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ABSTRACT 

Lava flow modeling is important in many practical applications, such as the simulation of 

potential hazard scenarios and the planning of risk mitigation measures, as well as in 

scientific research to improve our understanding of the physical processes governing the 

dynamics of lava flow emplacement. Existing predictive models of lava flow behavior include 

various methods and solvers, each with its advantages and disadvantages. Codes differ in 

their physical implementations, numerical accuracy, and computational efficiency. In order to 

validate their efficiency and accuracy, several benchmark test cases for computational lava 

flow modeling have been established. Despite the popularity gained by the Smoothed 

Particle Hydrodynamics (SPH) method in Computational Fluid Dynamics (CFD), very few 

validations against lava flows have been successfully conducted. At the Tecnolab of INGV-

Catania we designed GPUSPH, an implementation of the weakly-compressible SPH method 

running fully on Graphics Processing Units (GPUs). GPUSPH is a particle engine capable of 

modeling both Newtonian and non-Newtonian fluids, solving the three-dimensional Navier–

Stokes equations, using either a fully explicit integration scheme, or a semi-implicit scheme 

in the case of highly viscous fluids. Thanks to the full coupling with the thermal equation, and 

its support for radiation, convection and phase transition, GPUSPH can be used to faithfully 

simulate lava flows. Here we present the preliminary results obtained with GPUSPH for a 

benchmark series for computational lava-flow modeling, including analytical, semi-analytical 

and experimental problems. The results are reported in terms of correctness and 

performance, highlighting the benefits and the drawbacks deriving from the use of SPH to 

simulate lava flows.  
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1. Introduction 

The mechanisms controlling lava flow emplacement are not yet fully understood, due to the 

complexity of the fluid, its non-Newtonian rheology, and the strong effect on the rheology by 

the physical and chemical properties of the fluid (temperature, chemical composition, degree 

of crystallization, etc.) and their evolution over time. Mathematical modeling and computer 

simulations can play an essential role in improving our understanding of the lava flow 

patterns, its morphology, and thermal evolution [Del Negro et al., 2008; Ganci et al., 2018; 

Vicari et al., 2009]. The complex nature of the fluid, aspects such as free surface and 

irregular topographies, and phenomena like phase transition and the consequent formation 

of levees and tunnels make simulation of lava flows an extremely challenging task for 

Computational Fluid Dynamics (CFD). In the modeling of lava flow hazards [Cappello et al., 

2011, 2016a; Del Negro et al., 2013, 2016; Ganci et al., 2013; Hérault et al. 2009], common 

approaches to the simulation of lava flows start by reducing the complexity with a number of 

different strategies, such as reduced dimensionality, simplified thermal or dynamic models, or 

the use of stochastic approaches with little or no physical modeling [Costa and Macedonio, 

2005]. These simplifications allow easier implementations and higher performance, and while 

the results may still be useful for real-time forecasting [Cappello et al., 2016b], risk mitigation 

[Scifoni, 2010] and the production of long-term scenarios [Del Negro et al., 2013], they are 

inadequate for a more thorough study of the behavior of the fluid and the laws underlying its 

rheology, which require the detailed modeling of the full three-dimensional flow and its 

rheological aspects. 

The Smoothed Particle Hydrodynamics (SPH) method, recently introduced in the field of 

Computational Fluid Dynamics (CFD), is a Lagrangian mesh-free particle-based method that 

allows a three-dimensional modeling of the fluid, taking into account in an efficient way many 

physical aspects that are typical of lava flows, such as the free surface, solidification fronts, 

the high dynamicity of the fluid and the interaction with irregular boundaries, such as solid 

lava emplacements and natural topographies. One main drawback of the SPH method is low 

accuracy, since in its common form it is a first order method [Monaghan, 2005]. A second 

drawback comes from the frequent adoption of a weakly-compressible model [Hérault et al., 

2010] instead of a fully incompressible one. As stated by Cordonnier et al. [2016], this choice 

affects the quality of the simulation, requiring an adjustment of parameters in order to 

improve the results. Moreover, the adoption of a weakly-compressible model affects the 

simulation performance, since the time stepping is driven by the speed of sound [Zago et al., 

2018]. On the other hand, a weakly-compressible model allows a complete parallelization of 

the computations that can be run on massively parallel hardware like Graphics Processing 

Units (GPU), giving an advantage in terms of performance [Hérault et al., 2010]. 
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The TecnoLab at the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in Catania has 

created the GPUSPH particle engine [Hérault et al., 2011; Bilotta, 2014; Zago et al., 2017], 

the first implementation of the Weakly-Compressible Smoothed Particle Hydrodynamics 

(WCSPH) method to run entirely on Graphic Processing Units (GPUs). To better handle the 

computational needs of lava flow simulations, GPUSPH has been extended to distribute 

computations across multiple GPUs [Rustico et al., 2012], even across separate nodes in a 

cluster [Rustico et al., 2014], and it includes a semi-implicit integration scheme for highly 

viscous flows [Zago et al., 2018].  

GPUSPH has already been validated in a number of contexts, both against classical 

theoretical problems, and real-world applications [Wei et al., 2015; 2016]. However, we need 

to evaluate the accuracy and robustness of the particle engine results in the context of lava 

flow simulation, starting from the benchmark tests introduced by Cordonnier et al. [2016]. 

