accompanied by widespread fumarolic activity occurring in the whole CF caldera 125 

area. However, these unrest manifestation are all focused in the centre of the CFc (Figure1a), near 126 

the Solfatara - Pisciarelli area (D'Auria et al., 2011), where the evidences of volcanic effects are 127 

particularly present now. For such a reason, the ascription of a central role in the CFc unrest dynamic 128 
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 6 

for these two areas has grown, and has been the subject of the many detailed numerical studies, 129 

mentioned earlier.  130 

 131 

The geophysics surveys contributed to defining the structural outline of the Solfatara – Pisciarelli 132 

area (SP), and represented a crucial task for understanding volcanic activity. Recent surveys 133 

highlighted the main structural asset of the area. The first magnetotelluric surveys (Troiano et al., 134 

2014) detected a near-vertical steam/gas-saturated plume-like structure, which reaches the free 135 

surface where the main fumarole fields are active, emerging from a high temperature (>300 °C), over 136 

pressured, gas-saturated plate-like reservoir, which extends down to at least 3 km in depth. 137 

Subsequent ERT surveys clarified the shallower structure of the Solfatara volcano, outlining a 138 

complex hydrothermal system, formed by a mix of upwelling fluids, gases, and meteoric water 139 

(Byrdina et al., 2014; Di Giuseppe et al., 2015; Gresse et al., 2017). Isaia et al. (2015), when 140 

considering this structural framework, ended in the suggestion that the Solfatara volcano could be a 141 

maar-diatreme structure, characterized by a shallow crater cut in the pre-eruptive basement, and a 142 

deep diatreme (down to 2–3km).  143 

 144 

Physical and chemical observations are now performed in the whole CFc  as part of the volcanic 145 

monitoring and both the Solfatara crater and the Pisciarelli area represent the great majority of the 146 

areas surveyed. Regular thermic, seismic, gravimetric, geochemical and geodetic monitoring is 147 

carried out in the area. In particular, the geochemical data had a central role in the debate on the CFc 148 

unrest (Chiodini et al., 2012, 2016; Moretti et al., 2017). A general increase of the deep magmatic 149 

component into the emitted volatiles was observed (INGV, 2018). In particular, for what concerned 150 

the SP area, the following features were observed: 151 

 an increasing trend in the CO2/H2O, generally indicating a growth in the magmatic component 152 

into the fumarolic fluids   153 
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 7 

 an increasing CO concentration, that generally characterize volcanic systems at high 154 

temperature, whereas hydrothermal contributions would be usually related to lower levels of 155 

this component 156 

 an increase of the CO-CO2 equilibrium temperature, representing the shallower hydrothermal 157 

system conditions 158 

 and an increasing trend in the CO2/CH4 ratio  159 

 160 

Further considerations about the fluid dynamics in the area arise also from the geophysical 161 

observations. Di Giuseppe et al. (2015) discussed a migration of the shallow fluid volume eastwards 162 

during the few past decades, and supposed that water might have invaded spaces previously saturated 163 

with steam, gas or a combination thereof below the Solfatara main vents, at the same time as fluxes 164 

steam, gas or both were invading voids opening to the east. This last observation strictly  followed 165 

the recent relocation of the fumarolic activity from the Solfatara area toward the Pisciarelli area, 166 

located eastward to the outer slopes of the Solfatara (Figure1b) (Troiano et al., 2014). This relocation 167 

was marked by a temperature increasing,  new vents and boiling pools opening, the occurrence of 168 

seismic activity and by the impressively fast changes in the morphology of this zone.  169 

 170 

Unfortunately, the source of such relocation is yet largely unknown and a lack of knowledge persists 171 

about the fluid dynamics in that part of the CFc hydrothermal system. Current geophysical details of 172 

the connections between the Solfatara and Pisciarelli zones are still largely crude, and the 173 

geochemical data from Pisciarelli suffers of some criticism, as discussed in Chiodini et al. (2011), 174 

who suggested that these data could be heavily modified by seasonal cycles. They would then be not-175 

totally conclusive for investigations into the future changes caused by deep volcanic processes.  176 

 177 

The ERT survey in the Pisciarelli area. 178 
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 8 

