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Low efficiency of large volcanic 
eruptions in transporting very fine 
ash into the atmosphere
Mathieu Gouhier1, Julia Eychenne1, Nourddine Azzaoui2, Arnaud Guillin2, 
Mathieu Deslandes3, Matthieu Poret   4, Antonio Costa   4 & Philippe Husson3

Volcanic ash clouds are common, often unpredictable, phenomena generated during explosive 
eruptions. Mainly composed of very fine ash particles, they can be transported in the atmosphere 
at great distances from the source, having detrimental socio-economic impacts. However, proximal 
settling processes controlling the proportion (ε) of the very fine ash fraction distally transported in the 
atmosphere are still poorly understood. Yet, for the past two decades, some operational meteorological 
agencies have used a default value of ε = 5% as input for forecast models of atmospheric ash cloud 
concentration. Here we show from combined satellite and field data of sustained eruptions that ε 
actually varies by two orders of magnitude with respect to the mass eruption rate. Unexpectedly, 
we demonstrate that the most intense eruptions are in fact the least efficient (with ε = 0.1%) in 
transporting very fine ash through the atmosphere. This implies that the amount of very fine ash 
distally transported in the atmosphere is up to 50 times lower than previously anticipated. We explain 
this finding by the efficiency of collective particle settling in ash-rich clouds which enhance early and 
en masse fallout of very fine ash. This suggests that proximal sedimentation during powerful eruptions 
is more controlled by the concentration of ash than by the grain size. This has major consequences for 
decision-makers in charge of air traffic safety regulation, as well as for the understanding of proximal 
settling processes. Finally, we propose a new statistical model for predicting the source mass eruption 
rate with an unprecedentedly low level of uncertainty.

Volcanic ash clouds generated by explosive eruptions are distally transported in the atmosphere up to distances 
ranging from a few hundreds to thousands of kilometres from the vent. They are mainly composed of the finest 
ash fraction which survives proximal sedimentation, and referred to as very fine ash (<32 µm) following the phys-
ical volcanology-derived terminology of explosive eruptions1. However, in some cases coarser particles can reach 
distal location as recently demonstrated during moderate Icelandic eruptions2. Very fine ash can have damaging 
effects on aircraft, hence having detrimental impact on air traffic safety as demonstrated by air traffic disruption 
during Eyjafjallajökull3 and Cordón del Caulle4 eruptions. Distal airborne very fine ash represent only a fraction 
of the total amount of solid particles (referred to as tephra) injected into the volcanic plume column above the 
crater. Here we examine this partitioning (ε; given in percentage) as the ratio between the very fine ash flux trans-
ported in distal clouds (Qa) estimated from satellite-based infrared measurements, and the total flux of tephra 
emitted at the source (Qs) inferred from ground studies of tephra deposits. The latter is also referred to as the Mass 
Eruption Rate (MER). The ratio ε quantifies the volcanic ash removal efficiency in proximal areas, which is critical 
for constraining ash sedimentation processes during the early stages of cloud dispersal, as well as for predicting 
the ash clouds properties as they are advected around the globe.

We compiled a database of 22 eruptions of various magnitudes and intensities carefully selected from remark-
ably well documented case studies in the published records (Table 1). They are characterized by distinct eruption 
styles describing the dynamics and phenomenology of the explosive activity. Eruption styles can be defined from 
various classifications using different parameters5,6. In our case, we adopted the most recent one6 for the following 
reasons: (i) it uses the MER (equivalent to Qs) and the volcanic ash plume height (H) as input parameters; (ii) it 
allows individual eruption phases to be easily requalified; and (iii) permits a real-time first order classification 
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of eruptive events, which is useful for operational applications. Therefore, we distinguish sustained eruptions (9 
Small/Moderate, 7 Subplinian and 4 Plinian styles) defined by quasi-steady discharge conditions (i.e., with a dura-
tion of tephra emission much longer than the time necessary to reach the neutral buoyancy level) from transient 
eruptions corresponding to unsteady impulsive explosions (i.e., 2 Vulcanian style).

The database comprises satellite-based infrared measurements of Qa inferred from the extinction proper-
ties of ash using the split-window method7,8, except for the May, 2011 Grimsvötn and October 27, 2002 Etna 
eruptions, whose measurements were carried out using hyperspectral sounders. This technique provides ver-
tical column densities as a mass per unit area, and allows total mass of very fine ash to be retrieved from inte-
gration of ash-bearing pixels over the whole cloud surface. Then, the average value of Qa can be calculated by 

Volcano
Explosive Phase 
selected Duration (s)

Fallout deposit 
mass (Kg)

±Error 
(Kg)

Cloud mass 
(Kg)

±Error 
(Kg)

Plume 
Height (km) Qs (kg/s) Qa (kg/s) ε (%) ±Error Style

Pinatubo Climactic phase on 
15–16/06/1991 3.24E + 04(1) 5.7E + 12(2) 1.4E + 12 5.0E + 10(3) 2.5E + 10 40(1) 1.8E + 08 1.5E + 06 0.9 0.6 Plinian(1,2)

Kelut Full eruption 
13/02/2014 1.08E + 04(4) 6.5E + 11(5) 1.6E + 11 7.4E + 08(4) 3.7E + 08 20(4) 6.0E + 07 6.9E + 04 0.1 0.1 Plinian(5)

El Chichon Phases B and C on 
04/04/1982 3.96E + 04(6) 8.7E + 11(7) 2.2E + 11 6.5E + 09(8) 3.3E + 09 30(8) 2.2E + 07 1.6E + 05 0.7 0.5 Plinian(6)

Hudson Full eruption 
12–15/08/1991 2.27E + 05(9) 3.9E + 12(10) 9.8E + 11 2.9E + 09(11) 1.5E + 09 18(9,11) 1.7E + 07 1.3E + 04 0.1 0.0 Plinian(10)

Sarychev Peak Subplinian events 
on 14–15/06/2009 5.94E + 04(12) 4.0E + 11(12) 1.0E + 11 5.4E + 08(12) 2.7E + 08 20(12) 6.7E + 06 9.1E + 03 0.1 0.1 Subplinian*

Cordon Caulle Climactic phase on 
4–5/06/2011 8.64E + 04(13) 4.5E + 11(13) 1.1E + 11 7.0E + 08(14) 3.5E + 08 12.2(14) 5.2E + 06 8.1E + 03 0.2 0.1 Subplinian(13)

