
  
 

1

Abstract—the assessment of satellite image classifications is 
usually carried out using a test sample assumed as the ground 
truth, from which the confusion matrix is derived. There are cases 
where the reference data, even those coming from a ground 
survey, are affected by errors and do not represent a reliable truth. 
In the field of geophysical parameter retrieval, the Triple 
Collocation (TC) technique is applied for validating remotely 
sensed products when the source of test data (e.g., ground data) do 
not represent a reliable reference. The TC is able to retrieve the 
error variances of three systems observing the same target 
parameter, assuming their errors are independent. In this paper, 
we exploit the same idea to test the classification accuracy in cases 
the ground truth is not available. We extend the TC approach to 
the classification problem for a general number of classes, but we 
solve it numerically for a 2-class problem (i.e., collapsed and non-
collapsed buildings). The specific case refers to the detection of 
L’Aquila 2009 earthquake damage from Very High Resolution 
(VHR) optical data. The image classification, performed by 
exploiting an object-based analysis, is compared to two different 
ground surveys carried out after the earthquake by different 
teams and with different purposes. The work demonstrates the 
powerfulness of the TC approach for assessing the classification 
accuracy with no reliable ground truth available, and provides an 
insight into the problem of assessing damage, from satellite and on 
ground, in a very critical and unsafe situation, like the one 
occurring after an earthquake.  Moreover, it was found that the 
remotely sensed product can have order of accuracy comparable 
to the ground surveys. 

 
Index Terms— classification accuracy, earthquake damage, 

triple colocation. 
I. INTRODUCTION 

ssessing the accuracy of an image classification product 
is a fundamental step when remote sensing is used to 
produce or update thematic maps. There are many works 

in the literature addressing this problem [1] [2]. Speaking about 
thematic accuracy, a first step is the acquisition of a set of 
reference samples belonging to well-known classes (or 
categories) and the computation of the confusion matrix (CM), 
which counts the occurrences of each category in the 
classification and what is considered the ground truth. From the 
confusion matrix different quality parameters can be derived, 
such as the Overall Accuracy (percentage of cases correctly 
allocated), the Cohen’s Kappa coefficient, and the user’s and 
producer’s accuracy (see [2] for a general discussion). 

In many cases, getting samples of the ground truth is not 
feasible; they can be affected by errors and thus do not represent 
the real situation [3] [4]. Indeed, errors can affect test sets 
acquired from aerial images and visual interpretation used as 
reference to validate an automatic image classification 
algorithm. Moreover, even a ground survey can be affected by 
errors, especially when it is carried out in a difficult situation or 
is conceived for a purpose different from providing a reference 
for satellite image classification assessment. This is the case for 
instance of ground surveys performed after a disastrous event 
like an earthquake. The survey teams act in unsafe conditions 
(with a limited access to the affected area) with the purpose of 
giving a rapid assessment of the seismic intensity or checking 
the structural integrity of the buildings after the earthquake and 
their fitness for use.  

 In [3] this problem was deeply investigated in case of a 
change map, when the classification concerns the two cases of 
changed (=1) or not changed (=0) samples. The impact of 
imperfect reference data on the classification assessment was 
simulated considering errors either statistically independent or 
correlated to a certain degree. In order to cope with this 
problem, one may assume to know the quality of reference set, 
or to rely on latent class analysis when this information is not 
available at all [3]. In [5], it was shown that when the reference 
data are affected by errors we could still compare the accuracy 
of two classifications relatively if the number of test samples is 
large; however, the retrieved accuracies remain biased without 
knowing the accuracy of the reference test set.  

A similar problem is faced in the field of medical diagnostic, 
when an accurate diagnostic test (denoted as gold standard) is 
not feasible, being too expensive or invasive. Therefore, the 
prevalence of a disease in a population has to be inferred by 
tests that have some unknown errors [6]. In particular, [7] 
considers a case of three tests applied to one population, a 
problem similar to deriving a change detection map from three 
different classification methods. Note that in medical diagnostic 
they consider generally a 2-classes problem (positive or 
negative test result in a patient), whereas land cover 
classification implies a general number of N categories. 

