The electrical signature of rock samples exposed to hydrostatic and triaxial pressures

Stephanie Heikamp and Georg Nover

Mineralogical Institute, University Bonn, Germany

Abstract
The electrical signature of sedimentary (carbonate) and crystalline rock samples was studied in hydrostatic and triaxial pressure experiments up to 300 MPa. The aim was to establish a relation between an electrical signal stimulated by an external pressure acting on the sample and the mechanical stability of the rock. Natural open fractures tend to be closed under hydrostatic pressure conditions, whereas in triaxial pressure experiments new fractures are generated. These contrary processes of either decrease or increase in crack density and geometry, cause a decrease or increase in the inner surface of the sample. Such pressure induced variations in pore geometry were investigated by an interpretation and modelling of the frequency dependence of the complex electrical conductivity. In a series of hydrostatic pressure experiments crack-closure was found in the electrical signature by a decrease of the model capacitor C being related to crack geometry. This capacitor increases in the triaxial experiments where new fractures were formed.

Key words electrical impedance spectroscopy – fracturing – carbonate – amphibolite – pressure

1. Introduction

The electrical conductivity of crustal rocks covers more than 10 orders in magnitude. Two principle processes must be separated, electrolytic conduction and electronic conduction. If electrolytic conduction takes place in a saline pore fluid (ions or water dipoles) than pore geometry, permeability, tortuosity and porosity are the most important petrophysical parameters controlling the electrical bulk conductivity. Poor in conductivity are generally low porous and low permeable crystalline rocks like granites, gneisses or amphibolites. They range in conductivity from about $10^{-15}$ to $10^{-2}$ S/m depending on the degree of saturation of the pores and the conductivity of the electrolyte. The highest conductivities were detected in ore minerals or in those rocks where an interconnected network of highly conducting phases like graphite or ore minerals can increase the bulk conductivity up to a few S/m (Glover and Vine, 1992; Duba et al., 1994; Nover et al., 1998).

If we focus on electrolytic conduction in fluid saturated rocks, then the Archie equation relates bulk conductivity and porosity

$$F = 1/\Phi^{n}$$

with $F$ = formation factor = $\rho_{f}/\rho_{w}$ = bulk resistivity/electrolyte resistivity, $\Phi$ = porosity and $n$ the cementation exponent. The pressure dependence of the bulk conductivity was considered in an extended version of the Archie equation by introducing an additional exponent describing the reduction in porosity and the increase of the cementation exponent at elevat-
2. Experimental

Carbonate rock samples from surface outcrops, oil drillings and garnet-amphibolites from the German continental deep drilling project (KTB) were chosen for this study. The petrophysical parameters porosity, permeability, inner BET surface, and complex electrical conductivity were measured on cylindrical plug samples having dimension of 30 mm in diameter and about 30 mm height. Porosities were determined using the Archimedean method, mercury porosimetry and the BET method as well.

Permeabilities (and their pressure dependence) were measured in an autoclave that allowed an increase of the confining gas-pressures up to 300 MPa. A pressure transient technique was used to calculate the permeability. The pressure gradient across the sample was fixed at 5 MPa. The time required for pressure compensation was used to calculate the permeability $k$ which is defined as

$$q = -kA \frac{dP}{dx}$$

where $q$ = flow rate, volume of gas per unit in time, $k$ = permeability, $A$ = area, $\eta$ = viscosity, $dP/dx$ = pressure gradient (experimental details can be found in Nover et al., 1995, 1996).

The electrical conductivity measurements were performed in an autoclave that allowed the independent adjustment of confining and uniaxial pressure. Confining pressures could be increased up to 350 MPa, the uniaxial load up to 800 MPa. The dispersion of the electrical conductivity was measured on fluid saturated specimens using a NaCl solution of 0.1 in molarity. Ohm's law relates conductivity $\sigma$ of a material, current density $J$ and stimulating electric field $E$

$$J = \sigma E.$$  

The electrical charge transport in fluid saturated rock samples comprises both, ohmic conductivity and diffusion controlled processes. Consequently the conductivity becomes a complex
quantity

\[ \sigma'' = \sigma' + \sigma'' \]

Measurements of the real \( \sigma' \) and imaginary part \( \sigma'' \) of the conductivity \( \sigma \) were performed in the frequency range 1 kHz up to MHz. Thus pressure induced variations in pore geometry could be interpreted in terms of changes in dielectric properties. Experimental details can be found in Nover et al. (1995, 1998, 2000).

