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ABSTRACT 14 

 15 

Earth Observation (EO) data, from both Synthetic Aperture Radar (SAR) and optical 16 

sensors, are generally used to map mostly affected urban areas after an earthquake using 17 

change detection techniques applied at pixel scale. However, Civil Protection Services 18 

require damage assessment of each building according to a well-established scale to 19 

manage rescue operations and to estimate the economic losses. 20 

Considering the earthquake that hit L’Aquila city (Italy) on April 6, 2009, this work assess 21 

the feasibility of producing damage maps at the scale of single building from Very High 22 

Resolution (VHR) optical images collected before and after the seismic event. We 23 
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considered the European Macroseismic Scale 1998 (EMS-98) and assessed the possibility to 24 

discriminate between collapsed or heavy damaged buildings (damage grade DG equal to 5 25 

in the EMS-98 scale) and less damaged or undamaged buildings (DG < 5 in the EMS-98).  26 

The proposed approach relies on a pre-existing urban map to identify image objects 27 

corresponding to buildings where the change analysis is performed. The latter is carried 28 

out to many different parameters with the objective of assessing their effectiveness in 29 

singling out changes associated to the building collapse. Features describing texture and 30 

color changes, as well statistical similarity and correlation descriptors, such as the 31 

Kullbach Leibler divergence and the Mutual Information, were included in our analysis. 32 

Two supervised classification approaches, respectively, based on the use of the Bayesian 33 

Maximum A Posteriori (MAP) criterion and on Support Vector Machines (SVM), were 34 

compared. In our experiment, we considered the whole L’Aquila historical centre 35 

comparing classification results with the ground survey performed by the Istituto 36 

Nazionale di Geofisica e Vulcanologia (INGV).  37 

The work represents one of the first attempt to detect damage at the scale of single 38 

building, validated against an extensive ground survey. It addresses methodological 39 

aspects, highlighting the potential of textural features computed at object scale and SVMs, 40 

and discuss potential and limitations of EO in this field compared to ground surveys.  41 

 42 

Keywords: earthquake damage mapping, change detection, classification 43 

 44 

1. Introduction  45 
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The use of Earth Observation (EO) in the domain of natural hazards and disaster management is 46 

becoming increasingly popular. This is due partially to the increased awareness of environmental 47 

issues, the need to face those issues on a global scale perspective, but also to the improvement of 48 

satellite technologies and the ability to deliver high quality imagery through fast 49 

telecommunication links, different media and disseminate them through the internet. As 50 

technology is enhanced, demand and expectations increase for near-real-time image delivery to 51 

emergency services in the event of a natural disaster (Joyce  et al. 1999). During a seismic event, 52 

in particular, it is fundamental to obtain a fast and reliable map of the damage of urban areas to 53 

manage civil protection interventions. Moreover, the identification of the destruction caused by 54 

earthquakes provides seismology and earthquake engineers with informative and valuable data, 55 

experiences and lessons in the long term, and raise some important scientific problems (see the 56 

International Association of Seismology and Physics of the Earth's Interior, IASPEI website  57 

at http://iaspei.org/commissions). An accurate survey of damage is also important to assess the 58 

economic losses, and manage and share the resources to be allocated during the reconstruction 59 

phase.  60 

Satellite remote sensing data can provide valuable pieces of information on this regard, thanks to 61 

their capability of delivering an instantaneous synoptic view of the scene, especially if the 62 

seismic event is located in remote regions, or the main communication systems are damaged. 63 

Many works exist in the literature on this topic, considering both optical data and radar data, 64 

which however put in evidence some limitations of the nadir looking view, of the achievable 65 

level of details and response time, and the criticality of image radiometric and geometric 66 

corrections (Dell’Acqua and Gamba, 2012). The visual interpretation of the images is the 67 

approach followed in many cases, especially for an operational and rapid release of the damage 68 
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extension map (Yamazaki et al., 2005). Many papers evaluated change detection approaches to 69 

estimate damage within large areas (e.g., city blocks). They quantified not only the extension of 70 

the affected area, but also the level of damage, for instance correlating the collapse ratio 71 

(percentage of collapsed buildings in an area) measured on ground with some change parameters 72 

derived from two images, taken before and after the earthquake (Stramondo et al., 2006). The 73 

case of radar imagery presents additional challenges, as for instance discussed in (Brunner et al., 74 

2010). Nowadays, remotely sensed images at Very High Resolution (VHR) may in principle 75 

enable production of earthquake damage maps at single-building scale as done for instance in 76 

Chini et al. (2009). The complexity of the image forming mechanisms within urban settlements, 77 

especially of radar images, makes the interpretation and analysis of VHR images still a 78 

challenging task. Discrimination of lower grade of damage is in particular extremely difficult 79 

using nadir looking sensors.  80 

Automatic algorithms to detect the damage are being developed although, as matter of fact, these 81 

works focus very often on specific test cases and sort of canonical situations (Marin et al., 2015). 82 

In order to make the delivered product suitable for the user community (e.g., civil protection) it 83 

is important to assess its quality on a large area and in different and challenging situations. 84 

Moreover, the assessment shall be directly compared to the type of data the final user adopts 85 

when carrying out his/her operational tasks. This kind of assessment can be hardly found in the 86 

literature, especially when the focus is on the development of sophisticated and advanced 87 

algorithms.  88 

In the APhoRISM (Advanced Procedures for volcanic and Seismic Monitoring) project 89 

(Devanthéry et al., 2016), funded by the European Union under the EC-FP7 call, methodologies 90 

to exploit remote sensing for earthquake risk management, and in particular for delivering a 91 
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prompt and accurate damage assessment map, were developed. The project aimed at integrating 92 

remote sensed observations with other direct conventional observations (e.g., accelerometer 93 

networks and derived shake maps) and with prior information on building vulnerability and soil 94 

instability to provide a better and reliable damage assessment product to the final user. 95 

In this paper, we present the work performed using the remotely sensed images alone, and in 96 

particular VHR optical images, to classify the damage grade of individual buildings. To 97 

encounter the need of the final user, especially civil protection authorities, the experiment was 98 

carried out on an entire town comparing the results with the ground data collected by the same 99 

user and another institution involved in the seismic risk management, thus providing a well-100 

known and reliable reference, as well as a common definition of the product taxonomy. 101 

Specifically, the experiment was carried out considering the earthquake that hit the city of 102 