Grimsvotn Subplinian phase 
on 22/05/2011 1.91E + 05(15) 7.0E + 11(15,16) 1.8E + 11 4.9E + 08(17) 2.5E + 08 20(17,18) 3.7E + 06 2.6E + 03 0.1 0.0 Subplinian(16)

Mt. Spurr Full eruption 
16/09/1992 1.30E + 04(19) 3.9E + 10(20) 9.8E + 09 6.1E + 08(21) 3.1E + 08 13.9(21) 3.0E + 06 4.7E + 04 1.6 1.0 Subplinian(20)

Mt. Spurr Full eruption 
18/08/1992 1.25E + 04(19) 3.6E + 10(20) 9.0E + 09 4.2E + 08(21) 2.1E + 08 13.7(21) 2.9E + 06 3.4E + 04 1.2 0.8 Subplinian(20)

Redoubt
Explosive 
events 1 to 5 on 
22–23/03/2009

5.22E + 03(22) 1.4E + 10(22) 3.5E + 09 1.7E + 09(23) 8.5E + 08 15(22) 2.7E + 06 3.3E + 05 12.1 8.0 Vulcanian(22)

Mt. Spurr Full eruption 
27/06/1992 1.46E + 04(19) 3.1E + 10(20) 7.8E + 09 4.4E + 08(21) 2.2E + 08 14.5(21) 2.1E + 06 3.0E + 04 1.4 0.9 Subplinian(20)

Lascar Full eruption 
04/1993 1.73E + 05(24) 3.5E + 11(21,25) 8.6E + 10 4.8E + 09(21) 2.4E + 09 21(24) 2.0E + 06 2.8E + 04 1.4 0.9 Subplinian*

Anatahan Explosive phases 
on 10–11/05/2003 3.24E + 04(26) 3.8E + 10(27) 9.6E + 09 1.3E + 09(26) 6.5E + 08 12(26) 1.2E + 06 4.0E + 04 3.4 2.2 Small/

Moderate(27)

Chaiten Full eruption: 
2–8/05/2008 6.05E + 05(28) 1.7E + 11(28) 4.3E + 10 8.0E + 08 4.0E + 08 19(28) 2.8E + 05 1.3E + 03 0.5 0.3 Subplinian(28)

Hekla
Phase I + 8 hrs 
phase II on 
26/02/2000

4.21E + 04(29) 1.0E + 10(30) 2.5E + 09 1.0E + 08(29) 5.0E + 07 11(29) 2.4E + 05 2.4E + 03 1.0 0.7 Small/
Moderate*

Soufrière Hills Full eruption: 
26/09/1997 3.60E + 03(31) 5.5E + 08(32) 1.4E + 08 5.4E + 07(33) 2.7E + 07 11.3(33) 1.5E + 05 1.5E + 04 9.8 6.4 Vulcanian(32)

Ruapehu Full eruption: 
17/06/1996 3.60E + 04(34) 4.2E + 09(35) 1.1E + 09 2.9E + 08(36) 1.5E + 08 8.5(36) 1.2E + 05 8.1E + 03 6.9 4.6 Small/

Moderate*

Eyjafjallajökull
Phase I/III on 
14–19/04 & 
05–18/05/2010

1.90E + 06(37) 2.0E + 11(38) 4.9E + 10 8.3E + 09(39) 4.2E + 09 9(38) 1.0E + 05 4.4E + 03 4.2 2.8 Small/
Moderate

Etna Full eruption: 
28/10/2002 2.16E + 04(40) 1.1E + 09(40) 2.6E + 08 1.1E + 07(41) 5.7E + 06 6(42) 4.9E + 04 5.3E + 02 1.1 0.7 Small/

Moderate(40)

Popocatepetl Climactic events 
on 10/03/1996 2.16E + 04(43) 5.3E + 08(44) 1.3E + 08 1.5E + 07(43) 7.5E + 06 9(44) 2.4E + 04 6.9E + 02 2.8 1.9 Small/

Moderate*

Etna Full eruption: 
27/10/2002 3.60E + 04(40) 8.7E + 08(40) 2.2E + 08 2.4E + 07(42) 1.2E + 07 6(42) 2.4E + 04 6.6E + 02 2.7 1.8 Small/

Moderate(40)

Etna Full eruption: 
24/11/2006 2.16E + 04(45) 1.0E + 08(46) 2.5E + 07 3.6E + 06(47) 1.8E + 06 1.5(45) 4.6E + 03 1.7E + 02 3.6 2.4 Small/

Moderate(46)

Table 1.  Eruptive parameters for the 22 eruptions of our dataset. The eruptions were selected in the dataset 
providing that quality published data existed in the literature on the mass of the fallout deposit (derived from 
field analyses) and the mass of the very fine ash cloud (derived from satellite-based measurements). The plume 
height above the vent comes from different types of observational data (remote-sensing, visual estimations, 
etc.). Qs and Qa are calculated as the fallout deposit mass and very fine ash cloud mass, respectively, divided 
by the duration of the eruption phase. ε is calculated as the ratio of Qa over Qs. Eruption styles have been 
determined using Qs and the plume height6 and are in agreement with related published records. *Eruption 
styles for explosive phases that have not been published and which may differ from existing classifications made 
for full eruption or a different phase.
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simply dividing the total mass by the duration of ash emission. Most of the data come from Low-Earth Orbiting 
(LEO) platforms, hence allowing image acquisition ∼10 hours on average after the start of the eruption. The large 
Instantaneous Field Of View (IFOV) of these sensors usually allows the observation of the whole cloud from a 
single or a few images. The extent of the cloud determines the ash emission duration and the timing of the image 
acquisition allows us to identify the explosive phase within the eruption chronology. The inversion of thermal 
infrared measurements is particularly relevant for the characterization of the very fine ash content of volcanic 
clouds because it allows the retrieval of particles in the size range 1–32 µm (at 2σ for a lognormal distribution2). 
However, some known uncertainties remain from (i) the split-window technique leading to false detection and 
missed ash-bearing pixels9 as well as from (ii) the limits of the validity domain within the Mie scattering theory2,8. 
Overall uncertainty associated with satellite-based measurements was estimated to be in the range ±40–60%2.