These benchmark tests of growing complexity (from a simple dam break without thermal 

effects to a physical experiment including both dynamic and thermal aspects) can be used to 

validate lava flow models in terms of completeness, accuracy and computing performance. In 

their work, Cordonnier et al. [2016] also compare the models that represented the state of 

the art at that time, and illustrated the respective main features, advantages and 

disadvantages. Here we present preliminary results obtained with GPUSPH, discussing the 

influence of the model and formulation on the accuracy and computational performance of 

the results, and the possible strategies to improve them. 

 

2. SPH in GPUSPH for lava 

The SPH method discretizes the fluid by means of particles that act as interpolation nodes. 

Each particle carries information about a small volume of fluid, such as velocity, position, 

density, mass, temperature and so on, and moves according to equations of motion. The 

basis of the method relies on the SPH smoothing, that is the way in which the fields are 

interpolated at the position of the particles [Monaghan, 2005]. For each particle the effect of 

its neighbors is weighted by the value of a function called smoothing kernel, that is centered 

in the particle position and is usually indicated with 𝑊(𝑟, ℎ). Here, 𝑟 indicates the distance 

from the neighbouring particle and ℎ is a parameter called smoothing length. The smoothing 

kernel is usually chosen with a compact support, which radius is called influence radius, 

usually determined as a multiple of ℎ. 

The dynamics of fluid bodies is modeled according to the continuity equations for mass: 

 Dρ
Dt
= −ρ∇ ∙ 𝐮, (1) 
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where 𝜌 is the density, 𝒖 the velocity and D/Dt the total derivative with respect to time, and 

momentum (Navier–Stokes equations): 

 ρ D𝐮
Dt
= −∇P + ∇ ∙ (μ∇𝐮) + 𝐆, (2) 

where P is the pressure, 𝜇 the dynamic viscosity, and 𝐆 represents external forces, such as 

gravity, and the thermal evolution is described by the heat equation 

 ρ cp
DT
Dt
= ∇(κ∇T), (3) 

where 𝑇 is the temperature, 𝑐𝑝 is the specific heat at constant pressure and 𝜅 is the thermal 

conductivity. 

Even though we are considering the incompressible form of the Navier-Stokes equations, 

solving a fully incompressible fluid model would be rather complex and computationally 

expensive, since it would imply to solve the pressure form Poisson equation. Moreover, 

incompressible SPH models are known for exhibiting unstable behaviors in the density field 

and issues dealing with free surfaces [Ihmsen et al., 2014]. As an alternative, in SPH one 

uses frequently a weakly compressible formulation where the pressure is derived from the 

density using an equation of state, such as [Cole, 1948]: 

 P(ρ) = c02
ρ0
γ
(( ρ
ρ0
)
γ
− 1),  

with 𝜌0 the at rest density, 𝑐0 the speed of sound and 𝛾 the polytropic constant. By 

construction, the compressible model allows to integrate independently each particle, making 

possible the adoption of explicit integration schemes without the need to solve any linear 

system. While this constitutes an advantage in terms of parallelizability of computations 

[Hérault et al., 2010], it also introduces a drawback in terms of time-stepping. 

Explicit integration schemes exhibit stability requirements concerning the maximum allowed 

time step. The latter is in fact linked to several factors like the speed of sound, the viscosity, 

the maximum acceleration and the thermal diffusivity, by some CFL-like conditions 

[Monaghan, 1989; Monaghan and Kos, 1999; Morris et al., 1997, and references within]: 

 ∆tβ ≤ min {C1√
h

‖𝐚β‖
, C2

h
cβ
, C3

ρβh2

μβ
, C4

ρβcph2

κ
},  

where 𝐚β is the acceleration of the particle β, cβ is the speed of sound at density ρβ, and C1, 

C2, C3 and C4 are stability constants. In GPUSPH we use C1 = C2 = 0.3, C3 = 0.125 and 

C4 = 0.1. The maximum allowed time step for the whole system is then the minimum time 

step over all particles, ∆t = minβ∆tβ. 
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Because of these constraints, the speed of sound used for SPH simulations is usually taken 

smaller than the physical one, but still enough to prevent a compressible behavior. Weak 

compressibility is achieved as long as the speed of sound is large enough to bound density 

variations within certain ranges. A common choice is to take the sound speed one order of 

magnitude above the maximum velocity experienced in the flow, so that the maximum 

variation in density is contained within 1% of the fluid density. When the simulation involves 

high fluid columns, the hydrostatic velocity (i.e. the maximum velocity that a particle at the 

highest position would achieve in free-fall) can be predominant with respect of the maximum 

flow speed, and must be used instead. This is important to eliminate the vertical collapse of 

the fluid column due to excessive compressibility. Therefore, choosing a high speed of sound 

can help to get closer to the incompressible behavior, which would be more appropriate for 

lava, but such improvement is paid with a small time step, and then in terms of computational 

time and numerical precision. 

 

2.1 Surface thermal dissipation 

Thermal dissipation is modeled both at the contact with the ground, using equation (3) and 

on the free surface. The latter occurs according to two phenomena: 

1. Thermal radiation: according to Stefan-Boltzmann law, we express the radiated heat 

per unit surface as: 

 DT
Dt
= KB κ ϵ

m cp
(T4 − Ta4),  

with KB the Stefan-Boltzmann constant, 𝜖 the emissivity, 𝑚 the mass and 𝑇𝑎 the air 

temperature. 