Two main electrical conductivity mechanisms characterize a fluid-saturated porous medium (Rinaldi 179 

et al., 2011). The first one is caused by the fluid flow inside the pores, through electro-migration of 180 

charges into the connected pore space. A second conduction mechanism occurs at the pore water–181 

mineral interface in the electrical double layer, that is caused by a migration of the weakly adsorbed 182 

counterions (usually cations).  The DC electrical conductivity of the porous rock can be expressed as 183 

a combination of those two contribution, namely the surface electrical conductivity at the water–184 

mineral interface and the pore fluid electrical conductivity. Changes in those  two quantities are 185 

mainly due to variations into the fluid filling the pore, considering that wet rocks usually have 186 

conductivities sensibly higher that dry rocks (Rinaldi et al., 2011 and references therein). Surface and 187 

pore fluid conductivities depends linearly from temperature (Vaughan et al., 1993, Revil et al., 1998, 188 

Roberts, 2002). Moreover, a dependence from the rock matrix permeability and from salinity of the 189 

pore fluids is also observed (Jardani and Revil, 2009). Many mechanisms can be advocated when 190 

changes are observed in the bulk conductivity of the rocks. The first element to consider is the 191 

compositional nature of the fluids flowing into the system. The pore space of the rocks is indeed 192 

occupied by a mixture of multiphase fluids, as water and CO2 in liquid and vapour phase. Such 193 

mixture is altered by the interaction between meteoric waters and fluids rising from the deep because 194 

of volcanic effects, which has direct effects upon the underground resistivity. When fluid changes 195 

their distribution into the shallower part of the hydrothermal system, the diffusion of the gas phases 196 

(both water vapor and CO2) and the temperature variations alter the electrical conductivity both at 197 

the pore surface and within the porous space. Also the boiling phenomena into the fluids reinforce 198 

the observed gradient in conductivity between liquid saturated and gas saturated areas, concentrating 199 

the brine and increasing salinity in the remaining liquid part. As further effect, the fracturing induced 200 

by the fluid dynamics and thermal expansion also alter the electrical conductivity of the subsoil, 201 

modifying the rock permeability.  202 

The geoelectrical surveys are very effective tools for unveil the dynamics of tectonic and volcanic 203 

settings, and several contribution already regarded the Campanian district ( Di Maio et al., 1998; 204 
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Bruno et al., 2007;Troiano et al., 2008, 2009; Byrdina et al., 2014; Di Giuseppe et al., 2015, 2017; 205 

Gresse et al., 2017).  206 

For the first time, ERT surveys were carried out into the Pisciarelli fumarolic field after the January 207 

2013 event, when a vent that emitted high-pressure steam and liquid water up to 3-4 metres high was 208 

observed, in order to get an insight about the geothermal fluid circulation in the very shallow aquifer. 209 

A first survey was performed along a 70 m long survey line, aligned with the main fumarole and the 210 

permanent thermal pool in the west-east direction (Figure2), while crossing the part of the area subject 211 

to abrupt morphological changes and major emissive activity. A dipole-dipole electrode configuration 212 

was adopted, with a 2.5 m spacing, which was compact and sensitive to both lateral location and 213 

depth of  bodies that are the source of anomalies (Ward, 1988). An Iris Syscal Pro instrument was 214 

used as multichannel resistivimeter. The same instrument was employed as power source, being able 215 

to output a direct current with a  maximum voltage and current of 800 V and 2 A, respectively.  216 

The selected survey arrangement took into account the morphology and harsh environment 217 

characterizing the Pisciarelli area, which represented a limitation imposed on a classical ERT 218 

application. It was only possible to arrange a short survey line, with a consequent limit in the expected 219 

depth of investigation. Despite this restriction, the use of a time-lapse approach, which consists in 220 

performing identical ERT surveys several times in the same place, makes the ERT useful to 221 

investigate the evolution of the Pisciarelli structures. The time-lapse approach was followed in several 222 

ERT applications presented in the literature. As an example, Wallin et al. (2013)  imaged the inland 223 

intrusion of river water in a contaminated acquifer. Nickschick et al. (2017) observed the changes in 224 

the subsurface structure beneath heavily CO2 degassing spots in the Hartsouv Mofete field (Czech 225 

Republic). In the volcanic Pisciarelli environment, time-lapse ERT may possibly resolve the 226 

modifications of fluid phases and/or distribution induced by the contribution of a heat component or 227 

a hot gaseous component, both likely present if a magmatic source is active in the area. 228 
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The ERT survey was regularly repeated, starting in January 2014  ending April 2015. It is worth 230 

noting  that the successive repetitions of the January 2013 survey were performed along a slightly 231 

longer survey line (100 m long) with respect to the first January 2013 survey and that the bimonthly 232 

interval was chosen in order to evaluate the possible influence of seasonal effects on the hydrothermal 233 

system, as indicated by the geochemical monitoring. The ERT lines were inverted using ERTlab3D® 234 

commercial software, including topography. The inverse algorithm, described by LaBrecque et al.  235 