In a quite different field of remote sensing, i.e., the 
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geophysical parameter retrieval, the Triple Collocation (TC) 
technique is successfully applied for validating remotely sensed 
products when the true values of the target parameter are not 
surely known, as the source of validation data is known to have 
its own errors. The TC is able to retrieve the error variances of 
three systems observing the same target parameter, assuming 
their errors are independent. The technique has been originally 
conceived to assess the accuracy of wind speed retrieval over 
sea [8], and successively largely adopted for testing soil 
moisture retrieval from space sensors or hydrological models 
[9], [10], even combining retrievals from four systems [11]. 

 In this paper, we exploit the TC idea to test the classification 
accuracy in case the ground truth is not available. In this case, 
the TC approach consists in comparing three different 
classifications of the same test samples to infer their CMs with 
respect to the unknown class the samples actually belong to.  

The proposed novel TC for Classification Assessment 
(TCCA) method represents a manageable way to solve a latent 
class model [3]. We formulate it for a general number N of 
classes, and then solve it numerically for the 2-class problem. 
In particular, we consider the problem of detecting the building 
collapses from Very High Resolution (VHR) optical images 
collected before and after the destructive earthquake that hit the 
city of L’Aquila, Italy, in 2009. The damage classification map 
was compared to two different ground surveys carried out after 
the earthquake by different Institutions and with different 
purposes and protocols.  

Section II presents the TCCA approach, with all the 
mathematical details included in the Appendices. Section III 
describes the data, both the ground surveys and the satellite 
images and their classification algorithms. Section IV describes 
the results of the TCCA, and Section V draws the final 
conclusions. 

II. THE TRIPLE COLOCATION APPROACH  
TC is used for validating geophysical parameter retrievals 

(e.g., wind speed, soil moisture) assuming that three systems 
(X, Y, Z), measuring the same target parameter , are affected 
by systematic calibration and additive random errors. Let us 
consider one system as the reference (i.e., unitary gain and zero 
bias) and assume the additive random errors are statistically 
independent and independent from the true parameter . Three 
variance-covariance matrices can be computed from the three 
sets of observations x, y, z of the same target parameter. It can 
be demonstrated that the unknown gains and variances of the 
random errors affecting each system can be derived. Although 
slight differences in the solution may exist, as discussed in [10]. 
the fundamental hypothesis of uncorrelated errors is common 
to most papers on this topic.  

Considering the problem of image classification, each X, Y, 
and Z classification system associates to each sample a label x, 
y, z, respectively, which is an integer between 1 and N, for an 
N-classes problem. Since we do not have a gold standard, all of 
them are imperfect indicators of the unobserved (latent) status of the samples [3]. We can therefore build three different 
CM’s from each pair of classification results. This can be 
translated into a probabilistic formulation as follows. If we 
normalize the three CM’s by the number of samples in the test 
set (getting the three normalized confusion matrices NCM’s, 

from now on denoted as XY, XZ and YZ), we get an estimate 
of the join probabilities PX,Y(x,y), PX,Z(x,z), PY,Z(y,z). With 
regard to XY, and similarly for the others, one can write: 

 

( , ) ⟷ XY =
…
… …… … … ……

      (1) 

 
Then, XY contains the conditional probabilities arranged in 

a matricial form. 
Actually, one wants to know the joint probabilities PX, (x,), 

P Y, (y,), P Z, (z,) of the three system outcomes with respect 
to the latent variable, i.e., the NCM with respect to the class the 
samples really belong to. With reference to system X, we 
should retrieve X, which corresponds to the joint probability 
PX, (x,):  

( , ) ⟷ XΘ =
…
… …… … … ……

      (2) 

where rows indicate the outcomes of the classifier and 
columns the true classes, so that  is the joint probability of 
getting class i out of the classifier, being j the true class. The 
diagonal terms indicate the probability of correct classification. 
Similarly, we refer to Y and Z as the NCM of the other 
systems with elements  and .  