The average value of Qs was calculated from the published mass of tephra deposited on the ground, divided 
by the duration of the explosive phase. Importantly, Qa and Qs refer to the same period of explosive activity 
and can thus be reliably compared. The temporal concordance required between these 2 parameters explains 
the relatively low number of eruptions finally selected. The deposit masses selected in this study (Table 1) were 
calculated by integrating the mass decay rate of the fallout deposit or integrating the thinning rate of the fallout 
deposit10,11. These methods are sensitive to the quality and density of field data, to the mathematical function 
chosen (e.g., exponential, power-law, Weibull) to represent their spatial variations and to the distal extrapolation 
limit. Indeed, individual measurements of tephra thickness or mass are extrapolated at greater distances than the 
maximum sampling, allowing the finest ash fraction to be accounted for, and the total mass of tephra estimated. 
Thus, Qs represents the average MER of the total grain size distribution at the source vent and is given with an 
uncertainty of ±10–40%12,13. Note that uncertainties on each individual eruption for both satellite and ground 
deposits retrievals have not been systematically published or inferred, but we specifically selected eruptions for 
which the measurements errors should be low (e.g. no clouds in the atmosphere, no erosion of the deposit, sam-
pling performed hours to days following the eruptions, etc.). The related error on ε has been calculated from the 
average bulk uncertainties of Qa and Qs and reported for each eruption in Table 1.

Results
Source-to-atmosphere very fine ash partitioning.  We show that ε of sustained eruptions spans a wide 
range of values, from 0.1% (e.g., Plinian Kelut 2014 eruption) to 6.9% (Small/Moderate Ruapehu 1996 eruption; 
Table 1). Fine ash removal from Plinian eruptions is thus about two orders of magnitude more efficient than that 
from Small/Moderate ones. Remarkably, the variation of the partitioning coefficient is not arbitrary. From Fig. 1, 
ε decreases with increasing MER, with respect to eruption styles. The four Plinian eruptions selected have large 
MER (1.7 × 107 < Qs < 1.8 × 108 kg/s). They all produced copious amount of volcanic ash, as for the 1980 Mount 
St Helens, and the 1982 El Chichón eruptions, for which the mass fraction of ash smaller than 63 µm represents 
∼50% of the total mass of tephra emitted14,15. Such high fine ash contents are related to efficient magma fragmen-
tation processes, occurrence of phreato-magmatic episodes, and contribution of ash elutriated from pyroclastic 
density currents (PDC) forming co-PDC plumes16. However, they all exhibit a very small proportion of distal very 
fine ash, as shown by the weak partitioning coefficient range (0.1 < ε < 0.9%), and fall in a well delimited area in 
Fig. 1. To explain this observation, we suggest that early enhanced fallout in proximal regions makes the actual 
proportion of very fine ash transported in distal clouds much lower than expected. This highlights the critical role 
played by collective settling mechanisms, occurring preferentially in ash-rich plumes, which enhance the sedi-
mentation rate of tephra regardless of grain size. Such mechanisms include aggregation17,18, gravitational instabil-
ities19, diffusive convection20, particle-particle interactions21, and wake-capture effects22. These are inferred to be 
key processes controlling the early depletion of ash-rich plumes, which cannot be explained by individual particle 
settling. Aggregation efficiency, in particular, has been identified23,24 to be proportional to a power greater than 
two of ash concentration. This means that the higher the fine ash concentration the more important the aggrega-
tion efficiency, which is in agreement with the observations made in our study.

Collective settling mechanisms, allow en masse sedimentation of particles of different sizes, which explains 
the significant amount of fine ash as well as the poor grain sorting sometimes observed in proximal tephra fallout 
deposits of large Plinian events. The fallout deposit from the 18 May 1980 eruption of Mount St. Helens (MSH80) 
for instance, shows both a poor grain sorting in proximal locations25,26 and an increase of mass and thickness at 
distances >300 km27 demonstrating rapid removal of fine ash from the plume. Different enhanced sedimentation 
processes have been invoked and successfully tested to explain these observations, including aggregation28, and 
hydrometeor formation14. Subplinian eruptions, although less powerful than Plinian ones, remain very explosive 
and capable of efficient fragmentation, also leading to the formation of ash-rich plumes. For example, the August 
and September 1992 Mt. Spurr eruptions produced fallout deposits with fine ash contents reaching 30% and 40% 
of the total mass of tephra, respectively29. The origin of this fine ash is discussed, and could be related to hetero-
geneities in the source magma or secondary particle fragmentation in the volcanic conduit or eruption column30. 
They have MER in the range 0.28–6.7 × 106 kg/s and still exhibit low partitioning coefficient, although spanning a 
wider range of values (0.1 < ε < 1.6%), hence implying collective settling mechanisms to be at work. The Mt Spurr 
fallout deposits also show an increase of mass and thickness at distances >150 km from the source, which can be 
explained by collective settling mechanisms including aggregation, topographic effects and gravitational instabil-
ities30. Small/Moderate eruptions are drastically different from Plinian and Subplinian. The eruption explosivity 
and the MER are much weaker. The plume column height is generally lower and the fine ash fraction of the size 
distribution at the source vent is much smaller. Consequently, Small/Moderate eruptions do not produce ash-rich 
plumes, and enhanced sedimentation in proximal regions is limited, resulting in larger partitioning coefficients 
(0.5 < ε < 6.9%). The wide range of ε values for Small/Moderate eruptions reflects the heterogeneity of grain size 
and concentration of the associated plumes. But, this can also be explained by the natural complexity of some 
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long-lasting eruptions. This is the case, in particular, for the Eyjafjallajökull 2010 eruption displaying multiple and 
discontinuous phases of explosive activity with varying intensity.