(1999) uses a regularized solution, looking for the optimal value of the parameter vector P and the 236 

stabilization parameter  for which minimizing the functional Y(P)=2(P)+PTRP results in 237 

2(P)=2
prior . The parameters P are the natural logarithms of the conductivity of the mesh elements 238 

and R, the solution roughness, acts as the stabilizing functional. 2
prior is equal to the number of data 239 

points and2
 is given by 2

 = (D - F(P))TW (D - F(P)), where D is the vector of known data values, 240 

F(P) is the forward solution and W is a data weight matrix. The diagonal elements of W are the 241 

reciprocals of the data variances and the off-diagonal elements are zero. This assumes non-correlated 242 

data errors. When ERT data was inverted in time-lapse mode, different approaches were 243 

contemplated. As first consideration, with every dataset collected independently of the others, each 244 

tomogram can be assumed to be a representation of a constant state of the shallower geothermal 245 

system at the collection time. With this in mind, it is possible to invert each dataset independently, 246 

isolating changes in the electrical resistivity by post inversion model differencing. A second option 247 

to consider is the inversion on the differences between the background and subsequent datasets, e.g. 248 

the resistivity obtained by the inversion of the first dataset, considered as background data, can be 249 

considered as the a priori model in the difference inversion. In this case systematic errors such as 250 

those errors due to in field configuration and discretization in the forward modelling algorithm tend 251 

to null and the result is that the difference data is likely fitted more closely than the individual 252 

potentials, resulting in fewer inversion artefacts (LaBrecque and Yang, 2001). A time-lapse 253 

regularization can also be considered (Oldenborger et al., 2007), whereby the reference model for the 254 

first inversion is an uniform model and the reference model for all subsequent experimental stages is 255 
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the model obtained via inversion of the data from the previous stage. Such approaches require, at 256 

least in principle, fewer model modifications to fit the data and the objective function penalizes large 257 

perturbations from previous models as opposed to large perturbations from background. Thus, such 258 

inversion is ultimately able to build up more structure in the final models, while still satisfying the 259 

data to the same level of the previous options. As a final, and likely more corrected, option, the dataset 260 

could be inverted adopting 4D approaches (Kim et al., 2009; Karaoulis et al., 2011), which consider 261 

a four-dimensional space–time model, introducing regularizations reflecting a metric function of both 262 

space and time. In the present case, time-lapse minimization was adopted during the inversion of the 263 

dataset. The final models for each dataset, are reported in Figure 3a. Average root-mean-squares 264 

(RMS) varying from 1.1 up to 1.9  resulted, which we considered satisfactory. In order to support the 265 

reliability of the images, it is common to look at S, the so-called inverse problem’s sensitivity matrix, 266 

which take into account the effects on the data by infinitesimal changes into the model resistivity. 267 

The sensitivity has been estimated for all the tomograms presented in Figure 3. 268 

 269 

The ERT Dataset. 270 

The sequence of inverted  resistivity images obtained in the timelapse survey is shown in Figure 3. 271 

The tomograms showed diffuse lateral and vertical heterogeneities within a resistivity range of about 272 

three orders of magnitude.  273 

 274 

The bimonthly-recorded resistivity sections showed four main electrical anomalies: 275 

A. the first anomaly lying at about 20 m along the profile (corresponding to the blue vertical 276 

dashed line in the figure), located at depths verying between 60-70 m a.s.l.;   277 

B. a second zone displaced at around 35 m along the profile (corresponding to the black dashed 278 

line in the figure), located at depths between 50-65 m a.s.l.; 279 

C.  a third zone centred at around 55 m along the profile (corresponding to the red dashed line in 280 

the figure), located between 50-65 m a.s.l.;  281 
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D. A fourth zone centred at around 70 m along the profile (corresponding to the green dashed 282 

line in the figure), located at around 60 m a.s.l.;  283 

 284 

A further anomalous zone appears at the very end of the profile. This last feature does not lye in the 285 

vegetation-free zone and could likely be linked to some anthropic artefact. The anomalies’ evolution, 286 

in shape and resistivity, is reported in Figure 4, for each of the collected datasets.  287 

