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Abstract

The ECHAM 3.2 (T21), ECHAM 4 (T30} and LMD (version 6, grid-point resolution with 96 longitudes x 72
latitudes) atmospheric general circulation models were integrated through the period 1961 to 1993 forced with
the same observed Sea Surface Temperatures (SSTs) as compiled at the Hadley Centre. Three runs were made for
cach model starting from different initial conditions. The large-scale tropical inter-annual variability is analysed
to give a picture of the skill of each model and of some sort of combination of the three models. To analyse the
similarity of model response averaged over the same key regions, several widely-used indices are calculated:
Southern Oscillation Index (SOI), large-scale wind shear indices of the boreal summer monsoon in Asia and
West Africa and rainfail indices for NE Brazil, Sahel and India. Even for the indices where internal noise is large,
some years are consistent amongst all the runs, suggesting inter-annual variability of the strength of SST forcing.
Averaging the ensemble mean of the three models (the super-ensemble mean) yields improved skill. When each
run is weighted according to its skill, taking three runs from different models instead of three runs of the same
model improves the mean skill. There is also some indication that one run of a given model could be better than
another, suggesting that persistent anomalies could change its sensitivity 1o SST. The index approach lacks
flexibility to assess whether a model’s response to SST has been geographically displaced. We focus on the first
mode in the global tropics, found through singular value decomposition analysis, which is clearly related to EI
Nino/Southern Oscillation (ENSO) in all seasons. The Observed-Model and Model-Model analyses lead to almost
the same patterns, suggesting that the dominant pattern of model response is also the most skilful mode. Seasonal
modulation of both skill and spatial patterns (both model and observed) clearly exists with highest skill (between
tropical Pacific SST and tropical rainfall) and reproducibility amongst the runs in December-February, and least
skill/reproducibility in March-May and June-August. The differences between each model suggest that a simple
lincar regression combination of each GCM’s prediction indices will be improved upon by combination methods
that take account of the errors in the spatial teleconnection structures generated by the GCM.
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and Lau, 1986). These studies showed that the
impact of SST wvariations is generally much
stronger on tropical circulation than on flow
patterns in middle latitudes (see Moron et al.,
2001b), and the source of much of the SST
forcing was associated with El Niiio/Southern
Oscillation (ENSQ). Such decadal to multi-
decadal runs have now been performed by many
modelling groups, substantially as part of the
AMIP experiment (i.e. Latif er al.. 1990; Lau
and Nath, 1994; Graham er af., 1994; Harzallah
and Sadourny, 1995; Kumar and Hoerling, 1995;
Hense and Roemer, 1995; Potts er al.. 1996:
Davies et al., 1997; Renshaw et al., 1998; Row-
ell, 1998: Moron et al., 1998a — hereatter
MNWROE; Livezey and Smith, 1999; Smith
and Livezey, 1999). These experiments have
laid the basis for experimental seasonal fore-
casting rooted in the response of the atmosphere
at seusonal time scales 1o prevailing SST pat-
terns. An important conclusion of the modelling
studies is the necessity to consider multiple GCM
runs for accurately identifying the SST-forced
component of atmospheric variation in the mod-
el, because the land-atmosphere system in the
GCM generates different seasonal variability
itself inside each run, in addition to that part of
the variance attributable to the SST response
(i.e. Palmer, 1986; Barnett, 1995; Stern and Miya-
koda, 1995; Bengtsson et al, 1996: Zwiers,
1996: Barnett et al., 1997: MNWROS: Rowell.,
1998; Zwiers and Kharin. 1998).

Even when large ensembles are made, the
fact remains that different GCMs respond to the
same SST forcing in different ways. An interest-
ing dilemma exists as to whether to make a
seasonal forecast by using a very large ensem-
ble from the GCM that has been shown to have
most skill, or whether to make a set of ensem-
bles from a range of skilful models, and com-
bine the forecasts in some optimal way. In real-
ity, the seasonal forecast community is faced
with the latter situation, which will likely per-
sist for some time given the advantages to mod-
el development of having a number of compet-
ing GCMs around the world. Krishnamurti er al.
(2000) demonstrated clearly that an optimal
weighted combination of eight different AGCM
experiments forced by the same prescribed SST
forcing from January 1979 to December 1988
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(with only one run for each AGCM) outper-
torms the skill of any individual AGCM, includ-
ing the best ones (Krishnamurti er al., 2000).
But, this comparison is a little biased since the
weighted optimal solution of eight members is
compared with the output of one individual run.
They demonstrated also that the optimal lincar
combination of eight AGCM:s is better than the
solution where an equal weight is assigned to
each model, because less weight is assigned to
the poorer AGCM (Krishnamurti et al., 2000).
One question to be addressed in this paper is
how best to combine the dilferent output from
different AGCMs. considering the estimated
skill level associated with each AGCM. and
with samples of the same size {(i.e. three runs
from three different AGCM versus three runs
of the same AGCM). A range of widely-used
indices like SOT and regional rainfall indices
calculated for three different GCMs are studied.
The three GCMs are the ECHAMS3 (T2 1 resolu-
tion), ECHAM4 (T30 resolution) and LMD 6
(96 longitudes x 72 latitudes). Each model was
integrated three times starting from different
initial atmospheric conditions forced with the
time-varying SST through the peried 1961-
1993.