L’Aquila, Italy, in 2009. The image classification results were compared to the ground surveys 103 

carried out by the Institute of Geophysics and Volcanology and the Italian Department of Civil 104 

Protection. The work provides several hints into the problem, on the way to process the images, 105 

to evaluate the classification performances and understand advantages and limitations of remote 106 

sensing in this field. Moreover, it points out the possible ambiguities related to the ground 107 

surveys, the protocols followed for their collection and interpretation, which raises some 108 

difficulties when the surveys are used as reference for assessing image classifications accuracy.  109 

The paper is organized as follows. Section 2 describes the test case and the dataset used for the 110 

study, both remotely sensed and collected on ground, whilst section 3 provides details on the 111 

exploited methodologies regarding feature extraction, and classification methods. Section 4 112 

presents the results of the feature selection and the validation of the resulting damage map. 113 

Finally, section 5 draws the main conclusions.  114 
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2. The test case and available data  115 

2.1 L’Aquila 2009 earthquake  116 

On April 6, 2009 at 1:32 GMT, an earthquake hit L’Aquila city, in Central Italy. The mainshock 117 

was rated 6.3 on the moment magnitude (Mw) scale; the epicentre was located near L'Aquila, at 118 

a depth of about 9 km, and was followed in the next week by seven aftershocks with Mw > 5. 119 

L’Aquila and the surrounding villages suffered the highest damage. The earthquake was felt 120 

throughout central Italy; 309 people died, making this event the deadliest earthquake that hit 121 

Italy since the 1980 Irpinia’s one. The earthquake caused damage to thousands of buildings in 122 

the medieval city centre of L'Aquila. Some buildings fully collapsed, thus leading to a sparse 123 

damage distribution within a high-density urban area, a very challenging situation for satellite 124 

damage assessment. 125 

2.2 Ground truth data  126 

The ground truth data available for the selected test site comes from the survey performed by 127 

Istituto Nazionale di Geofisica e Vulcanologia (INGV) macroiseismic team (QUEST - QUick 128 

Earthquake Survey Team, http://quest.ingv.it). 129 

After the catastrophic event, several groups of INGV researchers, in one week of fieldwork, 130 

collected information related to the type of building and its vulnerability class, and the suffered 131 

damage, according to the European Macroseismic Scale 1998 (EMS-98) (Grünthal, 1998). The 132 

damage grade ranges from 0 to 5, i.e., from no damage to a completely collapsed building. It is 133 

worth noticing that the inventory data were collected by a visual inspection, looking from outside 134 

the buildings, because the INGV teams were not allowed to enter the edifices for safety reasons. 135 

More than 1600 buildings were surveyed in the central area of L’Aquila, and a georeferenced 136 

vector file was produced to map the collected data in a Geographic Information System (GIS) 137 
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(Tertulliani et al., 2011, Tertulliani et al., 2012). The resulting map is shown in Figure 1.  The 138 

damage distribution (see Figure 2) is mostly concentrated on damage grade D=3, while collapsed 139 

buildings (D=5) represent 4.4% of the surveyed buildings. 140 

 141 

Figure 1. Damage distribution of L’Aquila city centre. The polygons of surveyed buildings, with color 142 

representing the damage grade, are superimposed on a very high resolution panchromatic image acquired by 143 

the QuickBird satellite. 144 
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 145 

Figure 2: Frequency distribution of damage grades for L’Aquila city centre according to the INGV survey. 146 

2.3 Earth Observation data 147 

We carried out the present work using two VHR optical images taken from the QuickBird 148 

satellite. The image before the earthquake is dated September 4, 2006, while the post-seismic 149 

image was collected on April 8, 2009, only 2 days after the catastrophic event. Each acquisition 150 

is composed of a panchromatic (PAN) and a multispectral (MS) image. The latter is collected in 151 

four bands in the blue, green, red and near-infrared wavelength regions. Nominally, at nadir, the 152 

spatial resolution of the PAN image is 0.6 m, while the MS image has a 2.44 m resolution 153 

(DigitalGlobe 2014). In Table 1 the main characteristics of the images are reported. 154 

VHR Optical Dataset 

Date of Acquisition Acquisition Mode Looking Angle Resolution 

04/09/2006 PAN + MS 

-3.7° in- track 

-10.3° cross-track 

10.9° off-nadir 

0.6m PAN 

2.44m MS 

08/04/2009 PAN + MS 

2.8° in- track 

3.9° cross-track 

4.8° off-nadir 

0.6m PAN 

2.44m MS 
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Table 1. Summary of the optical VHR dataset from the QuickBird satellite 155 

3. Background and methodology  156 

To assess the feasibility of a damage product at the scale of single building from a pair of VHR 157 

optical data, we implemented a change detection approach that works at object scale. In the 158 

contest of the earthquake damage assessment, segmenting the pre-event image into objects 159 

corresponding to a building allows the change analysis to be focused on the objects of interest, 160 

avoiding false alarms due for example to vegetation changes and temporary objects (e.g., 161 

vehicles). In this work, the segmentation of the scene was carried out using a pre-existing 162 

building map provided as GIS layer, namely the “Carta Tecnica Regionale” (CTR) of the 163 

Abruzzo Region. This approach can be easily reproduced in other cases, as maps of urban areas 164 

are available in most towns, otherwise objects corresponding to buildings can be identified from 165 

pre-seismic images exploiting segmentation algorithms, as described for example in Chini et al. 166 

(2009). Within each building footprint (i.e., an image object) a number of features, potentially 167 

capable of detecting changes associated with the building collapse, were computed from pre- and 168 

post-seismic images, both panchromatic and multispectral. Different classification approaches 169 

were tested and compared. 170 

3.1 Image pre-processing steps  171 

Panchromatic images were orthorectified exploiting the Rational Polynomial Coefficients (RPC) 172 

provided with the data and a Digital Elevation Model (DEM) of the terrain obtained from a 173 

LiDAR overflight of the study area. Pan-sharpened pre- and post-event images were produced 174 

from PAN and MS imagery using the Gram-Schmidt Pan Sharpening method (Brower and 175 