2. Air convection: We do not model air particles, but we account the heat lost due to air 

convection by means of a convection coefficient 𝜂, according to the following law, per 

unit surface: 

 DT
Dt
= η

m cp
(T − Ta),  

2.2 SPH discretization of the equations 
The dynamical equations seen above are discretized according to the SPH method as 

described in Bilotta et al. [2016],  Hérault et al. [2011] and  Zago et al. [2018] obtaining: 

 Dρβ
Dt

= −∑ mαα  𝐮αβ∇βWαβ,  

for the continuity equation (1),  



6 
 

 D𝐮β
Dt

= ∑ (Pα
ρα2
+ Pβ
ρβ
2) Fαβ mαα  𝐱αβ − ∑

2 μ̅αβ
ραρβα Fαβ mα𝐮αβ + 𝐠,  

for the momentum equation (2), and 

 DTβ
Dt

= − 1
ρβcp

∑ 2 mα kαβ Tαβ
ραα  Fαβ,  

for the thermal equation (3). 

 

The two formulas for the surface thermal dissipation, introduced in section 2.1, are applied to 

surface particles that are identified as described in Bilotta et al. [2016] and Hérault et al. 

[2011]. To apply these two per unit surface formulas, a simple way of computing the particle 

surface would be to consider it a square with the average inter-particle spacing as particle 

side. But we are dealing with flows that usually evolve towards a condition of under-resolved 

flow, then we would underestimate the surface in the regions where the simulation becomes 

more rarefied (i.e. where we have a thin flow). To face this problem we compute the particle 

surface using the numerical volume [Hu and Adams, 2006] 

 Vβ =
1

∑ Wαβα
,  

and considering a spherical particle volume and a circular particle surface. 

 

2.3 SPH smoothing kernel 

Given a symmetric SPH smoothing kernel 𝑊, its gradient can be written as: 

 ∇βWαβ = −
𝐱αβ
|𝐱αβ|

 ∂W(r,h)∂r |r=|xαβ|,  

where 𝐱αβ =  𝐱𝛂 − 𝐱𝛃 , and h is the kernel smoothing length. By choosing a kernel for which 

 F(r) = 1
r
 ∂W∂r ,  

has an analytical expression, and given 𝐹𝛼𝛽 = 𝐹(|𝐱𝛼𝛽|), we can then write 

 𝛻𝛽𝑊𝛼𝛽 = −𝐱𝛼𝛽𝐹𝛼𝛽. 

For the simulations presented in this work we adopt a Wendland kernel [Wendland, 1995], 

defined as 𝑊(𝑟, ℎ) = �̃�(𝑟/ℎ) and 𝐹(𝑟, ℎ) = �̃�(𝑟/ℎ) with 

 W̃(q) = CW(2q + 1) (1 −
q
2
)
4
       0 ≤ q ≤ 2;  

 F̃(q) = CF(q − 2)3  
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where, working in three dimensions, Cw = 21/(16 πh3) and CF = 5 Cw /(8h2). 

 
2.4 Boundary conditions and boundary model 

From a mechanical point of view, at the interfaces between fluid and either walls and ground 

we impose a no-slip condition; this is obtained prescribing normal and tangential velocity 

along the analytical boundary: 

 un(t) = 0  

 ut(t) = vW  

where vw is any physical sliding velocity of the wall (in our examples, we will always have 

vw = 0). In our SPH discretization, physical boundaries are implemented according to the 

Dummy boundary model [Adami et al., 2012], where solid walls are discretized with multiple 

layers of boundary particles, enough to cover a full influence radius and thus complete the 

kernel support for fluid particles adjacent to the boundary. No-slip boundary conditions with 

dummy boundaries is obtained assigning to the boundary particles a velocity obtained as 𝑣𝑤 

plus the opposite of the Shepard-averaged velocity of the neighboring fluid: 

 𝐮β = 𝐯W −
∑ 𝐮αWαβα∈F

∑ Wαβα∈F
,  

 (where 𝐹 represents the set of fluid particles) while the density is computed to achieve a 

pressure that matches the Shepard-averaged pressure of the neighboring fluid: 

 Pβ =
∑ PαWαβ+𝐠∙α∈F ∑ ραβ𝐱αβWαβα∈F

∑ Wαβα∈F
,  

In order to reduce the accumulation of numerical error in the computations for the boundary 

model, all summations are performed using the Kahan method [Kahan, 1965]. For the 

thermal model we use absorbing boundary conditions, implemented using the sponge layer 

approach: the boundary is assumed to have a sufficiently large thickness 𝐻𝑠, through which 

heat propagates using the standard heat equation. Given a one-dimensional reference 

system with the origin on the boundary interface and oriented along the inwards normal 𝑛, 

the conditions for the temperature 𝑇(𝑛, 𝑡) (with 𝑛 the wall depth coordinate, and 𝑡 the time) 

can be described analytically as 

 T(0,0) = TW,  

 T(−Hs, t) = TW,  
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where 𝑇𝑤 is the initial physical temperature of the wall [Hérault, 2008]. 𝐻𝑠 must be chosen 

large enough to guarantee the last condition over all the simulation time. 