Furthermore, while it is clear that different
GCMs have different spatial responses to SST
patterns (Sperber and Palmer, 1996; Liang et af.,
1997: Zwiers and Kharin, 1998). little work
has actually been done to diagnose those differ-
ences. For example, one model may simulate
inter-annual variability almost perfectly in phase
with the Indian monsoon variability, but the
model misplaces that variability by 500 km,
leading to an apparent low skill-level when a
geographically co-located model and observed
Indian rainfall index are compared. The poten-
tial to apply coupled pattern techniques to cor-
rect such errors has been demonstrated for a set
of runs with one model (Feddersen er al., 1999:
Moron et af., 2001a) and such an approach can
be expected (o lead to further advances in opti-
mal combination of output from different GCMs.
We do not address that point in this paper, but
make the preparatory diagnostic studies of the
response of three GCMs to observed SST. One
reason for a geographically misplaced AGCM
teleconnection response to SST is expected to
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be systematic errors in the background annual
cycle. For example, if’ diabatic heating anoma-
lies in the Indian monsoon region are an impor-
tant forcing factor to pass on the ENSO influ-
ence through the Indian monsoon and into sub-
tropical North Africa, then a model Indian sub-
continent with much reduced climatological rain-
fall is unlikely 1o generate sufficiently large
rainfall (diabatic heating) anomalies to set up
the remote teleconnection from India to Africa
in the atmosphere. With this in mind. the back-
ground climatologies of precipitation of each
model are presented in this paper in some detail,
to indicate the extent to which background ver-
tical motion and diabatic forcings are correctly
represented in each model, and to form a back-
drop for interpretation of each model’s telecon-
nection structure.

Details of the model integrations, observed
data sources and methodology are given in Sec-
tion 2. Section 3 considers the annual cycle of
some key-fields in the Tropics for each model.
The model skill for some basic indices of trop-
ical circulation (SOI, monsoon index, regional
rainfall indices) is evaluated in Section 4. The
leading Observed-Model (i.e. which maximises
the covariance between the observation and the
runs) and the Model-Model (i.e. which maxim-
ises the covariance amongst the runs) seasonal
modes of the global tropical rainfall in each
season are presented in Section 5. A conclusion
closes the paper (Section 6).

2. Experimental design and statistical
methods

2.1. The AGCM integrations

All the integrations reported here have been
torced by the UK Met Office’s Global Sea Ice
and Sea Surface Temperature data set (GISST
1.0 until 1990, GISST 2.1 after 1990 and GISST
2.2 after 1996 — refer to Parker et al., 1994 and
Rayner e al., 1996). All other external atmos-
pheric forcings (solar radiation input, CO, con-
centration, ecc.) are kept at standard values.

The AGCMs used for the integrations are the
ECHAM 3.2 horizontal spectral resolution
T21 and 19 vertical levels), ECHAM 4 (hori-
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zontal spectral resolution = T30 and 19 vertical
levels) and LMD 6 (horizontal grid-point reso-
lution = 96 longitudes x 72 latitudes and 19
vertical levelsy models — hereafter respectively
EC3. EC4 and LMD. The EC3 (resp. 4) is the
third (resp. fourth) generation of a climate mod-
el originating from the ECMWF spectral medi-
um range weather forecast model. The develop-
ment was undertaken at the Max Planck Insti-
tute fiir Meteorologie and Deutsches Klima-
rechenzentrum (DKRZ) in Hamburg. Details of
the numerical formulation of the model and its
physical parametrizations can be found in Roeck-
ner et al. (1996), where comparisons are made
between different versions and horizontal reso-
lutions, and with observations. Three runs of
EC3 and three runs of EC4 were made over the
period 1961-1993 all with different initial at-
mospheric conditions. Some results of the EC4
runs have been presented elsewhere ( MNWRYS:
Navarra ef al., 1999: Miyakoda et al., 1999;
Feddersen et al., 1999; Moron ef al., 2001a).
LMD is derived from the LMD standard GCM
(Sadourny and Laval 1984; Harzallah and
Sadourny, 1995; Li, 1999).