Laben, 2000) implemented into the IDL/ENVI
©

 software. Furthermore, the latter data were 176 
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orthorectified exploiting the RPCs of PAN images and the LiDAR DEM according to the same 177 

procedure used for PAN data. 178 

A further registration between orthorectified images was required in order to achieve a better 179 

alignment of the images at street level and with the CTR map. Namely, a rigid shift of 0.6 meters 180 

in the North-South direction and of -4.8 meters in West-East direction was applied to the pre-181 

event image. As for the post-event image, a shift of -2.4 meters in the North-South direction and 182 

a shift of 7.8 meters toward the East were necessary. 183 

As the orthorectification was done with respect to the surface level (i.e. street level), in order to 184 

better superimpose the building footprints reported in the GIS layer to the actual image pixels 185 

associated to the roof we compensated the parallax error, i.e. the apparent displacement of 186 

building roofs with respect to their bases. The parallax displacement occurs along the sensor 187 

Line Of Sight, over a distance that depends on building height h and off-nadir view angle θ, 188 

according to the equation: 189 

          

Considering a Cartesian reference frame where the x axis is oriented towards the geographic 190 

East, the y axis towards the geographic North and the z axis along the vertical upward direction, 191 

the parallax displacement components along the x and y axes can be found as follows: 192 

             

             

where φ is the sensor azimuth measured clockwise from the North. Based on the building height 193 

reported in the CTR of Regione Abruzzo, building polygons were shifted, generating two layers 194 

matching pre-and post-event images, respectively (note that the off-nadir angle of the two images 195 

are different).  196 
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The results of this fine registration step can be appreciated in Figure 3. Figure 3(a) and Figure 197 

3(b) show respectively pre- and post-event PAN images orthorectified and co-registered. 198 

Building footprints shifted for compensating the parallax error are reported in yellow, while red 199 

dashed polygons represent buildings footprints in their original position. The improvement of the 200 

position of the polygons with respect to the roofs is particularly evident in the pre-event image 201 

(Figure 3(a)) that was collected with a greater off-nadir angle (see Table 1). This fine registration 202 

plays a significant role for a better computation of building features and detection of changes, as 203 

detailed in what follows. 204 

Before extracting change detection features, a histogram matching was performed to 205 

radiometrically compensate for the different season and illumination conditions of the pre- and 206 

post-seismic acquisitions. A linear transformation was applied to each band of the post-event 207 

image in order to get a data distribution with the same median and interquartile range of the 208 

corresponding pre-event data. We carried out this step considering only urban pixels that has 209 

been identified using the GIS polygons shifted for compensating parallax error, as described 210 

before.  211 

      212 

(a)                                                              (b) 213 
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Figure 3: Pre- (a) and post-event (b) PAN images with superimposed building footprints in their original 214 

position (red dashed polygons) and shifted for compensating the parallax error (yellow polygons). 215 

3.2 Change Detection Features 216 

Many different change parameters have been introduced in the literature to detect urban damage 217 

from optical data (Dong and Shan, 2013; Stramondo et al., 2006). In this work, we performed an 218 

extensive investigation with the objective of identifying the most suitable set for this application. 219 

In particular, we have considered a set of 13 features that can be grouped in four categories: 220 

standard change detection metrics, change indicators from information theory, features 221 

describing texture and colour changes (see Table 2). In the following, we briefly introduce each 222 

of them.  223 

Note that in a change detection procedure the features can be computed within a moving window 224 

(usually a square window with odd number of pixels) scanning the entire image, or within 225 

predefined regions recognized to be homogenous and pertaining to a given target (or object). The 226 

latter is generally referred to as the Object Based Image Analysis (OBIA) approach (Chen et al., 227 

2012; Chini et al. 2009; Chesnel et al., 2007; Rastiveis et al, 2013, Gusella et al., 2005). In this 228 

work, we adopted the second approach, with image segmentation based on the CRT map from 229 

Regione Abruzzo, as previously described. Table 2 provides the complete list of change 230 

detection features considered in the work, whilst their definition is illustrated in what follows. 231 

Group Name Description 

In
fo

rm
a
ti

o
n

 

th
eo

ry
 

fe
a

tu
re

s 

MIpan Mutual Information from PAN images 

KLDpan Kullback-Leibler Divergence from PAN images 

MIpsh Mutual Information from PSH images 

KLDpsh Kullback-Leibler Divergence from PSH images 

T
ex

t

u
re

 

fe
a
tu

re
s 

(f
ro

m
 

P
A

N
 

im
a
g

es
) 

Δcon Change in Contrast (Δcon=conpost - conpre) 

Δcor Change in Correlation (Δcor=corpost - corpre) 



13 

 

Δene Change in Energy (Δene=enepost - enepre) 

Δhom Change in Homogeneity (Δhom=hompost - hompre) 

Δent Change in Entropy (Δene=entpost - entpre) 
C

o
lo

u
r 

fe
a

tu
re

s 

(f
ro

m
 

P
S

H
 

im
a

g
es

) Δhue Change in Hue (Δhue=huepost - huepre) 

Δsat Change in saturation (Δsat=satpost - satpre) 

Δlum Value component difference (Δlum=lumpost - lumpre) 

standard change 

detection features 
Δint_pan 

Change in the intensity from PAN images 

(Δint_pan=int_panpost - int_panpre) 

Table 2. List of the change parameters investigated in this study 232 

Image Differencing 233 

The simplest and more common methods for detecting changes from multi-temporal satellite 234 

imagery are Image Differencing and Image Rationing. We considered the former, i.e. the 235 

difference of the two panchromatic images (pre- and post-event) computed within each object 236 

(i.e. the building footprints) after histogram matching.  237 

Kullback-Leibler Divergence (KL Divergence) 238 

The KL Divergence (Kullback and Leibler, 1951), also called Relative Entropy, is a measure of 239 

the difference between two probability density functions (pdf) and then it can be used for 240 

assessing the similarity of pixel intensity distributions of two objects.  241 

Given two n-dimensional random vectors X and Y with pdfs fX(x) and fY(x), respectively, the KL 242 

Divergence between the two distributions or, equivalently, the relative entropy of X with respect 243 

to Y, is given by: 244 

  245 

                    
     

     
    (1) 
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The KL Divergence is always non-negative, and equals zero only if fX(x) = fY(x), but it is not a 246 

true metric because it is non-symmetric. A symmetric version, called KL Distance (KLD), can be 247 

defined as: 248 

                              (2) 

For two multivariate normal distributions, with mean vectors µX, µY  ℝn
 and covariance 249 

matrices CX, CY  ℝnxn
, the KL-Distance, KLD(X, Y), is proven to be:   250 

         
 