 

3. Benchmarking the GPUSPH model  

The SPH discretization, as any numerical method, introduces some errors that lead to a 

discrepancy between the simulation results and the exact solutions, which can be reduced 

adopting finer resolutions. In the following we will analyze the results of the simulation in 

terms of convergence with respect to the discretization fineness. In particular, the outputs of 

GPUSPH have been compared to the first three benchmark tests introduced by Cordonnier 

et al. [2016]. 

 

3.1 BM1: viscous dam-break 
Dam breaks are one of the simplest test cases in the field of CFD, and is described as a 

defined amount of confined fluid that is suddenly freed from one side and allowed to spread 

onto an horizontal plane, driven by gravity. In the simplest configurations, validation is made 

against the progress of the front of the flow over time.  

In Cordonnier et al [2016], the initial configuration of the fluid is a box with length 𝐿 =  6.6𝑚, 

height 𝐻 =  1𝑚 and width 𝑊 =  6.6𝑚. The fluid has density 𝜌 =  2700 𝑘𝑔/𝑚3 and a dynamic 

viscosity 𝜇 =  104 𝑃𝑎 · 𝑠. According to Balmforth et al. [2007] and Saramito et al. [2013], the 

evolution of the front over time is analytically described by 

 xf(t)
L
=

{
 

 0.284 (t
T
)
1
2                                  if t < 2.5T;

1.133 (t
T
+ 1.221)

1
5 − 1          if t ≥ 2.5T,

 (4) 

where 𝑇 is the characteristic time of the problem, defined as 𝑇 =  (𝐿/𝐻)2(𝜇/𝜌𝑔ℎ). In our 

case, we have 𝑇 =  16.45 𝑠. 

 

1) Implementation in GPUSPH: The simulation domain consists of a base plane and three 

walls containing the fluid. The fourth side of the main fluid box is left free to allow the fluid to 

slump, simulating the sudden opening of a gate (Figure 1). 
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FIGURE 1. Lateral slice of 𝐵𝑀1𝐻𝑅 at 𝑡 =  10𝑠. Particles are colored by velocity magnitude. 
 
 
The solid walls are modeled using dummy boundaries, as introduced in section 2.3. The 

density diffusion approach introduced by Molteni and Colagrossi [2009] is used to smooth out 

the noise that naturally develops in the density field.  

For the speed of sound, the usual choice in WCSPH is to pick a value 𝑐0 around 10 or 20 the 

maximum velocity value. Our experiments however show that much lower errors at a given 

spatial resolution can be obtained by using a higher speed of sound. There are diminishing 

returns in raising the value of 𝑐0, though, due to the smaller time-step, and even a reversal 

when the time-step becomes too small for the available precision. The main results that we 

illustrate are thus obtained with a speed of sound 100 times higher than the hydrostatic 

velocity, resulting in 𝑐0 =  443 𝑚/𝑠.  

 

2) Results for BM1: We show results for three different resolution, a Low Resolution with 

inter-particle distance ∆𝑝𝐿𝑅  = 1/8 𝑚 =  0.125𝑚, an Intermediate Resolution with inter-particle 

distance ∆𝑝𝐼𝑅  =  ∆𝑝𝐿𝑅/2 =  1/16 𝑚 =  0.0625𝑚, and a High Resolution with ∆𝑝𝐻𝑅  =

 ∆𝑝𝐿𝑅/4 =  1/32 𝑚 =  0.03125𝑚. In the following we will refer to these three simulations as 

𝐵𝑀1𝐿𝑅,  𝐵𝑀1𝐼𝑅 and 𝐵𝑀1𝐻𝑅. We measure the front of the fluid as the position of the furthest 

particle in the flow, plus ∆𝑝/2 to take into account the particle volume. Results for the front 

position at the three resolutions, compared to the front position predicted by equations (4) 

are presented in Figure 2. 
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FIGURE 2. Front position over time for 𝐵𝑀1. The comparison among the analytical solution 
and the solutions simulated with different resolutions reveals convergence of the method. 
 
 
We observe that GPUSPH slightly overestimates the theoretical solution for the front 

progress, and that the error becomes smaller at higher resolutions. Table 1 shows the errors 

obtained as the difference between the simulated and theoretical front position in 

respectively the low, intermediate and high resolution cases at time 𝑡, and the error ratios, 

obtained as the error at lower resolution over the error at higher resolution. 

 

Time [s]  𝐵𝑀1𝐿𝑅  (8 𝑝𝑎𝑟𝑡𝑠/𝑚) 𝐵𝑀1𝐼𝑅 (16 𝑝𝑎𝑟𝑡𝑠/𝑚) 𝐵𝑀1𝐻𝑅 (32 𝑝𝑎𝑟𝑡𝑠/𝑚) 

10 
error [m] 0.3085 0.2628 0.1822 

err ratio 11.1739 1.4423 

500 
error [m] 2.9546 1.0267 0.2113 

err ratio 2.8779 4.8599 

 
TABLE 1. Errors for 𝐵𝑀1 at short and long time. The error ratios are computed as the ratio 
of the error at lower resolution over the error at higher resolution. 
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FIGURE 3. Logarithmic plot of the error for 𝐵𝑀1 over the spatial discretization interval for 
different times. The convergence rate is higher at longer times due to the under-resolved 
condition of lower resolution simulations. 
 