By adapting the hypothesis of TC, we assume that the errors 
of each classification system are conditionally independent to 
the errors of the other systems (e.g., the outcome of one 
classifier cannot be deduced from the outcome of the others) 
(see also [3] for a discussion on this hypothesis). It is 
demonstrated in the Appendix-A that we can derive the 
following equations for each target NCMs  X, Y and Z we 
want to retrieve, which are expressed as function of the known 
matrices XY, XZ, YZ derived from the test set: 

 
        XΘ ∙ P ∙ XΘ = XZ ∙ YZ ∙ XY  YΘ ∙ P ∙ YΘ = YZ ∙ XZ ∙ XY         (3) 

ZΘ ∙ P ∙ ZΘ = YZ ∙ XY ∙ XZ       
where superscripts “T” and “-1” indicate transposition and 

matrix inversion, respectively. Matrix P is a diagonal matrix 
containing the inverse of N unknown probabilities pj (j=1, … 
N) of the classes (sometime denoted as prevalence of the 
classes), which can be computed from any of the target NCMs, 
so that the following 3N constraints also apply:  

 
= ∑ = ∑ = ∑       (4) 

 
 Note that matrices in equations (3) (e.g., XΘ ∙ P ∙ XΘ ) are 

symmetric, so each matricial equation corresponds to N(N+1)/2 
polynomial equations in the N2 unknown , , , plus 3 
constraints requiring that by saturating the joint probability we 
get one, i.e., ∑ ∑ = ∑ ∑ = ∑ ∑ = 1.  

In TTCA we can also build a 3-dimensional NCM, denoted 



  
 

3

as XYZ, representing the joint probability , , ( , , ), with 
elements  being the probability of encountering a sample 
labeled as classes i, j, and k by the three classifiers, respectively. 
This leads to other constraints for the target NCM’s (see 
Appendix-A):   

 
, , = ∑         (5) 

 
which are not all independent, as by saturating with respect 

to the classes one obtains ∑ , , = , , ∑ , , = , , 
∑ , , = , .  

If we expand the matricial relations (3) we get, together with 
eq. (4) and (5) a polynomial system of equations in the unknown 
probabilities , , . The analysis of its solution (i.e., existence, 
unicity) for the general case of N classes is beyond the scope of 
this paper and is left to further work. Here, we face the case of 
a 2-class problem, which is typical of any change detection 
problem, e.g., in case of collapsed building  detection after an 
earthquake. The solution is found in Appendix-B. It requires to 
solve the equation (B.5) for the prevalence of class i=1 (i.e., p1), 
where , , , , , , , , , , ,  as function of p1 are given by 
equations (B.4). We will use this method in section IV in the 
case of L’Aquila damage classifications provided by satellite 
remote sensing and two ground surveys.  

The hypothesis of conditional independence of the errors of 
the three systems is often assumed when exploiting the latent 
class analysis, as discussed in [3]. However, in that paper it was 
also investigated the presence of correlated errors and 
concluded that the satisfaction of the model assumption is 
critical in its use. Solutions to this issue were proposed for TC, 
for instance using four systems instead of three [12]. This issue 
for TCCA is left for future studies.   

III. THE EARTHQUAKE DAMAGE DETECTION CASE STUDY  
A. Data 

On April 6, 2009 at 1:32 GMT, an earthquake hit L’Aquila 
city, in Central Italy. The main shock was rated 6.3 on the 
moment magnitude (Mw) scale. Two ground surveys were 
carried out after the event and made available for this study. The 
first one is the survey performed by Istituto Nazionale di 
Geofisica e Vulcanologia (INGV) Macroiseismic team 
(QUEST - QUick Earthquake Survey Team, see 
http://quest.ingv.it), while the second one was carried out by the 
Italian Department of Civil Protection (DPC).  