 
      

            
      

 
 

 
         

   
                    

   
              

(3) 

which, in the case of two univariate Gaussian distributions with means µx, µY and variances σX
2
, 251 

σY
2
, simplifies to: 252 

 
          

 

 
 
  
 

  
  

  
 

  
   

 

 
 
       

 

  
   

       
 

  
     (4) 

We exploited equations (3) and (4) for extracting the KL Divergence from PSH and PAN 253 

images, respectively. 254 

Mutual information (MI)  255 

The Mutual Information is a commutative measure of the difference between the joint 256 

probability distribution fX,Y(x,y) and the marginal probability distribution fX(x) and fY(x), of the 257 

random variables X and Y. It measures how much knowing one of the two variables reduces the 258 

uncertainty about the other and it is defined as (Erten et al., 2012): 259 
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              (5) 

The MI between two multivariate Gaussian distributions with mean vectors µX, µYℝ
n
, 260 

covariance matrices CX, CY ℝnxn
 and cross-covariance matrix C, is given by: 261 

          
 

 
    

      

              
  (6) 

When two univariate Gaussian distributions with variances σX
2
, σY

2
, and covariance, σXY

2
 are 262 

considered, the following expression is obtained for the MI: 263 

 
         

 

 
    

  
   

     
 

  
   

    
 

 
         

   (7) 

where ρXY  is the correlation coefficient. Equation (6) and Equation (7) were used to evaluate the 264 

MI from PSH and PAN images, respectively. It can be noted that, in the univariate case (Error! 265 

Reference source not found.(7)), the MI reduces to a function of the correlation coefficient. 266 

Change detection metrics based on textural characteristics  267 

The exploitation of the changes in the textural properties of the image of the buildings was also 268 

investigated. Indeed, a difference in the spatial arrangement of pixel intensity is expected as a 269 

consequence of a collapse. In particular, features based on the second order statistics were 270 

considered, following the approach proposed by Haralick (Haralick et al., 1973). Namely, the 271 

grey level co-occurrence matrix (GLCM) was computed first. The GLCM described in the 272 

original Haralick paper is a symmetrical matrix whose element G(i,j) counts how many times 273 

two pixels with grey levels i and j occur in the image separated by a given distance d along a 274 

given direction θ. Here the GLCM was computed at object scale (Bignami et al., 2011), i.e., 275 

considering pixels within each building footprint. Considering four angular directions (0°, 45°, 276 
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90°, 135°) and a fixed distance d=1, four distinct GLCMs were computed and afterward summed 277 

for obtaining a rotational invariant GLCM. From the resulting GLCM, five textural features Tf 278 

were derived, that is Contrast, Correlation, Energy, Homogeneity, and Entropy (Haralick et al., 279 

1973). 280 

Each Tf was extracted from pre- and post-event images, obtaining Tfpre and Tfpost, from which the 281 

change indicator ∆Tf = Tfpost - Tfpre was computed.  282 

Metrics describing changes in the colour space 283 

As additional source of information for discriminating between damaged and undamaged 284 

buildings, changes in the Hue (H), Saturation (S), Value (V) colour space were taken into 285 

account, considering for instance that rubbles are expected to have low saturation as opposed to 286 

changes due to building restoration (e.g., painting or tile roof restoration). The RGB value of a 287 

pixel was first transformed into the HSV space using a method suggested in (Smith, 1978). For 288 

each HSV colour channel, the mean value within the building footprint was calculated. The 289 

difference between the mean values of each HSV component computed respectively from the 290 

post- and pre-event image were then evaluated in order to obtain the change metric. 291 

3.3 Damage classification approaches  292 

In order to generate a damage classification product to be released to the final user, it is 293 

important to rely on a damage scale that is recognized as a standard. To this aim, we considered 294 

the EMS-98 scale (Grünthal, 1998) and assessed the potential to discriminate between collapsed 295 

or heavy damaged (D =5 in the EMS-98 scale) buildings and less damaged or undamaged 296 

buildings (D < 5 in the EMS98 scale). The investigation was carried out considering two 297 

supervised learning algorithms, namely, the Bayesian Maximum A Posteriori (MAP) criterion 298 

and the Support Vector Machine (SVM). Ours experiments were carried out in Matlab
© 

299 
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environment, using the LibSVM package (Chang and Lin, 2011) to implement the SVM 300 

algorithm. Training and test sets were provided by the INGV ground survey. Since the dataset is 301 

very unbalanced (the number of instances for the damaged buildings class is much lower than the 302 

number of samples belonging to the class of buildings with damage grade less than 5), it was not 303 

possible to split data into training and test samples. Thus, we exploited a k-fold cross-validation 304 

(CV) procedure to assess the classification performances. The dataset was split into k=10 disjoint 305 

subsets of approximately equal size, preserving the original class proportions: in turn, each of the 306 

k subsets was used for testing the classifier trained on the remaining k-1 subsets. For each 307 

iteration, we derived the confusion matrix (CM) referred to the current test set and finally, by 308 

summing up all the k CMs, we generated a global CM to assess the classification performances 309 

on the whole dataset. Classification accuracy measures have to be considered with care in case of 310 

unbalanced sets and just one parameter could be not enough for assessing the classification 311 

results. Here, several parameters were derived: overall accuracy, sensitivity, precision, and 312 

Cohen’s Kappa (Congalton and Green, 1999).  313 

Non parametric MAP classification  314 

Given the vector of the observed change features x = {x1, x2, ..., xd}, following the 315 

implementation of the Bayesian MAP criterion, we assign the corresponding building to the class 316 

yc (c=1,2) with the highest a-posteriori probability P(yc | x).  317 

We estimate the posterior probabilities assuming that both classes are equally likely a-priori. As 318 

for the class-conditional pdfs, p(x|yc), also known as class likelihood functions, they are 319 

estimated from the training set through the non-parametric approach known as Parzen window 320 

method, assuming, moreover, the class-conditional independence of all the features, i.e., the 321 

Naïve hypothesis. In detail, given a set of nc training samples from class c, X
(c) 

 = { x1,x2, ..., xnc},  322 
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where xi ℝd 
, i = 1,…,nc, and considering a Gaussian kernel, the Parzen window method 323 

estimates the distribution p(x|yc) by the following (Parzen, 1962): 324 

 

                    
 

       
      

 

 
 