2.2. Tropical indices

Seasonal to inter-annual climate variability
is often summarised using regional or global-
scale indices. Comparing a selection of these
amongst the models and observations will serve
to give a first indication of the performance of
the 3 models. In addition, the indices provide a
good starting point to address the question of
how the skill of a range of models can be com-
bined to generate a product of maximum skill.
The Southern Oscillation Index (SOT) was com-
puted in the model and observations (provided
by T. Basnett from the UKMO) according to the
following procedure: monthly grid-box SLP data
are averaged for a «Darwin regional index»
(130°-140°E; 10°-20°S) and a «Tahiti regional
index» (203°-215°E; 10°-20°S). These regional
indices are then standardised to zero mean and
unit variance. Note that each model run is inde-
pendently standardised. Then, the SOI is de-
fined as the difference between the «Tahiti re-
gional index» and the «Darwin regional index».
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Concerning the monsoon circulation, an im-
portant index has been defined by Webster and
Yang (1992) to measure the overall intensity of
the SE Asian boreal summer monsoon, the in-
dex of the difference between mean zonal com-
ponents of the wind at 850 (U850 hereafter) and
200 (U200 hereatter) hPa averaged over the box
5°-20°N; 40°-110°E. A similar index was de-
tined for West-African monsoon in Fontaine
and Janicot (1992) and Fontaine er al. (19953).
We compute here such an index as the differ-
ence between the normalised U850 speed aver-
aged over 5°-15°N: 15°W-15°E and the same
area at U200 hPa. This index is measured on
Tune-August period according to the definition
of Webster and Yang (1992) for SE Asia (SEA
hereafter) and June-September for West Africa
(WAF hereafter).

Sperber and Palmer (1996) and Gadgil and
Sajani (1998) compared AMIP simulations of seve-
ral regional rainfall indices, used in long-range
forecasting. MNWRO8 noticed that EC4 results
are close to the mean AMIP scores for India
(JA; 12°-27°N; 70°-82°E), Sahel (JAS; 12°-18°N;
15°W-35°E) and Brazilian Nordeste (MAM:
35°-45°W, 12°-5°8). Continental grid-box rain-
fall are individually standardised. Normalised
data are then averaged and the resultant quantity
is then re-standardised. Each run is processed
independently. Observed data are extracted from
the Climatic Research Unit data set (Hulme,
1991) and processed in the same way as the runs.

2.3. Statistical methods

We use Singular Value Decomposition Ana-
lysis (SVDA) as defined in Bretherton er al.
(1992), and as applied to analysis of AGCM
integrations Ward and Navarra (1997) and
MNWROY8. SVDA extracts the linear combina-
tion maximising the covariance between two
fields. We use it to extract:

i) The first mode maximising the covariance
between the runs and the observations (i.e. the
most skilful mode), called OM (Observation-
Model). This is achieved by computing the co-
variance matrix between the runs (stacked be-
neath each others) and the observed matrix (re-
peatedly copied the number of available runs).
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For example, with three runs denoted X, ¥ and
Z, and one set of observations denoted @ (with
time in rows and grid-points in columns). the
left-hand (L) side and right-hand (R) side matri-
ces (Bretherton er af., 1992) are constructed as

o X
L=|0 R=|Y
0 Z

The singular decomposition of the covarjance
matrix (C' = L'x R) yields two sets of vectors
(which are the coupled modes): one set contain-
ing the observed modes (called OM ) and one
set conlaining the corresponding model modes
(called OM,);

i) The first common mode amon gst the runs,
which is the pattern maximising reproductibili-
ty, called MM (Model-Model). This is achieved
by constructing two matrices containing all pos-
sible combinations of two runs (six combina-
tions for three runs and 72 for nine runs). For
example, with three runs denoted X, ¥ and Z
(with time in rows and grid-points in columns),
the left-hand (L) and right-hand (R) side matri-
ces are constructed

X Y

Y Z

Z X
L: R:

X VA

Y X

_Z— _Y_

The covariance matrix (C = L"x R) is then sym-
metric and yields two sets of vectors which are
identical (except sometimes for sign). These vec-
tors are the sets of modes (called MM ) ranked
according to the cross-covariance amongst their
associated time series, r.¢. ranked according to a
measure of the mode’s reproducibility, indicat-
ing that the mode in the AGCM is at least partly
being forced by the SST.