Following the approach of Wallin et al. (2013), from the ERT tomograms, the time series of electrical 288 

resistivity have been extracted for each of the electrical anomalies depicted in Figure 4, while taking 289 

into consideration the mean values of the parameter in the elementary cells that compose the related 290 

part of the tomograms. These resistivity time series are reported in Figure 5. 291 

The anomalies observed in the subsurface underneath the Pisciarelli degassing site changed over time, 292 

as a consequence of changes in several parameters on which the resistivity depends. In particular, the 293 

high pressure of fluids (CO2 and water carried along), likely mobilized by a deeper source, is capable 294 

of altering the host rocks mechanically and/or chemically. The fluid’s power is capable of moving 295 

material from lower levels or widening the pores within materials. Moreover, according to 296 

Annunziatellis et al. (2008), gases like CO2 are capable of migrating not only vertically, but also 297 

horizontally in soil as density-driven flows or advective forces, leading to horizontal changes in the 298 

anomalies. In addition, temperature fluctuations, for instance induced by the inflow of deep-lying hot 299 

fluids or by fluids  mixing of in the uppermost part of the hydrothermal system, can induce significant 300 

changes in resistivity. Considering such connections, a comparison between the changes of electrical 301 

resistivity in the anomalous zones and some superficial observations was attempted. The parameters 302 

considered here are the temperature, CO2 fluxes and rainfall rates. The CO2 fluxes and the 303 

temperatures of the emitted gasses were recorded in the Pisciarelli main vent during 2007-2016 304 

(INGV, 2018) in correspondence with the FLXOV3measuring station. These quantities are reported 305 

in Figure 6a and 6b, respectively, where are limited to the years 2014-2015. Also the long-term 306 

temperature trend is reported in Figure 6a, which was deduced by applying the Seasonal Trend 307 
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Decomposition (STL) algorithm on the infrared imaging recorded in proximity of the upper part of 308 

the west side of the vent ( Vilardo et al., 2015; INGV, 2018). The two temperature estimates, which 309 

refer to emitted gasses and surface thermal features of the area affected by diffuse degassing, 310 

respectively, are biased. However, they show a very close relationship in pattern of variability. The 311 

monthly rainfall rates, relative to the meteorological station of Pozzuoli (furnished by the ‘Protezione 312 

Civile Regione Campania’) are reported in Figure 6c. All data are reported as recorded in the 313 

corresponding measuring stations, but a brute comparison between these quantities can be misleading, 314 

due to the very different nature and variability of such records. Therefore, the way to compare 315 

information so different as the ERT tomograms and the surface observations (geochemical data, 316 

temperature and rainfall rates) has to be carefully investigated and a normalization criterion has to be 317 

adopted to result in a valid comparison. In order to place all these signals on a comparable scale, the 318 

so-called z-score (Klemelä, 2009) was calculated for each record separately. The z-scores were 319 

obtained by removing the mean value from each time series and dividing by the relative standard 320 

deviation. In such way, samples having zero means and unit variances are obtained. The z-scores for 321 

all the variables mentioned above (and shown in Figure 5 and 6) are reported in Figure 7. 322 

Discussion. 323 

 324 
The resistivity trends of the different anomalies over time, in terms of z-scores, are shown in Figure 325 

8a. Thus emerges a peculiar behaviour of anomaly B, that shows a resistivity oscillating more in time 326 

with respect to the other anomalies, all presenting a comparable increasing attitude. In Figure 8b, the 327 

resistivity of anomaly B is compared with the rainfall rate and temperature. The B resistivity appears 328 

to be correlated with the temperature and anti-correlated with the rainfall. This suggests that the 329 

character of the B anomaly may be influenced by seasonal effects, probably driven by the influx of 330 

cold rainwater into the system. The warmer and drier months see an increase in resistivity and vice 331 

versa. Figure 8c shows, for anomaly C, how the linear increasing trend of resistivity instead appears 332 

to be less correlated to temperature and rainfall rates.  333 
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Considering on turn the geochemical data, the main vent showed an increasing amount of CO2 334 

emission, varying by about one order of magnitude from 2007-2016 (INGV, 2018). Superimposed 335 

on this accumulation tendency, a clear annual cyclic oscillation was distinguishable, that has been 336 

stronger in more recent years. Chiodini et al. (2011), reporting on the CO content of the Pisciarelli 337 

fumarole, until 2011, concluded that at Pisciarelli, strong seasonal effects and the possibility of re-338 