      

   

  
 

 

 

  

   

 

   

 

   

 (8) 

where Xij
(c) 

is the i-th observation of the j-th feature from the c-th class, and h is the so called 325 

bandwidth parameter or kernel width. Equation (8) shows that, for each feature, the pdf of the 326 

data given the class, p(xj|yc), is estimated as sum of Gaussian kernel functions placed on each 327 

training data point. 328 

Support Vector Machines 329 

A Support Vector Machine or SVM (Cortes and Vapnik, 1995; Vapnik, 1999) is a machine 330 

learning algorithm that, conceptually, solves a binary classification problem mapping input data 331 

in a higher dimensional feature space. In that space input data are labeled based on which side of 332 

an optimal separating hyperplane, they fall. The hyperplane is constructed during the training 333 

phase.  334 

Supposing that the training set consists of N samples (x1, y1), ..., (xN, yN), where xi ℝd 
is the d-335 

dimensional feature vector representing the i-th training sample, and yi {-1;1} is the class label 336 

associated with xi. Given a vector function Φ: ℝd 
→ ℝH

 which maps the d-dimensional input 337 

vector x into an H-dimensional (with H>d) feature space, a SVM constructs the best separating 338 

hyperplane, w
*
 ∙ Φ(x) + b

*
= 0, solving the following constrained optimization problem: 339 

    
     

 
 

 
        

 

   

 (9) 
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where the slack variables ξi and the regularization parameter C are introduced to deal with non-340 

linearly separable training data. 341 

When the training samples are linearly separable in the feature space, ξi = 0   i =1,..,N. In this 342 

case the SVM algorithm constructs the so called maximum margin hyperplane which is the 343 

hyperplane that separates the training data without errors (i.e. the one satisfying the constraints yi 344 

(w Φ(xi)+ b) ≥1,    i =1,..,N) and maximizes the distance between itself and the closest training 345 

vectors of each class. Such a distance, called margin, is equals to 2/(w∙w) and it is maximized by 346 

minimizing (w∙w)/2. The greater is the margin, the greater is the SVM generalization ability. If 347 

training samples cannot be separated without error, the parameters (w, b) that minimize the 348 

functional in the (9) under the constraints defined by (10), determine the hyperplane that 349 

minimize the training error, measured through the sum of the slack variables ξ, and separates the 350 

rest of the elements with the maximum margin. For each training sample lying on the wrong side 351 

of the decision boundary (i.e. those with associated a slack variable ξi >1) but also for the 352 

training samples falling within the margin on the correct side of the decision boundary (i.e the 353 

samples for which 0 <ξi≤1) a penalty is introduced, increasing the objective function by Cξi. A 354 

too small C value, determines many misclassifications. Conversely, a too large C value may lead 355 

to overfitting problems. The user parameter C controls the tradeoff between the two goals of the 356 

optimization problem. 357 

In the standard SVM algorithm introduced so far, the regularization parameter C equally 358 

penalizes misclassification of positive and negative samples. When faced with an unbalanced 359 

dataset where the number of negative instances is significantly higher than that of positive ones, 360 

SVMs that follow the formulation of equations (9) - (10) tend to produce a decision boundary 361 
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severely skewed towards the minority class  (Akbani et al., 2004;  Batuwita, and Palade, 2013). 362 

To cope with this issue, Veropoulos et al. (1999) proposed an approach that uses different 363 

misclassification costs, C
+
 and C

-
, for positive and negative classes, with C

+
> C

-
. In this method, 364 

the SVM optimization problem defined by equations (9) - (10) is modified by replacing the 365 

penalty term,     
 
   , with the sum of two terms, one for each class: 366 
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  (12) 

The constrained minimization problem defined by the equations (11) and (12), is usually solved 367 

considering its dual-problem counterpart: 368 
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  (14) 

The variables αi represent the Lagrange multipliers corresponding to the constraints defined by 369 

(12). Training vectors for which αi> 0 are called support vectors. They are the only ones that 370 

determine the final decision function. In other words, removing a non-support vector from the 371 

training set does not change the solution found by the SVM algorithm. K(xi, xj) is a kernel 372 

function, K: ℝd
×

 ℝd
 → ℝ, returning the inner product K(xi, xj) = Φ(xi)∙Φ(xj) between the images 373 

of two data points xi, xj in the high-dimensional feature space induced by Φ. It allows comparing 374 

two patterns Φ(xi), Φ(xj) in the high dimensional feature space, without explicitly mapping the 375 
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data to that space (Scholkopf, 2001). Valid kernel functions are those satisfying the Mercer’s 376 

theorem (Mercer, 1909). For this work we chose the Radial Basis Function (RBF) kernel 377 

  x  x                 
 
 , were γ is a non-negative parameter that define the kernel width. 378 

Given the solution α* of the dual problem, the class label of a test sample xt is obtained 379 

according the following decision function:  380 

                       
           

 

  

   

             
   (15) 

where it can be noted that the summation is limited to the Ns support vector. 381 

Tuning of the classifier parameters 382 

Both the selected classification algorithms have parameters that need to be tuned. In order to 383 

estimate the class-conditional pdfs, the kernel widths of the Parzen window method have to be 384 

specified. In this study, we used a single bandwidth h for each of the d elements of the feature 385 

vector x (hj=h, for all j). To make input data more spherical and justify the use of a common 386 

bandwidth for each dimension, data were preliminarily standardized to have mean of zero and 387 

standard deviation of one (Ghosh et al., 2006). Many different techniques are available in the 388 

literature for choosing the optimal bandwidth from the data. A review of these methods can be 389 

found for example in Chiu (1996). One of the most popular methods for selecting the kernel 390 

width is the Silverman’s rule (Zhang et al., 2006), which assumes that the true distribution is 391 

normal. In this work, we used such rule for initializing our algorithm that empirically search for 392 

the optimal kernel width, as detailed in the following.  393 

For the SVM algorithm, the hyperparameters to be tuned are the regularization parameters of the 394 

positive and negative classes (C
+
 and C

−
, respectively) and the parameter γ of the RBF kernel 395 
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which defines its width. We expressed the misclassification cost C
+
 of the positive class, which 396 

is the minority class we are interesting in, as a function of the misclassification cost C
−
 of the 397 

negative class, through the relation C
+
=wC

-
, were w is a weight greater than 1. Then, the 398 

parameters we tuned were C
-
, w and γ. 399 

In order to optimize the parameters φ of the classifiers, i.e. the kernel width h for the MAP 400 

classifier (          ) and the parameters C
-
, w and γ for SVM (         

      ) we ran a 401 

repeated k-fold CV, with k = 10, each repetition resulting in a different Cohen’s Kappa of the 402 

classifier. Namely, for a fixed classifier parameter vector φ, the training and the validation are 403 

performed k times until all data are used. At the end of the kth iteration of the CV, the Cohen’s 404 