INGV researchers, in one week of fieldwork, collected 
information on type of buildings and the suffered damage, 
according to the European Macroseismic Scale 1998 (EMS‘98) 
[13]. The damage grade ranges from 0 to 5, i.e., from no damage 
to completely collapsed, and it was attached as an attribute to a 
Geographical Information System (GIS) layer, with polygons 
representing the building footprint. More than 1600 buildings 
were surveyed in the central part of the town, and 74 of them 
were found damaged with grade 5. It is worth noticing that the 
data were collected by a visual inspection, building-by-
building, only looking from outside the buildings itself, because 
INGV teams were not allowed to go inside the edifices for 
safety reasons. The purpose of INGV survey was the estimation 

of the Seismic Intensity of the earthquake. 
The DPC survey was carried out during the six months 

following the seismic event and includes a detailed review of 
the interior parts of the buildings. Differently from INGV, the 
final goal of this survey was to classify the building usability 
and assess the post-earthquake damage. A different survey 
protocol was followed for private and public edifices. The form 
(“Agibilità e Danno sugli Edifici pubblici e privati”: AeDES) 
filled in for each private building, contains more than 250 fields 
describing the structural typology and the damage grade for 
each structural component. A different form was filled for the 
settlements classified as cultural heritage. From this plenty of 
information a damage indicator and a vulnerability class were 
calculated following the EMS ‘98 scale by Istituto per le 
Tecnologie della Costruzione (ITC) of the Italian National 
Research Council (CNR) and attached to a GIS map of the 
town. Considering the central part of the town the DPC survey 
consists of 2003 buildings, of which 129 were associated to 
damage grade 5.   

Figure 1 and figure 2 show the two surveys, superimposed to 
a satellite image, by colour coding each  building according to 
its EMS’98 damage grade. 

Very High Resolution (VHR) optical images were collected 
by the QuickBird satellite before (September 4, 2006), and 2 
days after (April 8, 2009) the catastrophic event. Each 
acquisition consists of a panchromatic (PAN) and a 
multispectral (MS) image (blue, green, red and near-infrared 
channels). Nominally, at nadir, the spatial resolution of the 
PAN data is 0.6 m, while the MS image has a 2.44 m resolution.  

 

 
Figure 1. Damage distribution of L’Aquila city center 

according to INGV survey. The polygons of surveyed 
buildings are superimposed on a very high resolution 

panchromatic image acquired by the QuickBird satellite. 
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Figure 2. As in Figure 1, but showing the DPC survey. 

B. Image processing approach 
To classify the QuickBird images we adopted an object based 

analysis approach. The available GIS layer of polygons 
representing the building footprints was used to segment the 
image and identify the pixels belonging to each building. A 
precise registration of the two images and orthorectification 
with respect to the GIS layer was carried out using a Digital 
Terrain Model (DTM) provided by a LiDAR scanner survey of 
the area. For each building (i.e., an image object) a number of 
features were computed from the pre- and post-seismic data, 
both panchromatic and multispectral, potentially capable of 
detecting changes. Several change detection features have been 
tested and the six most sensitive to changes caused by the 
earthquake have been considered in the final classification 
procedure: 
 Mutual Information (MI) [14] between the two 

panchromatic images: it provides a measure of the pixel 
intensity correlation per  objects across the two days; 

 Textural parameters difference  between pre-seismic and 
post-seismic images:Energy, Correlation, Homogeneity, 
Contrast have been considered and computed within each 
object with 1 pixel shift [15], representing changes in the 
spatial arrangement of pixel intensities; 

 Difference of Saturation color attribute derived from 
multispectral images [16]: it helps detecting changes not 
associated to damage, for instance in case of building 
restoration. 

Note that we considered a set of 6 change features for each 
object. All those features were processed by a supervised 
classification algorithm considering two classes, corresponding 
to collapsed buildings (grade D=5 in the EMS ‘98 scale) and 
non-collapsed ones (grade D< 5 in the EMS ‘98 scale). The 
training set was extracted by a visual inspection of the 
Quickbird image itself. 