The inverse relationship between ε and the MER shows that for very powerful eruptions, the proximal sed-
imentation is mainly controlled by the concentration of fine ash. This suggests that above a given threshold of 
the fine ash volume fraction, collective mechanisms dominate over individual particle settling, and conversely. 
Assessment of this threshold is very difficult as proximal measurements (i.e., in the first tens of kilometres from 
the source vent) of airborne volcanic ash concentration are scarce. Indeed, satellite-based retrievals are usually 
impossible due to the opacity of the cloud. But, radar instruments operating at larger wavelengths are able to 
provide volcanic ash concentration within proximal cloud. The comparison of ash concentration at various dis-
tances, hence using various techniques, should bring precious information on early depletion processes and about 
sedimentation rate evolution. As an example, proximal measurements carried out in the first two hours after the 
MSH80 Plinian eruption by a 23-cm wavelength radar31 give an ash cloud concentration of ∼8.5 g/m3. In this 
region of the cloud we expect sedimentation rate to be high with a significant contribution of collective particle 
settling mechanisms. As a comparison, distal measurements carried out by satellite-based infrared sensors on 
the Kelut 2014 Plinian eruption32 give an ash cloud concentration 3 orders of magnitude lower (maximum value 
∼9 mg/m3). In this region of the cloud, the sedimentation rate is very low and the individual particle settling is 
most likely to prevail.

Ash cloud hazards and operational response.  The partitioning parameter ε is crucial in operational 
volcanic risk mitigation, as it is required as input for ash-cloud-dispersal models used by several VAACs respon-
sible for global air traffic safety. Given that satellite images are not systematically available, the VAACs need 
rapid parameterization schemes to predict Qa, and to provide frequent and reliable up-to-date forecast maps of 
atmospheric ash concentration during volcanic crises33. With this aim, VAACs (such as London and Toulouse) 
have typically used a poorly constrained default ε value of 5%34 to forecast the concentration of very fine ash 
composing distal ash clouds following Qa = ε × Qs. However, as demonstrated in Fig. 1, the fraction of very fine 
ash that survives proximal settling varies by ∼2 orders of magnitudes (0.1% > ε > 6.9%) with respect to the MER. 

Figure 1.  Style-derived volcanic ash partitioning of sustained eruptions. Mass erupting rate (Qs in kg/s) as a 
function of the partitioning coefficient ε (Qa/Qs in %) for the 20 sustained eruptions of our dataset (see Table 1 
for details about the eruptions). ε is the ratio between the very fine ash flux transported in distal clouds (Qa) 
and the flux of tephra in the plume (Qs) also referred to as MER. It quantifies the volcanic very fine ash removal 
efficiency. The sustained eruptions cluster following their eruption style (Plinian, Subplinian, Small/Moderate). 
This plot shows that ε of sustained eruptions scales with Qs, and spans about two orders of magnitude. The 
main trend shows that ε increases with decreasing MER. This indicates that very fine ash removal from ash-rich 
plumes (Plinian and Subplinian style) is more efficient than from plumes containing coarser tephra (Small/
Moderate style). Error bars are plotted from average bulk uncertainties given for fallout deposit and cloud 
masses (see Table 1 for detailed error values). The vertical dashed line represents the current VAAC operational 
partitioning coefficient used by to forecast the atmospheric path of very fine ash clouds. The eruption-
dependant partitioning coefficients for each eruption style (εP, εSP, εS/M) have also been reported.
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Therefore, a constant partitioning value cannot be used, even as first order estimate for operational purposes. 
Note that Qs is needed, and usually obtained operationally from top plume height estimates following a power-law 
relationship35 between the two parameters. The reliability of Qs estimate from this method is discussed later in 
this work and compared with our satellite-based prediction model of Qs (see next section). Here we propose a 
new operational eruption-style-dependant parameterization of ε using the mean values for Plinian (εP = 0.5%), 
Subplinian (εSP = 0.8%), and Small/Moderate (εS/M = 3.2%) eruptions (Fig. 1). This parameterization is easily 
implementable in ash-cloud-dispersal models, allowing operational use by the VAACs. Also, the choice of the 
correct partitioning parameter to be used during the course of an eruption is not difficult. The phenomenology as 
well as the real-time assessment of Qs will be particularly useful to discriminate the eruption style. In some cases, 
the eruptive history at each volcanic target can also be helpful. Our assessed values of ε significantly depart from 
the default 5% value used by the VAACs (Fig. 1), and the resulting differences will propagate into the modelled 
ash cloud concentrations.

Therefore, in order to test the sensitivity of concentration variations to partitioning values, distal ash 
cloud dispersion maps were simulated for 4 eruption scenarios (Supplementary Information Table S1) using 
MOCAGE-accident, the ash-cloud-dispersal model of VAAC Toulouse. This model is based upon the 
three-dimensional chemistry and transport model developed by Météo-France, and specifically adapted for the 
transport and diffusion of accidental release from the regional to the global scale. For this study, meteorological 
data were extracted from Météo-France operational database, including 20 pressure levels, from 1000 to 10 mb, 
with a time resolution of 1-hour and a horizontal resolution of 0.5°. MOCAGE-accident internal grid resolution 
is 0.5°. For each scenario, ash release was constant for the eruption phase duration and uniform along a vertical 
line rising from the vent to the maximum plume height. The particle size distribution in the distal cloud includes 
6 grain size fractions between 0.1 and 100 µm, with 70 wt% of the particles smaller than 30 µm36. For modelling 
simplicity, we run the simulations using present-day meteorological data. For the Plinian case (see Supplementary 
Information Fig. S2 for Subplinian and Small/Moderate cases), we use an eruptive scenario based on the Kelut 
2014 eruption (Supplementary Information, Table S1). We compare the ash cloud loading (i.e., integration of 
ash concentration along the vertical path; in kg/m2) simulated using the VAAC-default ε value (5%) with the 
Plinian partitioning coefficient (εP = 0.5%) derived from our model (Fig. 2). The ash cloud concentrations are 
drastically different, with maximum values of 1.7 × 10−1 and 1.6 × 10−2 kg/m2 for the VAAC-default and our 
eruption-style-dependant coefficients, respectively (Fig. 2a,b). This means that for such Plinian eruptions, VAAC 
operational simulations could overestimate by a factor of ∼10 the amount of very fine ash in the atmosphere. 
Consequently, this would overestimate the extent of the no-fly zone (delimited in Fig. 2 by the black dashed line) 
set by the European Commission beyond a threshold37 of 4 mg/m3 (Fig. 2). Patterns of the no-fly zones are dras-
tically different, and the extent computed from the VAAC model is ∼6.5 times larger than the other one, which 
could have serious implications for air traffic regulation during an eruption.