equilibration of the fumarolic fluids at very shallow depths concealed the deep geothermo-barometric 339 

signals. In addition, the comparison of the z-scores of CO2 emission, IR temperature and rainfalls, 340 

reported in Figure 8d shows a strong correlation between CO2 emission and rainfalls. The comparison 341 

between CO2 emission and resistivities, reported in Figure 8e, suggests a link between the 342 

parameters. Such correlation could be likely due to a buffering and/or cumulation of the gas flowing 343 

from the geothermal system to the atmosphere in those zones. At least in principle, the contribution 344 

of chemical effects to observed changes in resistivity, such as fracture sealing or rock alteration, 345 

cannot be excluded. However, we note that these effects should not show any periodicity. Moreover, 346 

concerning the sealing, the dynamics of Pisciarelli allows a reasonable opening rather than closing of 347 

fractures. On other hands, the dominants among the new chemical species, e.g. sulfur and alunite as 348 

indicated in Piochi et al. (2015b), should induce a decrease in the bulk rocks resistivity. In contrast, 349 

the non-cyclical anomalies retrieved through the time-lapse ERT imaging present an increasing 350 

attitude. The comparison with the surface data helps to strengthen the hypotheses on the phenomena 351 

that determine the observed variations in the electrical structures. 352 

Recognizing the relevance and meaning of the anomalies and their evolution over time in electrical 353 

images is not, however, trivial, especially considering the interplay between rainwater and 354 

hydrothermal fluids, which can generate elaborate patterns. In the case of Pisciarelli, this interaction 355 

has a feedback in the tomographic sections. The first element is the direct link between anomaly B 356 

and the surface. The second element is the diffusion over time of a low resistivity zone along the top 357 

of anomaly C, which interacts with a vertical conductive plume apparently rising up in the boundary 358 

zone between the C and D anomalies. The B anomaly corresponds to the thermal pool and it shows a 359 
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seasonal character, while the boundary between the C and D anomalies corresponds to a fault zone 360 

with surface manifestations and the maximum of fracture detected in the field (Isaia et al., 2015). In 361 

our interpretation, rainwaters stored into the thermal pool penetrate into the subsoil through the 362 

narrow channel, permeating the available space, the results of which are laterally confined by the C 363 

anomaly, in turn acting as a permeability barrier. Moreover, part of the same waters dislocate also 364 

along the top of the C anomaly, which again acts as a permeability barrier, ending to interact with 365 

other fluids, of deeper origin, rising along the pre-existing fractures. This interpretative framework is 366 

summarized in Figure 9, where a sketch map is superimposed over the tomographies.  367 

Conclusion 368 

In this paper the results of a time lapse ERT monitoring in the volcanically active Pisciarelli site are 369 

shown. Being that pre-eruptive changes are frequently extremely rapid, and the Pisciarelli area is 370 

extremely urbanized, this site represents one of the strong sources of volcanic risk in the whole CFc 371 

and looking for pre-eruptive indicators could be relevant to prevent potentially highly destructive 372 

consequences. This is particularly true due to the non-totally conclusive findings of the routine 373 

monitoring performed in the area. 374 

Even though the imaging we have performed brings only a small amount of large-scale information 375 

about the feeding system, due to the limited resolution at depths, the ERT imaging highlighted several 376 

anomalous zones. The interpretation of such patterns is quite difficult, being related to complex 377 

phenomena such as the interaction between the fluid components of different origins present in the 378 

vent. However, the comparison with other monitoring data (temperature, geochemical data and 379 

rainfall rates) permitted us to discern the areas dominated by seasonal effects from the ones more 380 

influenced by other, most significant contributions, linked to gas injected into the  system from deep 381 

locations which cumulates in the subsoil. Moreover, such comparison can be a guideline toward a 382 

more confident interpretation of the patterns shown by fluids during such times, helping to understand 383 

what features are more related to the apport of meteoric waters into the subsoil and what could be 384 

more correlated to the inflow of fluids of deeper origins. The boundary surfaces along which the 385 
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fluids displace and the fractures where fluids rise are also revealed. The reconstruction of such 386 

features, obtained through the imaging of the underground electrical resistivity changes reveal the 387 

complex interactions between the environment and the deeper volcanic sources. In this sense, the 388 

presented results point out some general aspects.  The indirect information obtained through 389 

geophysical imaging proves an vehicle to underline the underground phenomena, explaining the 390 

dynamics of large volumes of subsoil without any arbitrary extrapolations, typical of techniques based 391 