 
From Table 1 and Figure 3 we can assess the convergence of the model and that the order 

of convergence grows over time, being in the best case around a second order trend. The 

latter result is due to the low-resolution simulation becoming under-resolved as the flow 

progresses, due to the decrease in thickness, leading to larger errors and to the formation of 

artifacts, as shown in Figure 4, illustrating the situation for 𝐵𝑀1𝐼𝑅 at 𝑡 =  500𝑠: we can 

observe that the front profile is no more well reconstructed and some artifacts are arising, like 

the formation of a second head and the detachment of the fluid from the ground. For 𝐵𝑀1𝐻𝑅 

we can further observe that at 𝑡 =  45𝑠 there is a temporary inversion, with the simulation 

being slightly behind the theoretical result. This may be explained by the change in the 

expression of the analytical law, that presents a small discontinuity at 𝑡 =  2.5𝑇 =  41.125𝑠, 

giving a bigger value from the right hand side.  

Finally, concerning the fluid height, we have from Saramito et al. [2013] that for short times 

the fluid height at the dam position and the end of the reservoir should remain constant (i.e. 

ℎ(𝑡, 0)/𝐻 =  0.684 and ℎ(𝑡, −𝐿)/𝐻 =  1) while the surface shape rearranges, whereas for 

long times (𝑡 ≫  2.5𝑇) the height at 𝑥 =  −𝐿 and 𝑥 =  0𝑚 is the same, and evolves 

according to the law 𝑡−2. For short times (less than around 100𝑠) all of the three different 

resolution simulations match the analytical result, with an error of less than ∆𝑝. 

 

3) Simulation performance: All the simulations were performed on a NVIDIA Titan X GPU 

(Maxwell architecture); with the adopted spatial discretization, 𝐵𝑀1𝐻𝑅 consists of 30′890′152 

particles and the time step (controlled by the speed of sound) is ∆𝑡𝐵𝑀1𝐻𝑅  =  2.54 ·  10−5𝑠. 
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1𝑠 of 𝐵𝑀1𝐻𝑅 evolution is simulated in around 1950𝑠 of real time. 𝐵𝑀1𝐼𝑅 involves 8′080′744 

particles and a time step ∆𝑡𝐵𝑀1𝐿𝑅  =  5.63 · 10−5𝑠 and 1𝑠 of 𝐵𝑀1𝐿𝑅 evolution is simulated in 

around 168𝑠. Finally, 𝐵𝑀1𝐿𝑅 involves 187′244 particles and a time step ∆𝑡𝐵𝑀1𝐿𝑅  =  5.6 ·

10−4 𝑠 and 1𝑠  of 𝐵𝑀1𝐿𝑅 evolution is simulated in around 18 𝑠. 

 

 
 
FIGURE 4. Under resolved flow front for 𝐵𝑀1𝐼𝑅 at 𝑡 =  500𝑠: this is one of the resolution 
issues arising in 𝐵𝑀1 as the flow evolves. 
 
 
3.2 BM2: inclined viscous isothermal spreading 

This benchmark test regards the simulation of a fluid spreading onto an inclined plane, and 

follows the analytical solution derived by Lister [1992]. The fluid has a Newtonian rheology 

and is injected at a constant rate 𝑄 from a point source through the plane. We are interested 

in the evolution of the down-slope and cross-slope extent (𝐿𝑑 and 𝑦𝑝, respectively as shown 

in Figure 5) of the flow. The plane is inclined by an angle α =  2.5° and the fluid, with 

kinematic viscosity ν =  μ/ρ =  11.3 ·  10−4 m2 /s, flows at a rate Q =  1.48 · 10−6m3/s. 

 

 
 
FIGURE 5. Setup for 𝐵𝑀2. (from Cordonnier et al., 2016). 
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The density is left free by Cordonnier et al. [2016], and we have opted to use the same value 

adopted in 𝐵𝑀1, ρ =  2700 kg/m3. According to Cordonnier et al. [2016], the analytical 

solution at long time for the downslope extent over time is given by: 

 Ld ≈ [
(ρ g)3 Q4  sin5 α
(3μ)3 cos2 α ]

1
9
 t
7
9 = 0.0064 t

7
9,  

and for the cross slope extent, at long times, is given by: 

 yp ≈ (
𝑄 cos𝛼
sin𝛼 )

1
3  t

1
3 = 0.0324 t

1
3,  

1) Implementation in GPUSPH: The simulation domain is constituted by a base plane and a 

piston, the latter used to obtain the constant flow rate Q, as shown in Figure 6. Also in this 

case we perform a convergence test using three levels of discretization: a low resolution with 

inter-particle distance ∆pLR  =  1/384 m =  2.6 ∙ 10−3m, an Intermediate resolution with 

∆pIR =  ∆pLR/1.5 =  1/512 m =  1.95 · 10−3m, and a High Resolution with ∆pHR  =

 ∆pIR/1.5 =  1/768 m =  1.3 · 10−3m. 