Let  d ,..., 21  be the change parameter vector (with 
d=6) extracted from the pre- and post-event optical images and 
associated to a building. Let  21,  be the set of classes, 
i.e., D=5 or D<5. Following the Maximum Likelihood (ML) 
criteria, given the observed feature vector , we assign the 
building to the class k (k=1,2) with the highest class-
conditional probability density function (pdf) (also called class 
likelihood function)  kP | .  

As for the class-conditional pdf’s, they are estimated from a 
training set trough the non-parametric approach known as 
Parzen window method, assuming, moreover, the class-
conditional independence of all the features, i.e., the Naïve 
hypothesis [17]. In detail, given a set of nk training samples 
from class k, and assuming a Gaussian kernel, the Parzen 
window method estimates the distribution  kP |  by the 
following: 

   








  kn

j i

kijid

i ikk hhnp
1

2)(

1 2exp1)|(     (6) 

where )(kij  is the jth observation of the ith feature from the kth 
class, and h is the so called bandwidth parameter. Equation (6) 
shows that, for each feature, the pdf of the data given the class 
is estimated as sum of Gaussian kernel functions placed on each 
training data point.  

IV. TCCA APPLIED TO THE L’AQUILA TEST CASE  
We applied the TCCA method to the three damage maps 

from DPC, INGV and from Quickbird image classification 
assuming the three systems provide independent classification 
maps. Note that the fact that the two surveys were carried out 
by different teams and the use of an independent supervised 
image processing approach guarantee that the hypothesis of 
independent errors of the systems holds.  

Since the two ground surveys do not refer exactly to the same 
building GIS layer, in order to apply the TCCA approach it was 
first necessary to intersect the two layers; this leaded to a 
common set of 1445 buildings with associated labels, i.e., 
collapsed (D=5) or non-collapsed (D<5), according to the two 
surveys. The ML classification was then applied to the same set 
of image objects.  

The CM’s resulting from the comparison of the ML 
algorithm result and the classification provided by the ground 
surveys are reported in Table I (2-D standard CM’s), and Table 
II (3-D CM providing all combinations of classification 
outcomes). Table I shows the standard confusion matrix 
considering all combinations of two classifications (main 
diagonal counts number of objects with same classification 
outcome, whilst off-diagonal terms are number of mismatches). 
Table II refers to the triple collocation approach, as it counts the 
occurrences of all possible combinations of the outcomes of the 
three classifiers. Specifically, it reports the number of samples 
labeled as D=5 by the three classifiers, or commonly labeled as 
D<5, or labeled as D=5 by two classifiers and D<5 by the third 
one, and so on so forth. 
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TABLE I 
2×2 CONFUSION MATRICES FOR THE THREE PAIRS OF SYSTEMS, ASSUMING X 

AS THE DPC SURVEY, Y THE INGV SURVEY AND Z THE EARTH OBSERVATION 
IMAGE CLASSIFICATION (EO).  

 
 
 
 
 
 
 

 
 EO 

ING
V  D<5 D=5 

D<5 1341 43 
D=5 37 24 

 
TABLE II 

3-D CONFUSION MATRIX FOR THE THREE SYSTEMS AS DEFINED IN TABLE I 
 

 INGV D<5 INGV D=5 
 EO 

D<5 
EO 

 D=5 
EO 
D<5 

EO 
D=5 

DPC D<5 1276 33 21 9 
DPC D=5 65 10 16 15 
 
We can notice that the performances of the image 

classification (denoted as EO in the tables) compared to the two 
ground surveys,  supposing they could be considered as the 
ground truth, are not very good. Only 24 collapses were 
detected out of 61 according to INGV, or 25 out of 106 
according to DPC, with overall accuracy of 94.5 % (Cohen’s 
Kappa, K=0.33) and 91.5 % (K=0.18), respectively. However, 
the matching between the two ground surveys, which we 
remind were carried out according to different purposes, was 
not good as well, being 92.7 % the percentage of buildings with 
the same classification outcome (K=0.36). Then the question 
we want to answer by using the TCCA is: which is the actual 
accuracy of the three systems with respect to the truth? 