on surface observations. A further methodological aspect has to be underlined. No geophysical 392 

method is self-consistent, in the sense that just the integration of information about all the physical 393 

characteristics of rocks allows the understanding of the phenomena occurring and the creation of 394 

unique lithological models. In spite of this, however, our results show how the single electrical 395 

technique has a relevant proficiency. The model presented in Fig.9 evidence the self-standing ERT 396 

capability to define and detail the phenomena at least in their essential lines. The results presented 397 

here can be considered the first test about the aptitude of time-lapse ERT to understand the evolution 398 

of an active fumarole, thanks to a significant contribution to the characterization of subsoil structures 399 

and the understanding of their evolution during time. In any case, even if the tomograms indicate that 400 

this promising approach of  time-lapse ERT monitoring to sheds light on the potentially dangerous 401 

evolution of the investigated system, because the phenomena involved are extremely complex, the 402 

evaluation of such aspects deserves more effort and rigorous modelling. As further development, the 403 

establishment  of permanent and longer surveying lines could substantiate the results. In particular, a 404 

continuous acquisition of the tomograms could end in longer time series of electrical resistivity 405 

changes, which could be compared to the geochemical ones following combined statistical 406 

approaches, such as wavelet coherence analysis.    407 

 408 

Figure captions. 409 
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Fig.1. a) Map of the Campi Flegrei caldera (Italy). b) Map of the Solfatara–Pisciarelli complex, 410 

framed with the black box in panel a). The ERT survey area is enclosed in the black box and the 411 

survey profile is evidenced with the red line. The geodetic reference system is UTM-WGS84. 412 

 413 

Fig.2. Aerial view of the Pisciarelli area, where the time-lapse ERT surveys were realized (red dashed 414 

line). Locations of the main anomalies retrieved by ERT are indicated, with the colored capital letters. 415 

The geodetic reference system is UTM-WGS84.  416 

 417 

Fig.3. ERT resistivity sectionsrelative to the profile sketched in Fig.2. For every section, the relative 418 

date is indicated. A common logarithmic scale is used for all the resistivity sections. The main features 419 

discussed into the text (already shown in figure 2) are also indicated with the coloured dotted lines; 420 

 421 

Fig.4. Detail of the four main electrical anomalies retrieved through time-lapse ERT. For every 422 

section, the relative date is indicated. A common logarithmic scale is used for all the resistivity 423 

sections. The main features discussed into the text are also labelled with coloured capital letters. 424 

  425 

Fig. 5. Comparison between the electrical resistivity time series (in m) as function of time, which 426 

were obtained extracting the mean value of the parameter in correspondence of the four areas shown 427 

in figure 4. 428 

 429 

Fig. 6. a) temperature of the gas emitted at the Pisciarelli main vent (left axes, °C) and temperature 430 

extracted from infrared thermal images through the application of the STL algorithm (right axis, °431 

C) during 2014-2015. (b) CO2 fluxes emitted at the Pisciarelli main vent (in gm-2d-1) during 2014-432 

2015. (c) Monthly rainfall rates (in mm month-1) recorded at the Pozzuoli meteorological station of 433 

the ‘Protezione Civile Regionale’ agency. 434 
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 435 

Fig.7.  The z-scores extracted by the variables mentioned in Figure 5 (electrical resistivity time series) 436 

and Figure 6 (temperature, CO2 fluxes and rainfall rates). Z-scores were obtained by removing the 437 

mean value from each time series and dividing by the relative standard deviation.  438 

 439 

Fig. 8. Z-scores extracted by the observed variables, compared as follow: (a) electrical resistivity 440 

time series relative to the four anomalous zones shown in Figure 2. (b) electrical resistivity time series 441 

relative to the B electrical anomaly, surface IR temperature and rainfall rates. (c) electrical resistivity 442 

time series relative to the C electrical anomaly, surface IR temperature and rainfall rates. (d) CO2 443 

fluxes, surface IR temperature and rainfall rates. (e) electrical resistivity time series relative to the 444 

four anomalous zones, CO2 fluxes.     445 

 446 

 447 

Fig.9. Conceptual model of the Pisciarelli fumarolic zone. This W-E model crosses the main vent and 448 

the thermal permanent pool. The interpretative elements are reported in the legend. Electrical 449 

resistivity isolines, relative to the April 2015 tomogram are superimposed, maintaining the same 450 

common logarithm scale of Figure 3. 451 

 452 

 453 
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