The fluid source, ideally a point source, is obtained by means of a hole in the plane, through 

which the fluid is extruded. Because of consistency requirements of the SPH method, the 

size of the source cannot be chosen arbitrarily small, but there is a lower bound dictated by 

the resolution. To avoid under-resolving the inlet, we impose a lower bound on the inlet 

diameter in order to have at least 8 ∆𝑝 with the coarser resolution, then we use 2 𝑐𝑚. For 

simplicity, the source has a squared shape. The width of the piston is 0.1𝑚. It is taken bigger 

than the hole section to avoid having a high fluid column that would require a very high 

speed of sound and consequently very small time steps. On the other side, having a too 

large piston implies more stresses on the fluid that would lead to higher disorder in the flow, 

with consequent increase in the discretization error [Monaghan, 2005]. Moreover a large 

piston surface, coupled with the small value of 𝑄, can determine small particles velocities that 

can be affected by numerical precision during the integration process. 

In order to make a simpler definition of the geometry, with reduced numerical rounding, the 

floor is parallel to the xy coordinate plane, and gravity is oriented by an angle of −α. A side 

view of the simulation at t =  15s is presented in Figure 6. 
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FIGURE 6. Implementation of 𝐵𝑀2 in GPUSPH, lateral view of a slice. Particles are colored 
by type: fluid in blue, walls in green and the moving piston in red. 
 
 
As in 𝐵𝑀1, the speed of sound is chosen so as to minimize compressibility while avoiding 

numerical instabilities due to loss of precision. For 𝐵𝑀2, we use c0  =  125, 5 m/s. 

 

2) Results for BM2: The evolution of 𝐿𝑑 is shown in Figure 7. The comparison between the 

simulated and analytical solutions is to be performed at long time, anyway an irregularity can 

be observed at the beginning of the simulation for both 𝐿𝑑 and 𝑦𝑝, where, while a theoretical 

solution would have a growing trend, starting from zero, the simulated solutions maintain a 

non-zero constant value. This is due to the fact that the vent is not a point source and its size 

corresponds to the initial extension of the flow.  

We observe that for 𝐿𝑑 (Figure 7), the convergence is apparent, with a resolution increase 

leading to results closer to the theoretical solutions. As in 𝐵𝑀1, as the flow spreads out, it 

becomes under-resolved at lower resolution, leading to considerably worse results that 

diverge from the analytical solution over time. Moreover, the under resolved flow front 

generates some artifacts that result in a shaky position advance. 

The errors are reported in Table 2 and their trend is shown in Figure 8; as for 𝐵𝑀1 we have a 

convergence that gains orders over time. Also in here, this can be explained considering the 

thinning evolution of the flow, which makes the low-resolution simulation becoming under-

resolved as the flow progresses. 

When it comes to the cross-slope extent, we have a discrepancy between the simulated and 

analytical extension, as shown in Figure 9, which leads at long time to a wider flow. The 

causes are not yet fully known, and could likely be due to the approximations done at 

numerical level such as finite size of the inlet, as well as compressibility. Although the value 
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of the density does not affect the theoretical behavior of the problem, it can be relevant in 

numerical terms. The impact that the density has in the discrepancies mentioned above is 

currently being investigated. 

 

 
 
FIGURE 7. Time evolution of the down-slope extension for 𝐵𝑀2. 
 
 

 
 
FIGURE 8. Logarithmic plot of the error for 𝐵𝑀2 over the spatial discretization interval at 
different times. As for 𝐵𝑀1, the convergence rate is higher at longer times due to the under-
resolved condition of lower resolution simulations. 
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FIGURE 9. Time evolution of the cross-slope extension for 𝐵𝑀2. 
 
 

Time [s]  𝐵𝑀2𝐿𝑅 

(384 𝑝𝑎𝑟𝑡𝑠/𝑚) 

𝐵𝑀2𝐼𝑅 

(512 𝑝𝑎𝑟𝑡𝑠/𝑚) 

𝐵𝑀2𝐻𝑅 

(768 𝑝𝑎𝑟𝑡𝑠/𝑚) 

100 
error [m] 0.0437 0.0357 0.0233 

err ratio 1.2247 1.5290 

145 
error [m] 0.0606 0.0388 0.0237 

err ratio 1.5644 1.6383 

 
TABLE 2. Errors for 𝐵𝑀2. The error ratios are computed as the ratio of the error at lower 
resolution over the error at higher resolution. 
 
 
3) Simulation performance: BM2HR involves 2′761′836 particles and a time step ∆tBM2HR  =

 4.15 ·  10−6 s. Running on the same hardware as 𝐵𝑀1, one second of BM2HR evolution is 

simulated in around 7′165 s. BM2IR  involves 1′171′807 particles and a time step ∆tBM2IR  =

 6.22 · 10−6 s, with one second of 𝐵𝑀2𝐼𝑅 evolution being simulated in around 1′673s. Finally, 

BM2LR involves 645′444 particles and a time step ∆tBM2LR  =  8.27 ·  10−6 s, with one second 

of BM2IR evolution being simulated in around 646s. 
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3.3 BM3: axisymmetric cooling and spreading  

This benchmark test deals with a non-isothermal flow. The setup exhibits many similarities 

with 𝐵𝑀2, including a point source with fluid spreading on a plane. The floor is however 

horizontal in 𝐵𝑀3, leading to axial symmetry in the flow emplacement. Thermal effects are 

also taken into account in 𝐵𝑀3, with only one-way coupling, as the fluid rheology is assumed 

to be independent from the temperature, which therefore acts as a passive tracer. The 

parameters for 𝐵𝑀3 are reported in Table 3. 