We first perform separate analyses on each
model to compare the different model responses
to SST. In addition, all runs from the three mod-
els are pooled together to form a super-ensem-
ble, and the analyses are repeated to yicld the
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first mode that is common amongst all models, a
mode that in some senses is independent of the
different parametrizations, resolution and numer-
ical calculus used by each modelling group. An
extended SVDA is also performed to relate each
model’s base- pattern to the same observed field.
For that, the LMD and EC4 ensemble anomaly
fields are interpolated onto the T21 grid and an
SVDA is then computed between observations
and the three models pooled together. We obtain
then one pattern for observations and one pattern
for each model. Results show that this solution is
almost equal to OM analysis performed inde-
pendently on each model (not shown).

The SVDA is cross-validated following
MNWROS. Each year is iteratively excluded from
the SVDA and the anomalies for the excluded
year (that are computed with the mean and stand-
ard deviations of the remaining period) are then
projected onto the patterns computed from the
remaining period. Cross-validated squared cov-
ariances are computed from the cross-validated
time series for each coupled mode (Bretherton
et al.. 1992) and these are then ranked in de-
scending order. Some covariances computed for
the lower order coupled modes may even be
negative. In fact, the drop between significant
covariance and near-zero (or even negative} val-
ues oceurs quite fast, usually between the third
and fifth values. The variance explained by the
coupled mode in each of the two variables (here,
observed and medel) is estimated by the mean
of the squared heterogeneous correlations be-
tween cross-validated time series of the leading
SVDA mode of one field and the other field
(Lau and Nath. 1994). All figures and values
displayed here (figs. 6a-d to 10a-d) are based on
ensemble mean model values; for example, het-
erogeneous correlations with OM are obtained
from the correlations between the mean of the
three (or nine) cross-validated OM,_ time coeffi-
cients and the observed anomaly fields. The ex-
plained variance is then the weighted mean of
these squared heterogeneous correlations.

3. The mean annual cycle of rainfall

The precipitation climatology in each model
is compared with the precipitation climatology
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of Xie and Arkin (1996), which is based on
blended estimates from satellite and gauge data.
The model circulation fields at 850 and 200 hPa
have also been compared with ECMWF rean-
alyses (1980-1988) and these results are men-
tioned in assisting interpretation of the raintall
climatologies.

For calculation of the monthly spatial corre-
lation between observed and simulated rainfall
(fig. 1). the observed grid was linearly interpo-
lated onto the corresponding model grid. EC4 is
the best model in the reproduction of the month-
ly patterns (fig. 1). Even the lowest scores of the
three models (LMD) are fairly good relative to
the larger set of AGCMs studied by Srinivasan
et al. (1996). The performance of the models is
poorest in boreal summer and best in boreul
winter. This quantity masks some regional bias-
es (figs. 2a-d and 3a-d) which are now summa-
rised.

[n December-February (fig. 2a-d), all mod-
els successfully reproduce highest rainfall rates
between the Central Indian Ocean and South
Pacific Convergence Zone (hereafter SPCZ).
There is a general tendency to produce too much
precipitation over the zone as a whole, and there
are stronger 850 hPa casterlies than observed in
the Central Pacific (not shown). This circulation
feature is particularly the case tor the LMD
model, though the actual enhancement of pre-
cipitation occurs in very localised regions. EC4
remarkably captures the pattern and the rates of
rainfall over Indo-Pacific longitudes, but fails in
the reproduction of the Atlantic ITCZ which
vanishs over the equatorial Atlantic (fig. 2c¢).
EC4 generates also too much rainfall in the
Indian Ocean and across Southern Africa. In
EC3. the Atlantic ITCZ is present. albeit too
weak, and the Indian Ocean is better represent-
ed (fig. 2¢), yet the positive bias over Southern
Africa remains. LMD is the best in the Atlantic
ITCZ’s reproduction, though it is too far south
(fig. 2d). A strong ITCZ is generated in the
LMD model in the Northern Indian Ocean,
whereas in observations. convection and precip-
itation appear to occur over a wider region
stretching further south and into Southern Afri-
ca. In the LMD model, the observed convective
activity over the Southern Indian Ocean appears
shifted and focused into Southern Africa, lead-
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ing to positive rainfall bias in this region. Thus,
all three models have positive bias in Southern
Africa, though the sources of this bias appear
rather different given the model’s contrasting
performances in the adjacent tropical Atlantic
and Indian Oceans.