Kappa, obtained with the current parameters vector φ, is derived from the global CM. It is 405 

therefore a function of φ, i.e., K= -f(φ), which is considered as an objective function to be 406 

minimized. Then, the classifier parameters are updated iteratively, i.e., for each repetition of the 407 

CV we test a different value of the classifier parameters selected by a simulated annealing 408 

algorithm, implemented through a built-in Matlab© function which aimed to find the minimum 409 

value of f(φ) (i.e., maximum Cohen’s Kappa). 410 

In more details, in order to initialise the kernel width of the Parzen window method, we set a 411 

value h0 computed according the Silveman rule (Zhang et al., 2006). Then we searched for its 412 

optimal value in the range [h0/10, 10h0]. The hyperparameter γ of SVM was initialized to the 413 

LibSVM default value of γ0 = 1/d, where d is the dimension of the feature vector used as input 414 

(Chang and Lin, 2011), and it was tuned in the range [10
-3

, 2]. The regularization parameter C
-
 415 

and the weight w were varied in the ranges [1, 10] and [2, 50], respectively, starting from the 416 

initial settings C0
-
 = 1 and w0 = n−/ n+, where n+ and n- are the cardinalities of the positive and 417 

negative classes. The initial setting chosen for w is a heuristic value commonly used to balance 418 
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C+ and C−, so that the potential total cost of the false positives equals the potential total cost of 419 

the false negatives (Morik et al., 1999).  420 

Note that the additive inverse of Cohen’s Kappa f(φ), computed after the k=10 interactions of the 421 

k-folded CV, was chosen as objective function of the optimization algorithm. We preferred the 422 

Cohen’s Kappa to other classification performance measures, such as the overall accuracy, 423 

because the latter is inappropriate when dealing with an unbalanced dataset. If the dataset is 424 

highly unbalanced, the classification algorithm can achieve high overall accuracy simply 425 

assigning all the samples to the majority class. Consequently, searching for the classifier 426 

parameters giving the best cross-validated performances in terms of overall accuracy can lead to 427 

a classifier strongly biased towards the majority class. The Cohen’s Kappa considers also the off-428 

diagonal elements of the CM, thus providing a more reliable estimate of the classifier 429 

performances.  430 

4. Results and discussion 431 

4.1 Visual interpretation benchmark  432 

In order to have a reference when assessing the performance of an automatic algorithm in 433 

detecting damage, a photointerpretation of pre- and post- event Quickbird images was performed 434 

building by building. The comparison between photointerpretation results and INGV ground 435 

truth is reported in Table 3, which provides a sort of benchmark against which automatic 436 

algorithms can be judged.  437 

 

Ground Truth data (INGV)  

D = 5 D = 4 D = 3 D <=2 total 

Visual damaged 45 46 4 0 95 
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inspection undamaged 29 221 781 541 1572 

 total 74 267 785 541 1667 

Table 3: Confusion matrix of the photointerpretation of QuickBird data with respect to the INGV ground 438 

survey. 439 

A missed detection error of 39.2% and 82.8% was found for buildings that, according the INGV 440 

ground survey, sustained a damage of grade 5 and 4, respectively. Only 4 out of 785 buildings 441 

classified as damage grade 3 were recognized as damaged by visual inspection. This result 442 

demonstrates that only the detection of the damage grade 5 is feasible using remote sensing data.  443 

A few samples of the appearance of buildings and the problems that can be encountered when an 444 

automatic algorithm is used for damage detection are shown in Figure 4. This figure compares 445 

pre- and post- event QuickBird images for some buildings classified as damage grade 5 by the 446 

INGV ground survey. Assuming that the ground survey is telling the truth, the building severe 447 

damage in Figure 4(a) and Figure 4(b) are easily detectable by visual inspection, whereas the 448 

same is not true for the building in Figure 4(c) that appears unchanged. We will discuss possible 449 

reasons for that later on in the paper. 450 
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 (a) (b) (c) 

Figure 4: Comparison of the pre- (upper panels) and post- event (lower panels) QuickBird images for some 451 

buildings classified as damage grade 5 by the INGV ground survey 452 

4.2 Change detection feature selection and classification results 453 

Before attempting the final damage classification, a careful selection of the considered features 454 

was carried out. This is important to avoid using useless features (noisy or correlated with others) 455 

in the classification, but also to understand the physical mechanisms that make damage 456 

detectable by an optical sensor. We searched for the most relevant subsets of features according 457 

to a wrapper approach, which consists in ranking subset of features based on the classification 458 

results they achieve (Guyon and Elisseeff, 2003).  459 

We evaluated the effect on the classifier performances by varying the number and the 460 

combination of the features used as input. For each set of d candidate features chosen in an 461 

exhaustive way among the 13 features introduced in section 3.2, we considered the classification 462 

results obtained after tuning the classifier parameters according to the method sketched in the 463 

previous section, and then we selected the combination that provided the best results in terms of 464 

the Cohen’s Kappa. In particular, due to the uncertainty in the Cohen’s Kappa estimation from a 465 

finite size sample set, for each group of d features, we selected those combinations giving a 466 

Cohen’s Kappa within the range [maxKappa(d), maxKappa(d) - 0.02], where maxKappa(d) is 467 
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the maximum Cohen’s Kappa achieved with d features. We performed this analysis 468 

independently for MAP and SVM classifiers. Results for groups of features of size from 1 to 5 469 

are summarized in Table 4 and Table 5, which refer respectively to MAP and SVM classifiers. 470 

These tables consist of five columns indicating the number of features, and 13 rows, one for each 471 

of the considered change parameters. Coloured cells in each sub-column represent selected 472 

features. The first sub-column of each group reports the combination of features giving the best 473 

performance, i.e. the combination of d features for which the Cohen’s Kappa was equal to 474 

maxKappa(d).  475 

When a single feature was considered as input of the change detection algorithm, change in the 476 

contrast provided the best results, either with SVM or MAP classifier. By looking at Table 477 