Volcanic ash particles can be responsible for the formation of indirect aerosols and/or droplets, the ones 
potentially having short term effect on the climate38–40. However, the systematic overestimation of the fine ash 
amount injected in the atmosphere during large sustained eruptions raises questions about the actual impact of 
volcanic ash on radiative forcing Conversely, when no calibration is available from ground deposits, the proximal 
sedimentation can be underestimated by such models (or other tephra-deposition models), as collective settling 
mechanisms are still not well constrained. This raises the question of the actual impact (buildings damage, agri-
culture and water pollution, health and respiratory problems, etc.) of tephra fallout in the vicinity of volcanic 
areas, likely to be larger than expected.

Satellite-based prediction model of Qs.  The interdependence of Qa, Qs and the eruption style leads us 
to develop statistical models for predicting Qs using satellite measurements of Qa with additional controlling 
parameters. A reliable assessment of Qs is essential for estimating plume dynamics close to the source, and hence 
for delineating zones impacted by tephra fallout using tephra-deposition models41. However, direct measure-
ments of Qs remain impossible during the course of an eruption42. Thus, for rapid assessment of Qs, indirect 
methods have been developed using scaling laws based on relationships between measured plume height H and 
time-averaged Qs; these are referred to as empirical scaling laws35,43. This methodology currently represents the 
standard for real-time determination of Qs, although associated with uncertainties as large as a factor of 54 at a 
95% confidence interval35. Data investigated here are small sized while the number of explanatory variables is 
relatively high. Therefore, we developed specifically a novel and robust statistical technique using a modified 
Akaike Information Criterion (AICc; see Methods) allowing the selection of the best regression mixture model 
for the eruptions in our database (all statistical indicators are summarized in Table 2). By combining Qs, Qa and H 
in three-dimensional space (Fig. 3a), the best model selected follows a power-law in the form:

= . . .Q Q H30 22 (1)s a
0 51 2 25

This relationship gives an AICc of 12.9 with excellent p-values (Table 2). The RMSE (Root Mean Square Error) 
yields an error factor of 12.8 at a 95% prediction interval. With an uncertainty four times lower than the empirical 
scaling laws35, this new satellite-derived model improves significantly the estimation of Qs (Table 2). In particu-
lar, the error distribution is not uniform as shown in Fig. 3b from the projection of the 95% prediction interval 
envelope in the H-Qa plane. This yields an error factor of ∼2, close to the data centre of mass that encloses 12 of 
the 22 eruptions of our dataset.

Then, we also collected 5 additional parameters (P1 to P5, Table 3) related to magmatic system properties and 
external processes (referred to as modalities), likely to control the amount of very fine ash produced and injected 
in the plume. Each modality has been coded on a Boolean basis (0/1) so that they can be statistically analysed. We 
then proceeded to the selection steps to discriminate between all the possible models with 7 different variables 
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(Qa, H, P1 to P5), with modalities (P1, …, P5) being class parameters for Qa and H. The modalities include the SiO2 
(P1) and H2O (P2) contents of the magma, the open or closed character of the conduit (P3), the occurrence of 
phreatomagmatic activity (P4), and the formation of co-pyroclastic density current (co-PDC) plumes (P5). Using 
our selection model analysis, these modalities allow clustering of the 22 data samples in the 3D space defined 
by Qs, Qa and H, and the identification of sub-models corresponding to different eruption scenarios (see the 
Methods section for details). We found that P1 and P3 are the parameters that best improve the fitness criterion, 
with a low AICc value of 10.4. This leads to a new sub-model yielding an error factor of 9.3 at a 95% prediction 
interval based on four different equations as follows:

= . . . ‐ ‐Q Q H25 95 low SiO and closed conduit (2)S a
0 72 1 95

2

= . . . ‐ ‐Q Q H25 95 low SiO and open conduit (3)S a
0 72 1 4

2

Figure 2.  Ash cloud concentration simulations during Plinian eruptions. The two simulations are produced 
by the volcanic ash-cloud-dispersal model MOCAGE of the Toulouse VAAC based on the Plinian eruption of 
Kelut the 13 February, 2014 (Supplementary Information Table 1), using different partitioning coefficients and 
present-day meteorological data. (a) Simulation of ash dispersion in the atmosphere at Kelut volcano 30 hours 
after the eruption, using the VAAC-default operational ε value of 5%. (b) Same simulation conditions and 
scenario, but using the Plinian ε value established in this study at 0.5%. The extent of the No-Fly zone (4 mg/m3 
for an ash cloud 500-m thick*) is much larger for the VAAC-default ε, yielding a maximum concentration one 
order of magnitude higher. *The threshold at 4 mg/m3 was first established by the European Commission after 
the Eyjafjallajökull 2010 eruption23. It is now described by EASA (European Aviation Safety Agency) and used 
in the emergency plan EUR/NAT (EURopean and North ATlantic office) as the “High” contamination level.

Models Coefficients p-value AICc
RMSE 
(95%)

Error 
factor

Qs = c0Qac1
c0 89.211 5.93E-03***

22.49 3.27 26.31
c1 1.004 2.13E-06***

Qs = c0Qac1Hc2

c0 30.220 8.87E-03***

12.93 2.55 12.80c1 0.505 1.05E-02**

c2 2.249 1.31E-03***

Qs = c0Qac(P1)Hc(P3)

c0 25.946 2.16E-02**

10.43 2.23 9.29

c(P1(lo)) 0.721 5.65E-03***

c(P1(hi)) 0.622 2.49E-03***

c(P3(cl)) 1.950 1.80E-03***

c(P3(op)) 1.396 3.17E-02**

Table 2.  Summary of statistic results using model selection analysis. p-values quality is illustrated using asterisk 
(***Excellent; **very good). The AICc stands for corrected Akaike Information Criterion, the RMSE is given 
as the natural logarithm of the Root Mean Square Error for a 95% prediction interval and the error factor is 
calculated as the exponential of the RMSE.
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= . . . ‐ ‐Q Q H25 95 high SiO and closed conduit (4)S a
0 62 1 95