In June-August, discrepancies between mod-
el and observations are stronger than in DJF
(fig. 3a-d). EC4 performs well in the Pacific
domain though the maximum on the castern
side of the basin is intensified and displaced
northeastward into Central America and Mexi-
co (fig. 3b). The Atlantic and West African
ITCZ are well simulated by all three models.
but with a slight northward displacement for
EC4 relative to the observations. The main dis-
crepancy for all models in JJA occurs in the
context of the SE Asia monsoon system extend-
ing into the Western Pacific, and all models find
their own solution for how to respond to this
complex aspect of the annual cycle. EC4 main-
tains the centre of action of convection and
precipitation much too far south over the Indian
Ocean. and monsoon westerly flow is accord-
ingly displaced south and penetrates too strong-
ly into the tropical Northwestern Pacific (not
shown). The situation for EC3 {fig. 3a) is some-
what improved over [ndian longitudes, but the
rainfall maximum in the northwestern tropical
Pacific associated with extension of the mon-
soon flow into this region is not well simulated
by EC3. which produces a general wide area of
strong convection and rainfall over the Western
Pacific. EC4 tends to produce too much precip-
itation and expands the zone of maximum pre-
cipitation north of the equator in the Western
Pacific, as the monsoon flow penetrates (0o
strongly into this region. The LMD produces
extremely high rates of precipitation over this
region — this strong positive bias is offset by.
once again, a negative bias over the Central and
Southern Indian Ocean. In between these 1wo
poles of positive and negative bias, the Indian
sub-continent itself has quite accurate rainfall
rates. Consistent with this, the Tropical Easter-
ly Jet (TEJ) i< too weak over the Indian Ocean
for EC3 and EC4 but its intensity and location
are well reproduced by LMD. The northward
extension of upper-level easterlies 1s too weak
in EC3 and 4 (not shown).
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In summar:

1) The seasonal migration of the rainbelt as-
sociated with the monsoonal planetary-scale
system is quite well reproduced by the three
models. but the skill varies seasonally and spa-
tially.

ii) LMD contains spurious peaks of rainfall,
with sometimes excessive rainfall rates {over
80 mm/day) over small patches of mountains
(Andean Cordillera, East Africa, etc.). It could
be partly related to the high resolution and the
arid-point (versus spectral) representation of the
geography that could locally enhance the pre-
cipitation.

iii} The America-Africa longitudes, from the
Eastern Pacific to the East Africa are quite well
reproduced by the three models. In fact the main
difficulty in this region is the Atlantic ITCZ
itself which in DJF is almost absent for EC4 and
too weak for EC3,

iv) The situation is more complicated from
the Western Indian Ocean to the maritime con-
tinent. The seasonal migration of the rainbelt is
well reproduced by both ECHAM models. The
SPCZ is generally too weak for EC3. The high-
est precipitation zone is displaced over the NW
tropical Pacific in boreal summer in EC4 and
the rainfall remains too high over the equatorial
Indian ocean in JJA. For LMD, the main rain-
belt is too far north over the Indian ocean during
SON through MAM, and the extent of the high-
est rainfall zone is too small in JA.

4. Simulation of tropical indices

First, some general inferences are made from
table 1, then some specific points are made for
each of the indices. We use the multiple regres-
sion least-squares (it equation to choose the
weights to give to each of the three runs

obs’ = (@ x runl) + (& x run) + (¢ X run3)
(4.1)

where a. b, and ¢ are the weights given to each
of the runs, to try and optimally combine them
to yield the best prediction obs’. The predicted
obs” are generated using cross-validation, to try
and get an unbiased estimate of the skill when
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Table 1. Cross validated correlation between observed and simulated tropical circulation and rainfall indices,
Cross-validated correlation is obtained from the linear fit of the observations with runs. Negative coctficients are
checked for (which would imply that a run was forecasting opposite anomalies relative to observation) and set to
zero during the cross-validation. The (irst column gives the mean of the 27 combinations of three runs. with one
run of each model. The second column gives the correlations obtained with the mean of the runs (it is equivalent
to assign the same weight for the nine runs). The third column gives the correlations obtained with an optimal
weighting of the three AGCM means. The fourth column gives the correlations obtained with an optimal weighting
of the nine runs, For each individual model (columns 5-7), the first value gives the correlation obtained from the
regression with the optimal weighting of the three runs and the second one. the correlation obtained {rom the
regression with the mean of the three runs (it is equivalent to assign the same weight for the three runs). There is
no value for WAF monsoon index of LMD because the coelficients are always set to zero, The highest value of
each line is in bold.