 
 

Parameter Value Parameter Value 

Density 886 kg/ m3 Convective heat transfer 2 W m-2K-1 

Viscosity 3.4 Pa s Emissivity 0.96 

Specific heat 1500 J kg-1K-1 Eruption temperature 𝑇0 42 °C 

Bed slope 0° Ambient temperature 𝑇𝑎 20 °C 

Effusion rate 2.2×10-8m3s-1 Thermal conductivity 0.15 W m-1 K-1 

 
TABLE 3. Parameters for 𝐵𝑀3. 
 
 
The radius of the expanding fluid evolves according to: 

 R(t) ≈ 0.715 (ρ g Q
3

3μ
)
1
8  t

1
2 = 2.23 ∙ 10−3 t

1
2,  

1) Implementation in GPUSPH: The implementation in GPUSPH of 𝐵𝑀3 is similar to that of 

𝐵𝑀2, though the difference in the magnitude of some physical parameters introduces more 

stringent constraints. The very small flow-rate sets an upper bound in the dimension of the 

source, since a larger inlet would result in a smaller velocity of the piston, that could lead to 

numerical issues for its integration in single precision. The upper bound also imposes 

limitations on the coarsest resolution that can be used to discretize the problem and finally on 

the time-step. On the other hand, to be the piston capable of containing enough fluid to run 

the simulation, a smaller piston section implies a large piston height, requiring a higher speed 

of sound that would affect the time step. A solution to the fluid column could be to make a 

horizontal piston, parallel to the plane, but the junction with the hole would introduce disorder 

in the flow. The size of the piston has been chosen in order to approximate a trade-off with 
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the issues just mentioned. The piston has a squared section, 0.005𝑚 wide and is 0.13𝑚 high. 

The plane has a side 0.12𝑚 long and the vent is a square hole placed in the middle. In order 

to avoid introducing disorder in the flux, the hole shape and size matches with the piston 

section. 

We use for the wall the same thermal parameters that we use for the fluid, and the thickness 

required by the dynamic boundary model is also sufficient to implement the absorbing 

conditions for the thermal model. The speed of sound is 40 𝑚/𝑠. 

We perform a convergence test using three levels of discretization: a low resolution with 

inter-particle distance ∆pLR  =  1/512 m =  1.95 · 10−3m, an Intermediate resolution with 

∆pIR =  ∆pLR/1.5 =  1/768 m =  1.3 · 10−3m, and a High Resolution with ∆pHR  =

 ∆pIR/1.5 =  1/1024 m =  9.7 · 10−4m. 

 

2) Results for 𝐵𝑀3: For the flow dynamics, the model convergence can be assessed by 

looking at the radius of the emplacement. We take as objective the simulated time 𝑡 =  144𝑠 

the fluid is already spread enough to show a clear temperature profile, and artifacts due to 

the low resolution are yet to appear. We observe an over estimation of the emplacement 

radius, being 𝑅𝐵𝑀3𝐻𝑅(144) = 0.038 𝑚 and  R(144) = 0.027 𝑚, probably due to discrepancies 

between the numerical and analytical setup. 

Concerning the temperature profile, we perform a graphical comparison between the 

simulated profile, and the analytical and measured ones, as shown in Figure 10, where we 

plot the normalized temperature (T∗ = (T − Ta)/(T0 − Ta)) with respect to the radius 

normalized by the current flow extension. In the two reference curves, the temperature at the 

vent is lower than the temperature specified in the problem data, which has been faced by 

setting a lower initial temperature of the simulated fluid. From a graphical estimation, the 

temperature is chosen as the 93% of the normalized temperature, that is 313.6 K. 

We can see that although the simulated solutions do not apparently match the reference, 

they qualitatively tend to those as the resolution is increased. The high mismatch in the 

shape of the profile can be due to an incomplete implementation of the thermal model for the 

boundary that is not described in Codonnier et al. [2016]. 
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FIGURE 10. Temperature profile of 𝐵𝑀3. The normalized temperature is plotted over the 
distance from the vent, normalized by the current flow radius. The two reference curves, i.e. 
analytical and measured, are taken from Garel et al. [2012]. 
 
 
The width of the simulated curves comes from the particles marked as surface, not being 

distributed on an imaginary smooth surface, but rather being recognized at different heights. 

This is also cause of the double curve effect (more apparent in the green curve) that is due to 

the lower surface particles cooling down for both the effect of surface dissipation and ground 

transmission. 

 

3) Simulation performance: 𝐵𝑀3𝐿𝑅 involves 30’550 particles and a time step ∆𝑡𝐵𝑀3𝐿𝑅  =

 1.97 · 10−5 𝑠. 1𝑠  of 𝐵𝑀3𝐿𝑅 evolution is simulated in around 15𝑠 on the same hardware used 

for the other benchmarks. 𝐵𝑀3𝐼𝑅 involves 60’432 particles and a time step ∆𝑡𝐵𝑀3𝐼𝑅  =  1.31 ·

10−5𝑠. 1𝑠 of 𝐵𝑀3𝐼𝑅 evolution is simulated in around 134𝑠. Finally, 𝐵𝑀3𝐻𝑅 involves 106’724 

particles and a time step ∆𝑡𝐵𝑀3𝐿𝑅  =  9.83 · 10−6𝑠. 1𝑠 of 𝐵𝑀3𝐻𝑅 evolution is simulated in 

around 267𝑠. 