2

= . . . ‐ ‐Q Q H25 95 high SiO and open conduit (5)S a
0 62 1 4

2

The magma SiO2 content (P1), often associated with the magma viscosity is a critical parameter controlling the 
pressurization state of the shallow magmatic system provided sufficient gas is available. The parameter (P3) related 
to the open/closed character of the conduit goes in the same direction. Indeed, closed systems usually designate 
volcanic conduits or vents sealed by cooled lava acting as an impermeable plug preventing from easy gas exhaust, 
and hence allowing a pressure increase in the shallow magmatic system. Exclusion of P2 is unexpected, as the 
gas usually controls the MER at the source vent. This can be explained by the difficulty of comparing H2O con-
tent measurements made with different techniques. Exclusion of P4 is also interesting. Indeed, the phreatomag-
matism is a mechanism involving external water and is frequently observed during recent subglacial Icelandic 
eruptions44. In one hand, magma-water interaction can enhance the explosivity hence the formation of very fine 
ash. On the other hand, water-rich eruptive column is likely to cause premature deposition of ash through wet 
aggregation and hydrometeor formation14,29. However, no significant influence of the phreatomagmatism could 
be demonstrated by the our statistical analysis. Significant amount of very fine ash can be produced by PDC 
as for MSH1980 Plinian eruption, therefore the contribution to airborne ash by co-PDC plumes needed to be 
tested. However, the variability of co-PDC plumes (P5) dispersion mechanisms45 associated with the difficulty to 
assess quantitatively their amplitude is likely to explain their exclusion. The power-law coefficients are related to 
the modalities (Pn) and show a strongly non-linear behaviour with power values of 0.72 and 0.62 on Qa for low 
and high-SiO2, respectively, and power values of 1.95 and 1.4 on H for closed and open-conduit respectively. The 
constant (c0 = 25.95) is inherent to the general model structure and is not dependent on the explanatory variable 
Qa and H, nor on the modalities P1 and P3.

Equations 2 to 5 offer a new tool for accurate, near-real-time estimation of Qs during an eruption, provided 
that Qa and H can be estimated. In order to validate our approach, we simulated the 23 February 2013 eruption 
of Mount Etna (Sicily) using two different Qs inputs. The goal of this work is to test the ability of each parameter-
ization (Qs1 and Qs2) to reproduce the observed tephra fallout deposits. Simulations have been carried out using 
Fall3D; which is a tephra-transport and deposition model, and now represent a standard used at INGV (Italy), 
VAACs of Buenos Aires (Argentina) and Darwin (Australia). Thus, Fall3D is a perfect candidate for this analysis; 
a full description of its characteristics can be found in the litterature41,46. In one hand, Qs1 was estimated from our 
satellite-derived statistical model using the parameterization for low-SiO2 content and open conduit (Eq. 3), and 
used as input parameter in simulation 1 (Fig. 4a). On the other hand, Qs2 was calculated from the standard empir-
ical scaling law35 (currently used operationally by the London and Toulouse VAAC), and used as input parameter 
in simulation 2 (Fig. 4b). Simulations were run between 00:00 (all times are in UTC) on the 23 and 24:00 on the 
28 February 2013, within a 445 by 445 km grid domain using meteorological fields (from ECMWF data). They 
include 37 pressure levels with a time resolution of 6 hours and a horizontal resolution of 0.75°. The FALL3D 

Figure 3.  Qs prediction model using model selection analysis. (a) Statistical relationship between Qs derived 
from fallout deposits, Qa derived from satellite-based measurements, and H (above the vent) derived from 
observations, in a three-dimensional natural logarithm space. The best Qs prediction model is shown as the 
coloured plane and the related equation is given in natural scale following a power-law at the top of the plot. 
It was selected by the AICc (Corrected Akaike Information Criterion) which gives a robust evaluation of the 
goodness-of-the-fit for small datasets. The error factor and related RMSE are provided at a 95% prediction 
interval. See Supplementary Information Table 2 for all the goodness-of-the-fit evaluation criteria. (b) Error 
factor contour levels related to the MER estimation plotted on the two-dimensional plane H vs. Qa in natural 
logarithm, and showing the anisotropy of the error distribution. Red triangles represent eruptions (12 over 
22) for which the error factor value is ∼2 or less. Practically, this means that estimations of MER for future 
eruptions falling in this range of Qa (∼1 × 103 to 1 × 105 kg/s) and H (∼7 to 21 km) have a 95% probability to fall 
within an error factor of 2 only.
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internal grid resolution was 4 by 4 km, obtained by interpolating linearly the meteorological data. The three main 
Eruption Source Parameters (ESP) required by FALL3D at the input of the model are the plume column height, 
the Total Grain-Size Distribution and Qs. Then, the ability of each model to reproduce the observed tephra fallout 
deposits is assessed using field measurements47 of tephra loading at 10 locations carried out after the 23 February 
2013 eruption of Mount Etna (Fig. 4; Supplementary Information Table S2, Table S3 and Fig. S3). The two simula-
tions are strikingly different. The first one (Fig. 4a) provides a faithful reconstruction of the deposits as shown by 
the 5 isomass contours (set at 10, 1, 0.1, 0.01, and 0.001 kg/m2) correctly enclosing the sampling points #1 (21 kg/
m2), #8 (0.29 kg/m2), #9 (0.013 kg/m2), and #10 (0.0014 kg/m2). On the contrary, the simulation 2 (Fig. 4b) using 
the empirical H-derived scaling law fails at reproducing the actual deposits and significantly underestimates the 
amount of tephra deposited on the ground. This is clearly shown by the restricted extent of the computed isomass 
contours, and is the direct consequence of the underestimation of Qs. These results illustrate the robustness of our 
model and highlight the importance of including satellite-derived estimates of Qa for reliable estimations of Qs.

Conclusion
Volcanic very fine ash clouds can travel great distances and contaminate the atmosphere for long periods of time, 
disrupting air traffic as demonstrated during recent eruptions. However, the proportion of very fine ash distally 
transported in the atmosphere, and related proximal settling processes, are difficult to assess. Yet, for the past two 
decades, several operational meteorological agencies (VAACs) have used an unrealistic default value of ε = 5% 
as input for forecast models of atmospheric ash cloud concentration. Here, from the combination of field and 
satellite data, we provide first-time quantitative assessment of the source-to-atmosphere partitioning (ε) of very 
fine ash from 22 eruptions. We also developed a robust and novel statistical model for predicting the source mass 
eruption rate (Qs) with an unprecedentedly low level of uncertainty. The main findings are summarized below:

	 i.	 The fraction of very fine ash (i.e., which survive proximal settling) varies by ∼2 orders of magnitudes 
(0.1 > ε > 6.9%) with respect to the MER. This partitioning is not arbitrary as ε decreases with increasing 
MER, with respect to eruption styles.

	 ii.	 Large plumes from Plinian eruptions are much less efficient (up to 50 times lower) at transporting very fine 
ash through the atmosphere than previously anticipated.