Indices 7 c](\)/friillli]nz{ions Super Super 3 Super 9 EC3 EC4 LMD

SOI (monthly 61-93) 0.85 0.87 0.87 0.87 (0.83/0.84 0817081 0386/0.86
SEA (1JA 63-89) 0.40 0.55 0.57 0.57 0.23/70.36 0.64/0.57 0.28/0.34
WAF (JAS 63-89) 0.42 0.36 0.51 0.50 0.46/0.53 0477034 -023/*
NOR (MAM 61-93) 0.67 0.77 0.75 0.73 0617062 058/0.65 0.72/0.73
SAH (JAS 61-93) 0.32 0.52 0.48 0.33 04770.52  0.10/-0.02 048 /-0.15
IND (JJA 61-93) 0.35 0.40 0.24 0.58  044/0.31 035/0.16 0.41/0.25
combining the three runs. A [2-month period is runs is the initial atmospheric conditions and
removed each time to generate cross-validated there is no reason to think that a run is better
SOI predictions (since we have monthly values than another one on the long term. We return
for SOI), whereas one year is removed each to this issue below. The EC3 and EC4 columns
time for the other indices, which only have one were generated in a similar way, applying
value per year. Negative coefficients are checked ed. (4.1) to the three sets of runs for each model.
for (which would imply that a run was forecast- Next, we generated super-ensemble forecasts
ing opposite anomalies relative to observation) by using the ensemble mean of each of the three
and set to zero. Itis a penalty to not inflate the models ineq. (4.1) (so now. in eq. (4.1), run 1 is
explained variance by the AGCM when the sign the ensemble mean of EC3, run 2 is the ensem-
of the model is wrong. For example, a model ble mean of EC4 and run 3 is the ensemble
which forecasts quite systematically opposite mean of LMD). The column Super-3 shows the
anomalies relative to observation could appear skill of these forecasts. We have also generated
as skiltul if such a penalty is not applied. For stiper-ensemble forecasts by using the nine runs
a first indication in this paper, the skill score with possible varying weights amongst them
is defined as the correlation between the pre- (column Super 9 in the table 1) and by using the
dicted observation (obs’) and the actual obser mean of the nine runs, which is equivalent to
vation. assigning the same weight to each run (column

First, in table I, consider the column LMD, Super in table I), Results are most stable for the
The results for this column were generated by most skilful indices, SOl and Nordeste. For these
using, in eq. (4.1), the three LMD runs from indices the Super, Super-3 and Super-9 skills
different initial atmospheric conditions. Equa- are higher than any of the individual models.
tion (4.1) generates the weights for an optimum However, the comparison is not really fair, be-
combination of the three runs. In fact, we ex- cause 9 runs have contributed to Super, Super-3
pected this to give equal weight to each of the and Super-9, whereas only 3-runs contribute to
three runs, since the only difference between the each of the individual model scores. To muke a
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fairer comparison, we assessed the skill of pre-
dictions made by combining one run from each
of the three models. In fact, we repeated this
analysis using all 27 possible 3-run combina-
tions always taking one run from each of the
threc models. The mean skill of these predic-
tions is given in the first column of table 1.

For the six indices (except IND), taking one
run from three different models gives a higher
average skill than the average skill when consid-
ering three runs from the same model. The mean
of the three individual AGCM optimal linear
combination of three runs (i.e. first values of
columns 3-7 of table 1) equals 0.83, 0.38, 0.23,
0.64,0.27, .40 respectively for SOL SEA, WAE,
NOR, SAH, IND (compare to the first column
of table 1). The difference is particularly large
for WAF where the performance of an AGCM
(i.e. LMD here) is close to zero. A striking result
is also the varying skill for cach model when the
mean of the three runs or an optimal combina-
tion of the three runs is considered (see the
columns 5-7 of table T). Usually, both values are
very close to each others, especially for the most
skilful indices (as SOI. NOR), meaning that
each run has the same long-term skill. even it
there are possible differences for a given partic-
ular year. Sometimes, the optimal weighting of
the three runs outperforms strongly the mean of
the three runs (as for IND). The reverse situation
could also oceur (as for SEA for EC3). The
robustness of these results should be also tested
with different lengths of the training/verifica-
tion periods during the cross-validation. This
requires further investigation with a larger en-
semble of models and different indices. Howev-
er, even il in some situations, taking runs from
one or two of the most skilful models is the best
way to generate predictions, table I still endors-
es the advantage of having many models oper-
ational (see also Krishnamurti er al., 2000). It
is because each of these models turns out to
have the highest skill for at least one of the
indices.

Thus the results in this section have provided
evidence that having more than one model avail-
able should allow us to generate an improved
forecast. However, for a full interpretation of
table I, we were forced to acknowledge that the
results also suggest that individual runs from
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the same model should now be examined in
detail to assess whether systematic differences
develop leading to systematically different skill
levels amongst the runs.