Using the TCCA solution for the 2-class problem, after 
normalization of the CM’s in Table I, we derived the three 
NCM’s X, Y, Z as function of the probability of collapsed 
building p2 using eq. (B.4). Then from the NCM’s we computed 
the Overall Accuracy and Cohen’s Kappa coefficients [1][2]. In 
Fig. 3 it is shown that the INGV classification has a Kappa 
coefficient always greater than the others, despite of the true 
prevalence of damaged, class. Concerning the other two 
classification results   EO is slightly better than the DPC 
classification when the probability of damage is low, whilst 
DPC becomes a bit better respect the EO classification if the 
probability of damage is higher (see Fig. 3). This result can be 
justified if one considers that according to the CM’s in Table I 
the INGV classification has a fair matching with both DPC and 
EO (92.7% and 94.5%, respectively), whereas this is not true 
for the others that exhibit a pronounced disagreement (91.5% 
between EO and DPC). This experimental evidence makes the 
TCCA solution trust more on the INGV classification, as it can 
be intuitively understood. If the prevalence of damaged class 

were high, the TCCA would have trusted more on the DPC 
survey that has a higher occurrence of D=5 class respect to EO.  

Fig. 4 compares the Overall Accuracy of the systems. It is 
noticeable that according to this quality score the satellite 
classification has a quality intermediate when compared to the 
ground surveys.  

 Figure 3. Cohen Kappa coefficient of systems DPC, INGV 
and image classification results (EO) as function of prior 

probability of collapsed building. 

 Figure 4. Overall Accuracy of systems DPC, INGV and 
image classification results (EO) as function of prior 

probability of collapsed building. 
 
To retrieve the final solution the probability of collapse p2 has to be derived by solving eq. (B.5). From the CM in Table II 

it comes out that the number of samples classified as 
undamaged by the three systems is 1276, whereas the number 
of samples accordantly considered as damaged is 15. Then, 
dividing by 1445, it comes out that p111= 0.8830 and 
p222=0.0104. A numerical solution of eq. (B.5) was found by 
using the Matlab© Symbolic Tool. Here for sake of better 
clarity we depicts a graphical solution in Fig. 5, where  ⁄ + (1 − )⁄  derived by using (B.4) 
is plotted as function of , so that according to (B.5) the 
solution is found when the value = 0.0104 is reached. 
Both methods provided p2=0.0529, from which X, Y and 
Z and associated classification accuracy scores were finally 
retrieved using the eq. (B.4).  
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Figure 5. = ⁄ + (1 − )⁄  as 
function of p2. Red dot corresponds to the solution of eq. (B.5) 
with p222=15/1445=0.0104.  

Multiplying X, Y and Z by the number of samples, we 
computed the CM’s with respect to the truth, which are reported 
in Table III. They provide the number of correct classifications, 
misdetections ad false alarms with respect to the unobserved 
true status of the samples. Note that column totals are the 
estimated number of damaged (D=5) and non-damaged (D<5) 
buildings. From those CM’s we can derive the Overall 
Accuracy scores and the Cohen’s Kappa coefficients of the 
system.  

TABLE III 
CONFUSION MATRICES OF THE THREE DAMAGE CLASSIFICATIONS WITH 

RESPECT TO THE “TRUE”. X REFERS TO THE DPC SURVEY, Y TO THE INGV 
SURVEY AND Z TO THE IMAGE CLASSIFICATION (EO). THEY REPRESENT THE 
NUMBER OF CORRECT CLASSIFICATIONS, MISDETECTION AND FALSE ALARMS 

WITH REFERENCE TO THE UNOBSERVED TRUE STATUS OF THE SAMPLES. 
COLUMN TOTALS IS THE ESTIMATED NUMBER OF REALLY DAMAGED (D=5) 

AND NON-DAMAGED (D<5) BUILDINGS. 
 