4Table 4, it can be noticed that the best results of the MAP classifier were all achieved with 478 

feature sets containing change in the contrast, which is the most selected feature also in the case 479 

of SVM (see Table 4). Indeed, when a building collapses, the contrast generally increases due to 480 

presence within the building footprint of pixels with very different grey levels close each other. 481 

Consistent performances were also achieved including changes in Homogeneity and Entropy, 482 

which are frequently included in the optimal subsets. Then, changes in textural properties show 483 

themselves as the most powerful features for detecting changes due to the building damage. 484 

Being inversely but strongly correlated, Homogeneity and Entropy are interchangeable. In fact, 485 

either using SVM or MAP classifier, these two features are selected reciprocally.  486 

By comparing Table 4 and Table 5, it can be seen that there are some features that demonstrated 487 

their usefulness depending on the classification approach. The Mutual Information, for example, 488 

being very sensitive to residual registration errors between the two images, generally determines 489 

a lot of false alarms when used as input to the MAP classifier, while it provides satisfactory 490 
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results if exploited, in combination with other features, as input to SVMs. In combination with 491 

other features, high values of such parameter can help avoiding false positive due to changes not 492 

attributable to the earthquake but associated, for example, to a building restoration intervened in 493 

the timeframe between the two image acquisitions. It can be noted that, in the case of the MAP 494 

classifier, feature combinations providing the best results in terms of Cohen’s Kappa often 495 

include change in the colour saturation, which conversely does not appear within the features 496 

subset for which SVM provided the best results. This is probably because the Mutual 497 

Information from PSH images (i.e., multispectral data), which is one of the most frequently 498 

selected features in the case of SVM, brings colour signature as well. 499 

 500 

Table 4: Exhaustive feature selection based on Cohen’s Kappa for different feature vector size using MAP 501 

classifier. 502 
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 503 

Table 5: Exhaustive feature selection based on Cohen’s Kappa for different feature vector size using SVM. 504 

Figure 5(a) reports the Cohen’s Kappa as a function of the features number for both SVM and 505 

MAP classifier, considering the best subset for each group of d features. In Figure 5(b) and 506 

Figure 5(c), classification approaches are compared in term of sensitivity and precision, 507 

respectively. In the context of damage detection, the sensitivity represents the percentage of 508 

building to which a damage grade 5 was assigned from both ground survey and classification 509 

algorithm. As for the precision, it represents the percentage of buildings classified as damage 510 

grade 5 from satellite data that have actually sustained a damage of grade 5, according to the 511 

ground survey. 512 

Looking at Figure 5(a), it can be seen that increasing the number of features improves the 513 

classification Cohen’s Kappa, until reaching the highest value with a subset of 5 features, for 514 

both the considered classification approaches. Then, the performances in term of Cohen’s Kappa 515 

tend to decrease as the input space dimensionality increases. From Figure 5(b) and Figure 5(c), it 516 

can be noted that increasing the number of features from 1 to 5 does not improve the sensitivity 517 

of the algorithms to the damage detection, but it increases its precision, i.e. the rate of buildings 518 
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classified as damage grade 5 that are real damages (i.e., decrease of false alarms).  519 

 520 

 (a) 

(b) 

 (c) 
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Figure 5: Classification performances of SVM and MAP classifier as a function of the number of features 521 

used as input: (a) Cohen’s Kappa (b); Sensitivity; (c) Precision. 522 

Figure 6 shows that the results we obtained using SVM outperform those achieved by the MAP 523 

classifier. With respect to the MAP classification approach, SVMs are able to provide 524 

classifications characterized by a lower rate of false alarms. This could be due to the complexity 525 

of the input data that a SVM is more able to recover since it works in a higher dimensional 526 

feature space. Besides providing better performance in term of precision, in most cases SVM 527 

correctly recognizes a greater number of building with damage grade 5. However, performances 528 

in term of sensitivity are not so markedly distinct and both algorithms often fail in detecting a 529 

building with damage grade 5 according to the ground survey, mainly because, as pointed out in 530 

section 4.1, about 40% of these damages are not detectable even by visual inspection.  531 

The confusion matrix shown in Table 6 summarizes the results of the MAP classification 532 

approach with the subset of five features that achieved the highest Cohen’s Kappa. Using 533 

changes in Contrast, Energy, Entropy, Hue and Saturation the MAP classification algorithm 534 

exhibits an overall accuracy of 96.2% and a Cohen’s Kappa of 45.6%.  535 

 536 

    INGV 
 

        

    (D=5) (D<5) 
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(D=5) 29 19 48 
 

60.4% precision 

(D<5) 45 1574 1619 
 

97.2% 
Negative Predictive 

Value 

  

74 1593 1667 
 

overall Cohen’s  

    sensitivity specificity 

  

accuracy Kappa  

 

39.2% 98.8% 
  

96.2% 45.6%  

 537 

Table 6: Confusion Matrix obtained using the MAP classifier with the optimal subset of features (changes in 538 

Contrast, Energy, Entropy, Hue and Saturation). 539 
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We correctly detect 39.2% of buildings with damage grade D=5, generating 19 false positives. 540 

The result in terms of false alarms can be considered satisfactory, especially if it is considered 541 

that 5 false positives are determined by buildings that suffered a damage D<5 according to the 542 

INGV ground survey, but with an apparent heavy damage according to image 543 

photointerpretation, as shown in Figure 6(a) and Figure 6(b). In fact, the figures show two 544 

buildings classified respectively as damage grade 4 and 3 in the INGV survey, which were 545 

detected as heavily damaged by the MAP classifier. They actually look very differently in the 546 

post-seismic image, so that they were likely misclassified during the survey. This poses some 547 

questions about the definition of damage grade D=5, the capability of correctly evaluating it 548 

during the field work, and the reliability of using a ground survey as an absolute reference for 549 

classification accuracy assessment.  550 
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Figure 6: Examples of false positives generated by the MAP classifier. Upper panels: pre-event Quickbird 551 

images. Lower panels: post-event Quickbird images. Polygons delineate buildings that have sustained a 552 

damage of grade 4 (figure (a)) and 3 (figure (b)) according the INGV ground truth.   553 