Volcano Explosive Phase selected P1 
SiO2 content 
(wt%) Coding

P2 
Inclusion 
Depth (km)

H2O 
(wt%) Coding

P3
Open/Closed 
conduit Coding

P4
Phreato-
magmatism Coding

P5
Co-PDC 
plumes Coding

Pinatubo Climactic phase on 15–16/06/1991 78(49) 1 8.5 6.5(49,50) 1 Closed(51) 0 No(52) 0 Yes(53) 1

Kelut Full eruption 13/02/2014 56(5) 1 19 4.72(54) 0 Closed(55) 0 No(55) 0 Yes(56) 1

El Chichon 
(events B & C) Phases B and C on 04/04/1982 55.9(57) 1 8 4(58) 1 Closed(59) 0 Yes(59) 1 Yes(59) 1

Hudson Full eruption 12–15/08/1991 60–65(60) 1 4 3(60) 1 Closed(10) 0 Yes(61) 1 No(10) 0

Sarychev Peak Subplinian events on 14–15/06/2009 54.4(12) 0 3.5 4(12) 1 Closed(12) 0 No(12) 0 Yes(12) 1

Cordón Caulle Climactic phase on 4–5/06/2011 67–70(62) 1 3.75 2.7(PC) 1 Closed(63) 0 No(63) 0 Yes(64) 1

Grimsvotn Subplinian phase on 22/05/2011 50(65,66) 0 15 0.7(66) 0 Closed(66) 0 Yes(67) 1 No(66) 0

Mt. Spurr (1) Full eruption 16/09/1992 57(68) 1 Closed(69) 0 No(70) 0 No(71) 0

Mt. Spurr (2) Full eruption 18/08/1992 57(68) 1 Closed(69) 0 No(70) 0 No(71) 0

Redoubt 
(events 1 to 5) Explosive events 1 to 5 on 22–23/03/2009 57–62(72) 1 5 4.9(73) 1 Open(22) 1 No(22) 0 No(22) 0

Mt. Spurr (3) Full eruption 27/06/1992 57(68) 1 Closed(69) 0 No(70) 0 No(71) 0

Lascar Full eruption 04/1993 57–61(74) 1 4.5 5(75) 1 Open(74) 1 No(74) 0 Yes(76) 1

Anatahan Explosive phases on 10–11/05/2003 60–61(77) 1 1 3.4(78) 1 Closed(78) 0 Yes(78) 1 No(79) 0

Chaiten Full eruption: 2–8/05/2008 76(80) 1 5 2.3(80) 0 Closed(80) 0 No(80) 0 No(28) 0

Hekla Phase I + 8 hrs phase II on 26/02/2000 55.5(81) 0 9 2.5(82) 0 Closed(81) 0 Yes(29) 1 Yes(81) 1

Soufrière Hills Full eruption: 26/09/1997 57–61(83) 1 4.5 4.91(84) 1 Open(85) 1 No(85) 0 Yes(32) 1

Ruapehu Full eruption: 17/06/1996 57.5–62(86) 1 1.5 1.9(86) 1 closed(87) 0 No(87) 0 No(87) 0

Eyjafjallajökull Phase I/III on 14–19/04 & 05–18/05/2010 56.6–61.4(88) 1 5 1.8(89) 0 Closed(90) 0 Yes(91) 1 No(92) 0

Etna (1) Full eruption: 28/10/2002 47(93) 0 4 3.4(93) 1 Open(94) 1 No(94) 0 No(94) 0

Popocatepetl Climactic events on 10/03/1996 59.8–63.1(95) 1 10 3.2(96) 0 Open(44) 1 Yes(44) 1 No(44) 0

Etna (2) Full eruption: 27/10/2002 47(93) 0 4 3.4(93) 1 Open(94) 1 No(94) 0 No(94) 0

Etna (3) Full eruption: 24/11/2006 48(93) 0 4 3(93) 1 Open(94) 1 No(94) 0 No(94) 0

Table 3.  Explicative variables used in the statistical analyses for the 22 eruptions. The five explicative variables 
considered here (SiO2 (P1) and H20 (P2) magma content, open or closed character of the conduit (P3), 
occurrence of phreatomagmatism (P4), and formation of co-PDC plumes (P5)) are coded as Boolean data 
type (0/1) to be used in the model selection analysis. The threshold between low and high SiO2 content is set 
at 56 wt% for P1. The threshold between low and high water saturation for P2 is set considering the inclusion 
entrapment depth. Missing data for P2 are compensated by the model.
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	 iii.	 We explain this behaviour by the existence of collective particle settling mechanisms occurring in ash-rich 
plumes, which enhance early and en masse fallout of very fine ash.

	 iv.	 We suggest that proximal sedimentation during powerful eruptions is controlled by the concentration of 
fine ash regardless of the grain size.

	 v.	 We thus propose a style-derived parameterization of ε (εP = 0.5%; εSP = 0.8%; εS/M = 3.2%) to be used into 
VAAC ash-cloud-dispersal models for operational applications.

	 vi.	 We provide a novel and robust statistical model for the estimation of the source Mass Eruption Rate (Qs), 
with an unprecedented reduction of uncertainties from an error of a factor 54 (previous work used by some 
VAACs) to a factor 9.3 at a 95% prediction interval.

The fact that very fine ash from Plinian eruptions are not efficiently transported in the atmosphere and expe-
rience early sedimentation has major implications for risk management. On the ground, tephra fallouts can be 
more severe than predicted by current tephra-deposition models, having a detrimental effect on water infra-
structure, buildings or agriculture. In the atmosphere, the concentration of far-travelled ash clouds can be much 
lower than predicted by current ash-cloud-dispersal models, hence having important impact for crisis manage-
ment related to air traffic safety. We propose incorporating our eruption-style-dependant partitioning coeffi-
cients into VAAC ash-cloud-dispersal models, as well as the use of the equations (2–5) of our statistical model 
into tephra-deposition models. For this purpose, we provide (Supplementary Information, Table S4) operational 
parameters to be used in real-time for three standard eruptive scenarios (i.e., Plinian, Subplinian, and Small/
Moderate). For each scenario, these parameters include the Total Grain Size Distribution48 (TGSD), the total ash 
fraction with diameter <64 µm, the distal very fine ash fraction (εP, εSP, εS/M), and equations of Qs for the estima-
tion of the source mass eruption rate.