 
 
  

 
 
 
 
We observe again that the INGV survey is the most accurate 
(97.2 % accuracy, 0.687 Cohen’s Kappa) with few false 
positives but a bit more misdetections of collapse. The image 
classification has worse performances (accuracy of 95.3 %, 
Cohen’s Kappa of 0.500), with a much larger number of false 
alarms. However, its real accuracy is better than that found by 
comparing directly with the two ground surveys. The DPC 
survey, with an accuracy of 94.1 % and a Cohen’s Kappa of 
0.499, is a bit worse. This result can be justified by the different 
purposes of the surveys. In particular, the DPC survey provides 
a great amount of information which aims at assessing the 
structural condition of the buildings and their fitness for use, 

despite of their exterior appearance. For instance, a heavy 
damage of the vertical structures (e.g., pillars) may have been 
considered as a predominant damage of grade 5, even if not 
consistent with the general definition of EMS’98 when looking 
at the building from the exterior. Conversely, the image based 
classification suffers from situations we were able to identify in 
some cases by a careful analysis of the satellite images but also 
from an aerial survey and ground based photographs. Heavy 
damage may be not visible looking down upon, for instance in 
case of the so-called pancake effect, which we recognized 
occurred in some buildings, and is characterized by the 
downfall of the ground floor only. In Fig. 6 a picture of a 
building taken from ground and the same building imaged by 
Quickbird after the earthquake are shown to give an example of 
this effect. Additionally, false positives occurred when the 
building underwent a restoration just after the acquisition of the 
pre-event image, which was wrongly classified as a change due 
to the earthquake. Despite of these problems and the difficulty 
of change detection in a very dense historical town, the satellite 
classification exhibited a damage detection performance 
comparable or even better of at least one ground survey.  

  

 
Figure 6. Photograph of a building in L’Aquila affected by the 
pancake type of damage and the same building imaged by the 

post-event Quickbird data take. With respect to the pre −
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event image (not shown), the only change is the presence of 
dust on the street due to the damage that was classified as 

EMSL’98 grade D=5.   
V. CONCLUSIONS 

We have derived a triple colocation approach (TCCA) to 
retrieve the accuracy of three classifications in the absence of a 
ground truth (or when any reference data or ground surveys are 
known to be affected by errors). Once derived the confusion 
matrices among each pair of classifications, with the hypothesis 
of independent errors, it is possible to write a set of polynomial 
equations for the confusion matrices with respect to an 
unknown truth.  
The method was applied to the classification of urban damage 
after the L’Aquila 2009 earthquake, based on the EMS’98, 
comparing two independent ground surveys and an automatic 
supervised classification of satellite VHR Quickbird images. 
Although one can expect a ground survey would represent a 
reference for validating satellite image classifications, the 
TCCA investigation showed that assuming a ground survey as 
the reference for testing the satellite damage classification can 
be questionable. The concept of damaged or non-damaged can 
be controversial on its own, as it may be related to the purpose 
of the survey and to the conditions in which the teams were 
operating. The classification from satellite images provided 
accuracy in distinguishing EMS’96 damage grade 5 comparable 
to at least one of the surveys. Indeed, the satellite has potentially 
a more rapid response and undoubtedly much less cost of a 
ground survey, so that it may play a significant role in disaster 
managing.  
When evaluating the retrieved classification performances in 
this case, it must be considered the challenges of mapping 
damage in the dense settlement of L’Aquila historical town. In 
any case, this work paves the way to a more careful assessment 
of earthquake damage maps from remote sensing data.  

APPENDIX A: TCCA ANALYTICAL FORMULATION 
The hypothesis of independent errors requires that the 

probability of outcome x, y, z of each system is not dependent 
on the result of the others, e.g., ( | , ) = ( | ). Then by 
using the Bayesian theorem we can write for the pair of systems 
X and Y (in the sequel we omit the subscript in the pdf symbol 
P() for sake of brevity): 

 
( , , ) = ( | , ) ( , ) = ( | ) ( , ) = ( , ) ( , )

( )  
(A.1) 

 
By saturating with respect to   we get the joint probability 

P(x,y), i.e., the observed confusion matrix XY whose elements 
can therefore be expressed as:   