As far as the low sensitivity to the damage is concerned (around 40% according to Figure 5b), it 554 

is worth pointing out that our algorithm correctly recognized 60% of the buildings with damage 555 

level 5 that we were able to identify by visual inspection of the Quickbird images. In other word, 556 

most of missed detection of damage 5 according to INGV were not detectable even by visual 557 

interpretation of the images.  558 

As discussed in section 4.1, the class of the buildings to which a damage grade 5 was assigned is 559 

very heterogeneous. In some cases, the damage sustained by the building roof, although 560 

detectable by a human image interpreter, was not so extensive but rather it was comparable with 561 

lower damage grades, thus preventing its automatic identification without generating a large 562 

amount of false alarms. An example is reported in Figure 7(a), where the roof is almost intact, 563 

except for the portion within the yellow ellipse. There are, in addition, some buildings suffering a 564 

first floor collapse while retaining an intact roof (i.e., suffering a pancake type of collapse), such 565 

as that shown in Figure 7(b). In these cases, buildings were wrongly classified as belonging to 566 

the class of damage D<5 and the only change in the image is the presence of dust and debris 567 

around the building footprint. 568 
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 (a) (b) 

Figure 7: Examples of false negatives generated by the MAP classifier. Upper panels: pre-event Quickbird 569 

images. Lower panels: post-event Quickbird images. (a) The roof is almost completely intact, except for the 570 

portion within the yellow ellipse. (b) Due to the pancake type of collapse, the only change is the presence of 571 

dust and debris around the building footprint. 572 

Using SVM we obtained better results, as shown in the confusion matrix reported in Table 7, 573 

which refers to the SVM outcomes when Mutual Information from PSH images, changes in 574 

Energy, Entropy, Hue and Intensity from PAN images were used as input. Sensitivity and 575 

precision increase to 41.9% and 75.6%, respectively. We correctly classify 31 out of 74 buildings 576 

with damage grade 5, identifying about 68% of those detected by visual inspection. Even in this 577 

case, some of the false alarms (3 out of 10) are due to buildings recognized as damaged by 578 

photointerpretation.  579 

 580 

    INGV           

    (D=5) (D<5)     
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(D=5) 31 10 41 
 

75.6% precision 

(D<5) 43 1583 1619 
 

97.4% 
Negative Predictive 

Value 

    74 1593 1667 
 

overall Cohen’s  

    sensitivity specificity 
  

accuracy Kappa  

 
41.9% 99.4% 

  

96,8% 52.4%  
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Table 7: Confusion Matrix obtained using SVM with the optimal subset of features (Mutual Information 581 

from PSH images, changes in Energy, Entropy and Hue, change in Intensity from PAN images). 582 

The classification performances against the INGV ground survey demonstrates the challenge of 583 

detecting earthquake damage at single building scale from satellite data. However, it is very 584 

important to notice that the classification results assessed against the INGV ground truth (overall 585 

accuracy=96.2%, Cohen’s Kappa=45.6% using the MAP classifier; overall accuracy=96.8%, 586 

Cohen’s Kappa=52.4% using SVM) are quite similar and even better than the direct comparison 587 

between the INGV surveys and the one made available from the Italian Department of Civil 588 

Protection (DPC). The DPC survey was carried out during the six months following the seismic 589 

event with the objective of quantifying the grade of damage and assessing the building usability. 590 

Information about typological, damage and usability characteristics of residential buildings were 591 

collected using the AeDES forms (Agibilità e Danno nell'Emergenza Sismica) (Baggio et al., 592 

2007). Building were inspected internally (where possible) and externally and a damage grade 593 

according to EMS-98 was associated to each structural element, namely, vertical structures, 594 

floor, stairs, roof, infills and partitions. Monumental and historical edifices were surveyed in the 595 

frame of the Safeguard of Cultural Heritage from Natural Disasters action, independently on the 596 

acquisitions of the AeDES forms, collecting similar but not identical information. Starting from 597 

these data the Istituto per le Tecnologie della Costruzione (ITC) of the Italian National Research 598 

Council (CNR) developed a georeferenced database reporting, for each surveyed building, an 599 

overall damage indicator and a vulnerability class that were calculated following the EMS-98 600 

scale. 601 

The comparison we performed between the damage maps resulting from the INGV and DPC 602 

ground surveys  (Pierdicca et al., under review) showed and overall agreement of 92.7% and a 603 

Cohen’s Kappa of 33.6%. Such result suggest that the damage map obtained using satellite data 604 
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over the entire historical town of L’Aquila shows a mismatch with respect to the INGV ground 605 

truth comparable to the mismatch of the two ground surveys. It demonstrates the undoubted 606 

value of remote sensing, at least for a rapid response, when compared to the highly costly and 607 

time-consuming ground surveys. 608 

 609 

5. Conclusions 610 

In this paper we have investigated the capability of mapping urban damage due to an earthquake 611 

at the scale of individual buildings using a pair (i.e., pre- and post-event) of Very High 612 

Resolution satellite optical images. The case study considered in this research was the earthquake 613 

that hit L’Aquila historical town in 1996. The automatic detection of collapsed buildings was 614 

compared to the ground survey carried out by the Istituto Nazionale di Geofisica e Vulcanologia 615 

just after the seism, referring to the standard European Macroseismic Scale 1998 (EMS-98) and 616 

considering the whole historical town. Thus, the experiment represents an almost unique 617 

example of an extensive validation of building collapse mapping from space in quite challenging 618 

conditions (i.e., dense urbanization, historical town). Among different features extracted from the 619 

image at object scale (i.e., within the footprint of each building), the change of textural features 620 

and features identifying change in colour were found as the most effective. The Support Vector 621 

Machine supervised classification revealed itself to outperform the Bayesian classifier based on a 622 

nonparametric Parzen window approach. In particular, SVM resulted in a fewer number of false 623 

alarms. The overall classification performances where not bad (overall accuracy=96.8%, 624 

Cohen’s Kappa=52.4%). However, a limited sensitivity was observed, in many cases due to the 625 

absence of appreciable changes in the post-seismic image, not detectable even by a 626 

photointerpreter. False alarms were in some cases related to apparent changes in the post-seismic 627 
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images that surprisedly did not correspond to a collapse label in the ground survey. The work 628 

demonstrates the challenge of damage assessment after an earthquake, a task where satellite 629 

remote sensing revealed itself not exhaustive, but anyhow capable of providing an effective 630 

prompt and cheap support to the disaster management institutions.     631 
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