 

4. Conclusions and future work 

We have presented the first three benchmark tests introduced by Cordonnier et al. [2016] 

simulated using GPUSPH. They state that the main drawback of SPH is the Weakly 

Compressible formulation and therefore a tuning of the parameters is needed to improve the 
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quality of the simulations. Following this reasoning we mainly acted on the speed of sound 

and the boundary model in order to find a good compromise among accuracy, stability and 

simulation time. We have shown that for 𝐵𝑀1 we have a strong convergence, while for the 

two benchmarks cases involving a fluid injection, larger discrepancies with the analytical 

results are present, but, we have proven the existence of a convergent behavior in most of 

the cases, and that the errors can be mitigated choosing a proper resolution for the spatial 

discretization. We have also encountered some issues related to under-resolved conditions 

of the problem, and again we have seen that they can be eliminated using finer 

discretization. 

One main general improvement will be given by the introduction of an open boundary model. 

Although pistons are quite easy to implement, we have seen that it is worth to develop a 

more sophisticated way to implement a constant flux, in order to obtain a cleaner flow and a 

more stable simulation. For our future work we will focus on the introduction of the inlet 

feature, which should lead to significant improvements on the results for 𝐵𝑀2 and 𝐵𝑀3.  

Anyway, the biggest obstacle to reproduce the 𝐵𝑀3 test case has been the incomplete 

description of the problem setup from Cordonnier et al. [2016], with respect to the thermal 

boundary conditions; while this can be partially solved referring to the tests from which the 

benchmark setup is taken [Garel et al., 2012]. We believe that more complete benchmarks 

should be developed.  

Cordonnier et al. [2016] also set up a fourth benchmark test (BM4), regarding experimental 

lava flow and the simulation involves realistic lava parameters. Before passing to real lava 

we need to be sure that the first three tests are reproduced in a good way that has been 

preliminary done here. We measured the performance of GPUSPH reporting the simulation 

times; which are around two orders of magnitude lower than what required by naïve 

implementations of the WCSPH method, as demonstrated by Hérault et al. [2010]. Further 

improvement will be sought in the next work introducing open boundaries, which will 

contribute to reduce the noise content within the simulation and have simpler setups. The 

inlet will also give advantage in terms of performance and robustness. In fact, the high 

viscosity values that will be involved in BM4 require the adoption of the semi implicit 

integration scheme, recently introduced in GPUSPH [Zago et al., 2018]; in that case, we 

shown that the performances of the semi implicit scheme have a strict dependence on the 

number of particles involved in the simulation, then simpler geometries obtained substituting 

the piston structure with an open boundary will be more suited for the adoption of the semi 

implicit scheme. 
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Bilotta G., A. Hérault, A. Cappello, G. Ganci and C. Del Negro (2016). GPUSPH: a 

Smoothed Particle Hydrodynamics model for the thermal and rheological evolution on lava 

flows, in Detecting, Modelling and Responding to Effusive Eruptions, edited by A. Harris et 

al., Geological Society, London, Special Publications, 426, 387–408, 

doi:10.1144/SP426.24. 
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FIGURE CAPTIONS 
 
FIGURE 1. Lateral slice of 𝐵𝑀1𝐻𝑅 at 𝑡 =  10𝑠. Particles are colored by velocity magnitude. 
 
FIGURE 2. Front position over time for 𝐵𝑀1. The comparison among the analytical solution 
and the solutions simulated with different resolutions reveals convergence of the method. 
 
FIGURE 3. Logarithmic plot of the error for 𝐵𝑀1 over the spatial discretization interval for 
different times. The convergence rate is higher at longer times due to the under-resolved 
condition of lower resolution simulations. 
 
FIGURE 4. Under resolved flow front for 𝐵𝑀1𝐼𝑅 at 𝑡 =  500𝑠: this is one of the resolution 
issues arising in 𝐵𝑀1 as the flow evolves. 
 
FIGURE 5. Setup for 𝐵𝑀2. (from Cordonnier et al., 2016). 
 
FIGURE 6. Implementation of 𝐵𝑀2 in GPUSPH, lateral view of a slice. Particles are colored 
by type: fluid in blue, walls in green and the moving piston in red. 
 
FIGURE 7. Time evolution of the down-slope extension for 𝐵𝑀2. 
 
FIGURE 8. Logarithmic plot of the error for 𝐵𝑀2 over the spatial discretization interval at 
different times. As for 𝐵𝑀1, the convergence rate is higher at longer times due to the under-
resolved condition of lower resolution simulations. 
 
FIGURE 9. Time evolution of the cross-slope extension for 𝐵𝑀2. 
 
FIGURE 10. Temperature profile of 𝐵𝑀3. The normalized temperature is plotted over the 
distance from the vent, normalized by the current flow radius. The two reference curves, i.e. 
analytical and measured, are taken from Garel et al. [2012]. 
 
 
TABLE CAPTIONS 
 
TABLE 1. Errors for 𝐵𝑀1 at short and long time. The error ratios are computed as the ratio 
of the error at lower resolution over the error at higher resolution. 
 
TABLE 2. Errors for 𝐵𝑀2. The error ratios are computed as the ratio of the error at lower 
resolution over the error at higher resolution. 
 
TABLE 3. Parameters for 𝐵𝑀3. 
 
 
 