 , = ∑          (A.2) 
Similarly for the other pairs. It is straightforward to verify 

that this corresponds to write the following three matricial 
relations relating the target normalized confusion matrices X, 
Y and Z we want to retrieve to the observed ones, i.e., XY, 
XZ, YZ:  

XΘ ∙ P ∙ YΘ = XY    
 XΘ ∙ P ∙ ZΘ = XZ           (A.3) 
YΘ ∙ P ∙ ZΘ = YZ    

P is a N×N diagonal matrix given by: 

P =
1/ 0 … 0

0 1/ … …… … … …0 0 … 1/
       (A.4) 

Where pj (j=1, … N) are the N unknown probabilities of the 
classes. By deriving X from the second equation in (A.3) and 
Y from the third equation, substituting into the first equation 
and using well-known matrix operation rules, one obtains: 
XΘ ∙ P ∙ YΘ = XZ ∙ P ∙ ZΘ  ∙ P ∙ YZ ∙ P ∙ ZΘ = XY 

XZ ∙ ZΘ  ∙ P ∙ P ∙ YZ ∙ ZΘ P = XY 
XZ ∙ ZΘ  ∙ I ∙ P ∙ ZΘ ∙ YZ = XY 

Where I is the identity matrix and we considered that P is 
diagonal so that P-1 ∙P=I. Then multiplying by XZ  on the left 
and by YZ  on the right:  

ZΘ  ∙ P ∙ ZΘ = XZ ∙ XY ∙ YZ  
ZΘ ∙ P ∙ ZΘ = YZ ∙ XY ∙ XZ     (A.5)  

Which is the third of eq. (3) in the main text we wanted to 
demonstrate.  

Similarly for the joint probability P(x,y,z,) and using (A.1) 
one can write: 

( , , , ) = ( , | , ) ( , ) = ( , | ) ( , )
= ( , , ) ( , )

( ) = ( , ) ( , ) ( , )
( )  

 (A.6) 
Which leads to eq. (5) in the main text once we saturate with 
respect to .  

APPENDIX B: TCCA SOLUTION FOR N=2 CLASSES 
Eqs. (3), (4) and (5) can be easily solved in case of N=2 

classes. We show the solution for X onlyconsidering it is 
identical for the other CMs.  

Each right term in eq. (3) is a symmetric 2×2 known matrix 
(it is a function of the 3 CM’s derived from the test set), whose 
elements are hereafter denoted as a, b, c. Then, eq. (3) becomes 
(we omits superscript “X” for sake of simplicity):  

0
0 =    (B.1) 

Then, using eq. (4) the probabilities of each class are 
p1=p11+p21, p2=1-p1=p12+p22. Eq. (B.1) corresponds to three 
scalar equations, which are dependent since from (B1) it 
follows: 
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+ 1 − + 1 −
+ 1 − + 1 −

=  

 Indeed, it can be easily found that a+b=p11+p12, b+c=p21+p22, and then a+2b+c=1. Therefore, we solve the 
equation with respect to an unknown quantity, that we assume 
being p1. As for the upper-left element of (B.1) one can write: 

+ 1 − =  
Then: (1 − ) = (1 − ) +             (B.2) 
 
Using p12=a+b-p11 and c=1-a-2b, we found a second-degree 

algebraic equation in p11, whose coefficients are functions of p1:   − 2 ( + ) + ( + − ) = 0     (B.3) 
 
That we can easily solve, and then we can derive all the 

elements of X: 
 

= ( + ) ± ( + ) − ( + − )  
= + −                            (B.4) 

= −   = + −   
The sign shall be chosen considering the constraint of pij being real and between zero and one.  
To found p1 to be substituted into eq. (B.4) we have to rely 

on the 2-D CM and to eq. (5). It is enough to impose only one 
of the eight constraints of eq. (5) since they are all dependent, 
so for instance we can consider: 

 
= + ( )       (B.5) 

 
which can be easily solved numerically, as done in the main 

text.  
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