4.1. Southern oscillation index

The model simulations of the SOI (with a
five-month running mean) are shown in fig. da.
For table I1, raw monthly mean values are used,
to demonstrate the differing annual cycles of
simulation skill in the models. Many authors
have investigated the so-called «spring predict-
ability barrier» in observations and reanalyses
(i.e. Webster and Yang, 1992; Balsameda et al.,
1994: Lau and Yang, 1996), and its expression
in weaker coupling between ocean and atmos-
phere at this time of year. This feature shows up
in all models in both correlation skill and the
percentage of external variance in the SOL. rel-
ative to the intra-model internal atmospheric
variance (Rowell et al., 1995; Rowell, 1998)
(table 11). The drop of simulation skill in EC4 is
particularly marked, with SST-forced variance
in the SOI almost disappearing, in contrast to
EC3 and LMD, where the external SST forced
variance is better maintained and the drop of
correlation skill is less. All models show a sec-
ondary drop in skill and external variance in
October.

4.2. Boreal summer monsoon wind-shear indices

There is a great discrepancy between dif-
ferent runs for SE Asia (fig. 4b). The internal
noise due to atmospheric dynamics and/or land-
atmosphere interaction is clearly high. In SE
Asia, several years appear to be well repro-
duced (that is, almost every run is of the same
sign and consistent with observations) such as
1969-1974, 1983-1989 but others are poorly
reproduced such as 1965, 1968, 1979 (fig. 4b).
Concerning the West Africa monsoon index (fig.
acy, skill is better Tor EC3 (table I). All runs
reproduce fairly well the long-term negative
trend (i.e. weakening of the zonal overturning
aver West-Africa with easterly anomalies at 850
hPa and/or westerly anomalies at 200 hPa) which
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observed and simulated (mean of 9 runs) SOI (monthly values)
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Fig. 4a-c. a) Simulated and observed Southern Oscillation Index: b) simulated south-east monsoon index:
¢) simulated and observed West Alrica monsoon index (see text for the definition of the indices). The simulated

indices are defined by the mean of the nine runs (bold line) the observed one (thin line) comes from the UKMO
SLP data set and from the GDFL atmospheric data set (Qort and Liu, 1993).
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Table II. Skill of the monthly simulated SOT (= correlation between observed and simulated SOI). The observed
sOI are copied three times and the whole runs are used. The external variance computed from the formula of

Rowell (1998) is also displayed. - -
T EC3 EC3 EC4 EC4 LMD LMD
Skill  External variance Skill  External variance Skill  External variance
- ) O ) B
Tanuary 0.60 64 0.66 62 0.52 62
February 0.56 33 0.35 58 0.42 47
March 0.53 62 0.44 30 0.27 39
April 0.52 64 0.29 19 0.56 53
May 0.40 67 0.34 8 0.47 35
June 0.49 47 0.44 41 0.63 63
July 0.61 49 0.48 57 0.65 66
August 0.50 50 .51 64 0.56 82
September 0.70 63 0.65 62 0.70 70
October 0.53 40 0.53 35 0.62 61
Noveniber 0.58 65 (.55 52 0.66 66
Eecemher 0.65 73 0.50 59 0.59 70

is associated with the rainfall decrease observed
over Soudanian and Sahelian belts during this
period {i.e. Moron, 1994). Inter-annual skill is
less consistent. EC3 reproduces well 1971-1972
and 1987-1988. This is less clear for the other
AGCMs (not shown).

4.3. Tropical rainfall indices

As found in many other studies, skill ap-
pears to be very unstable for India and Sahel
and more stable for Nordeste (Sperber and
Palmer. 1996; Rowell er al.. 1993; Gadgil and
Sajani, 1998; MNWR98) (table I and fig. Sa-c).
The decreasing Sahelian rainfall trend is fairly
well reproduced by EC3 (fig. 5b). Inter-annual
variability is poorly reproduced especially in
1967, 1972, 1982, 1987 and 1988, related 1o all
of these model’s systematic error in the Sahel-
ENSO teleconnection (see Section 3). The er-
ror is particularly strong for LMD and EC4.
For India. skill improves but remains relatively
low (table T and fig. 5a). For the Sahel and
India rainfall indices, where average skill is
low, we have analysed the simulations in more
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detail. We have searched for years where all
runs (except at maximum, one), are < + 0.25
standard deviations (SDs) (defining examples
of consistently below normal simulations) or
> — (.25 SDs (above normal simulations). For
the Sahel, we obtain six above normal cases
(1961, 1962, 1963, 1971, 1972, 1986) and seven
below normal ones (1974, 1977, 1979, 1980,
1984, 1988, 1989). The best case is represented
by 1984 where eight out of nine runs are actu-
ally below — 0.25. On the 13 consistent model
cases, five are completely false relatively to
observations (that is the model forecasts are
consistent but of the wrong sign) in 1972,
1974, 1986, 1988 and 1989. The best cases
(1979 and 1984) are associated with strong
equatorial Atlantic warming (Servain, 1991:
Wagner and Da Silva, 1994), but overall, the
spread appears not to be a good indicator of
Sahel skill. As will be returned to in the later
sections, this can be expected to be related to
the fact that all three models tend to produce
the opposite sign teleconnection between Sahel
and ENSO, relative to that found in observa-
tions. For India, 15 years are consistent amongst
the nine runs: eight are positive (1964, 1969,