Methods
Statistical model.  Data investigated here are small sized while the number of explanatory variables is rel-
atively high. A classical solution consists in regularizing parameters estimation by introducing a penalty term 
into the maximum likelihood estimation problem. For instance, Ridge or Lasso regressions are based on this 
principle and have been introduced for variable grouping or to reduce the residuals variance49,50. However, 
each one is either specialized in the selection (grouping of variables) or in the reduction of quadratic errors51–53. 
Consequently, and in adequacy with our context, we propose to introduce a new penalty term that will allow: (i) 
grouping explanatory variables to determine the relevant number of predictors (ii) improving the estimation of 
the parameters assigned to each class and (iii) taking into account the small size of observed data. To avoid mak-
ing any a-priori, the methodology has been at first, set in the general context of a Gaussian regression mixture 
models but it turned out by investigating the data set that only one Gaussian regression model is selected via our 

Figure 4.  Simulations of the tephra fallout deposit from the 23rd February 2013 Etna eruption. The simulations 
are generated by the FALL3D tephra-transport deposition model with distinctive Qs as input. The simulated 
tephra fallout deposits are displayed as isomass contour levels (black lines) that represent the “computed 
tephra load” on the ground in kg/m2. The “measured tephra load” on the ground is indicated in red squares at 
individual locations of field sampling (red squares and numbers, see Supplementary Information Table 3 for 
details on sampling locations). (a) Simulation 1 uses an input Qs1 estimated with our satellite-derived statistical 
model (see equation at the top of the map for low SiO2 content and open system). The simulated deposit is in 
very good agreement with the “measured tephra load” at locations #1, 8, 9 and 10 for instance. (b) Simulation 2 
uses an input Qs2 estimated with the empirical scaling law35 (see equation at the top of the map). The simulated 
deposit has a much smaller extent than in simulation 1, with “computed tephra loads” departing significantly 
from the “measured tephra loads”. The total erupted mass (TEM) according to these simulations yields values 
of 1.09 × 1010 and 6.58 × 108 kg for simulation 1 and 2, respectively. The reference TEM value47 for this fallout 
deposit is 4.9 × 109 kg which means that the Satellite-derived statistical model overestimates the TEM by a factor 
of ∼2.2, while the empirical scaling law underestimates the TEM by a factor ∼7.4.
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procedure. Therefore, we only present our methodology in this context, which moreover allows physical inter-
pretations of the involved parameters. Indeed, consider (y1, …, yn)t a sample observed from the interest variable Y 
(Mass Eruption Rate, Qs) and let (xt, …, xt)t be a matrix of explanatory variables X (Qa, H, P1…, P5); xi are vectors 
of ℜP. The estimation problem reduces to maximize the following penalized log-likelihood function:

∑β σ β σ β= −
=

Pel Y X log f y x( , , , ) ( , , ) ( )
i

n
t

1

where f (y, xtβ, σ) is a Gaussian probability density with mean xtβ and variance σ2. The penalty term Pe (.) is given 
by β α β α β β= ∑ + − ∑ ∑ −= = =

−Pe( ) (1 )j
p

j
p

l
j

j l1 2 1
1 . The quantity 0 < α < 1 is a tuning parameter whose opti-

mal choice makes a balance between the error of the model and the numbers of predictors used in it. This proce-
dure is confirmed and emphasized by using model’s selection Criterion. The best known is the Akaike Information 
Criterion (AIC). It was designed as an asymptotically unbiased estimator of the Kullback divergence between the 
true model (that actually generated the data) and a statistical approximation of it. The measure of separation 
between the generating and a candidate model that we use is given by the Kullback’s symmetric divergence54. If 
we denote Φ = (β, σ) and Φ0 = (β0, σ0) this divergence is defined by:

Φ Φ = Φ Φ − Φ Φ + Φ Φ − Φ ΦJ d d d d( , ) { ( , ) ( , )} { ( , ) ( , )}0 0 0 0 0

where d(Φ0, Φ) = EΦ0 {−2 log f (Y |Φ)} is the Kullback-Leibler divergence and EΦ0 denotes the expectation with 
respect to f (Y|Φ0). Since d(Φ0, Φ0) does not depend on Φ we use:

Φ Φ = Φ Φ + Φ Φ − Φ ΦK d d d( , ) ( , ) { ( , ) ( , )}0 0 0

For large sample data and inspired by55, one may prove that the criteria defined by:

σ= + +ˆAIC nlog p2( 1)2

is asymptotically unbiased estimator of EΦ0 (d(Φ0, Φ̂)). In the case of small samples, we may prove that the criteria 
defined by:

σ= +
+

− −
ˆAICc nlog n p

n p
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2
2

is unbiased estimator of EΦ0 (d(Φ0, Φ̂)) and still satisfy the same asymptotic properties than the AIC. We say that 
a model is selected through the AICc if it has the lowest AICc in the family of chosen models.

Let us first observe that due to the range of the observations value, it is natural to consider log(y) as our new 
observations. The Gaussianity and independence of the observations will be asserted once the selection procedure 
is performed. Secondly, due to the very small number of observations, with respect to the number of covariables 
and using parameter estimations in a complete model, we then proceed to the selection steps to discriminate 
between all the possible models with 7 different variables (Qa, H, P1, …, P5). To this end, let us remark that Qa 
and H are physical parameters (directly related to Qs), while other parameters (here named P1 to P5) are related 
to magmatic system properties and external processes likely to impact Qs. We thus choose (P1, …, P5) to be class 
parameters for Qa and H, which is natural from a physical interpretation of the different volcanoes and meteoro-
logical conditions. Namely, we test models depending on the modality of the parameters leading to the complete 
model with unknown parameters generically called β·
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where (ξk) are independent standardized Gaussian variable. The selection via AICc criterion is then performed.

Data Availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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