Vincent Moron, Antonio Navarra, M. Neil Ward. Chris K. Folland, Petra Friederichs, Karine Maynard and Jan Polcher

observed and simulated (mean of 8 runs) seasonal rainfall anomaly for India (JJA)

T T T T T

15 1 I i I I i L I i L 1 I e
61 63 65 67 69 71 73 75 7779 81 83 85 87 89 91 93

1 il ! 1 | 1

69 71 73 75 77 79

e T T T T

61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93

I'ig. Sa-c. Same as fig. 4a-c except for: a) India (June-August): b) Sahel (July-September); ¢) Nordeste (March-
May) seasonal rainfall anomalies. The simulated indices are defined by the mean of the nine runs (hold line) and
the observed ones are defined from the Hulme data set (Hulme, 1991)
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1970, 1971, 1973, 1975, 1976, 1988), seven
are negative (1968, 1982, 1984, 1986, 1990,
1991, 1994). The most consistent cases arc
1970 (8/9 runs are above 0.23) and 1994 (8/9
runs are below —0.25). The model’s sign is
wrong in 1971, 1990 and 1994, but otherwise,
the years with a consistent response tend 1o be
skilful. These results are preliminary, and re-
quire more runs to assess statistical signifi-
cance (Rowell, 1998), Nonetheless, they sug-
gest some year to year variations in the SST-
forced component of the Indian and West-AfTi-
can monsoons, a concept that has received re-
cent attention in the context of ENSO (Kumar
and Heerling, 1998; Montroy, 1997).

| simulations forced by prescribed SST: tropical response

5. Seasonal OM and MM modes

We apply in this paragraph the analysis in
MM and OM mode following MNWR9S. The
first MM mode is almost always similar to the
OM,, rainfall pattern with spatial correlations for
the tropical area from 0.92 to 0.96. The MM,
patterns are not shown here for that reason. The
summary statistics are shown in table 1L

5.1. DJF

The basic features of OM, are very similar
between the three models and the super-cnsem-

Table IIL Statistics of the first mode of OM analyses. V¥ (obs) indicates the explained variance (from the
heterogencous correlations between the mean ol the cross-validated scores of OM, and the observed ficld), V*
{mod}, the explained variance (from the heterogeneous correlations between the cross-validated scores of OM|
and the mean of the modelled field), Skill, the correlation between the cross-validated scores of OM, and OM |
and Skill*. the correlation between the ensemble-mean of the cross-validated scores of OM,, and OM,. Spatial
match is the pattern correlation between OM, and OM, {alter having interpolated linearly OM on the corresponding
model grid). The spatial match can be considercd as a measure of the extent to which the model’s ENSO
teleconnection pattern matches that of the observed ENSO teleconnection pattern. Reproducibility (z.e. external
variance in the sense of Rowell, 1998) is estimated from MM analyses.

N V# (ogs) . Vo (mod_) Skﬁl Skﬁl* 7Spatial m;gh Eeproaucibﬁi[y @)
Lca DI sz 1os o0s0 08 048 923
EC4 - DIF 8.3 14.7 0.81 0.85 0.33 89.1
1.MD - DJF 8.0 11.0 0.77 0.80 0.36 92.2
SUP - DIF 8.1 15.2 0.78 0.83 0.49 90.7
EC3 - MAM 6.2 9.5 0.80 0.84 0.43 85.1
EC4 - MAM 6.0 11.0 0.74 0.82 0.43 87.9
LMD - MAM 5.9 9.5 0.76 0.77 0.36 93.5
SUP - MAM 6.3 12.5 0.76 0.85 0.55 80.5
EC3 - JJA 6.2 8.5 0.79 0.82 0.43 90.1
EC4 - 1JA 6.0 9.7 0.73 0.77 0.34 73.0
LMD - JIA 5.5 12.1 0.68 0.74 0.25 76.4
SUP - JJA 6.1 11.4 0.77 (.82 0.46 86.2
EC3 - SON 8.2 10.8 0.84 0.85 0.53 95.6
EC4 - SON 8.3 11.0 0.84 0.87 0.42 922
LMD - SON 7.7 11.9 0.76 0.80 0.27 35.6
SUP - SON_ 8.4 14.5 083 _0.87 0.49 - 920
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