3. Results and discussion

3.1. Petrophysical properties

Though a huge number of samples were measured, the results of only two samples will be presented in more detail in this study. The samples selected (marble, amphibolite) fitted to the following criteria: comparable in grain size, permeability and porosity. The amphibolite (KTB) was fine grained and dense with only minor occurrence of open fissures which were caused by pressure and temperature release when the sample was brought up to the surface. Porosities are less than 3% vol for both samples and permeabilities range from 1 \( \mu \)D to less than 10 nano-Darcy (fig. 1) depending on the orientation of the sample (amphibolite). In general KTB samples exhibit a significant anisotropy in crack orientation and thus in the permeability. A power fit approximately fits the expression \[ \log(k) = -1.5 \log(p) + 5.6 \] for the pressure dependence of permeabilities in radial direction, while \[ \log(k) = -2.6 \log(p) + 4.7 \] fits KTB data in direction of the borehole axis. Permeabilities in radial (in regard to the borehole axis) orientation generally are two orders in magnitude higher than in direction of the borehole axis. The progressive closure of microcracks results in a pronounced permeability decrease at low confining pressures (up to about 80 MPa), while at pressures above 100 MPa the pressure/permeability relation \( (p/k) \) tends to be more linear reflecting the closure of texture related fractures (Freund and Nover, 1995; Nover et al., 1998). This closure of fractures as detected by the permeability measurements correlates with the results obtained from acoustic measurements.

Fig. 1. Pressure dependence of the permeability of carbonate and crystalline rock samples. The permeability was measured using a pressure transient technique with a pressure gradient of 5 MPa across the sample. The transport medium was Argon-gas. The confining (hydrostatic) pressure could be increased up to 300 MPa.

(Dürrast and Siegesmund, 1999) where a significant increase in the \( V_r \) and \( V_s \), wave velocities were measured in the low pressure range. At pressures above 150 MPa intrinsic textural properties dominate the velocity increase.

3.2. Complex electrical conductivity

Two kinds of pressure experiments were performed, hydrostatic and triaxial pressure tests.

3.2.1. Hydrostatic pressure experiment

Results of hydrostatic pressure experiments are already published (Nover et al., 2000). Here we will present only a brief summary of important features as required for the understanding of the triaxial pressure experiments. The hydrostatic experiments exhibit the typical increase of the bulk resistivity as a function of pressure which is caused by the progressive closure of
fractures (fig. 2). First fractures having a high aspect ratio are closed, then at higher pressures the intrinsic pore volume is reduced. Consequently the inner surface, that acts in an electrical sense as a capacitor, reduces its value and thus causes a variation of the complex electrical response of the sample. The refined model parameters and especially the capacity that is directly related to variations of the inner surface are decreased by up to two orders of magnitude. A qualitative correlation with BET data of the inner surface improved this finding. For comparison we have included in fig. 2 the results of a triaxial pressure experiment which was performed on an identical marble sample. In this kind of experiment the typical decrease in bulk-resistivity was measured.

3.2.2. Triaxial pressure experiments

Figure 3 displays the results of triaxial pressure tests that were performed until failure of the sample. Data are presented as Cole-Cole diagrams where the real part of the impedance ($Z'$) is plotted versus the imaginary part ($-Z''$). Frequencies develop from low (1 kHz) to high (1 MHz) from the right end to the left end of each «semicircle». The uniaxial load was increased stepwise until failure of the sample. The step rate was 3 MPa in the case of the KTB amphibolite sample and 2 MPa for the marble. It took about 10 min to measure the complex response for one step in pressure with 15 frequencies in a log scaling for one decade in frequency.

The complex responses of both samples show typical common features. In the low pressure range a quarter of a semicircle is well developed. The increase in pressure causes only minor changes in the shape of the semicircle, the indicating that the electrical properties experience only minor changes. But when the uniaxial load was increased to certain threshold values close to the uniaxial compressive strength, the significant variations in the complex response of the samples were detected. Though the step-size was still 3 resp. 2 MPa these final semicircles exhibit dramatic changes in volume resistivity and frequency dispersion. Sample failure occurred after increasing the load up to 100 resp. 63 MPa.

Using a non-linear least-squares program, the measured frequency dispersion data were fitted to model data describing the electrical charge transport in rock samples. The equivalent circuit model used considered pure electrolytic conduction and surface related conduction and polarization processes employing two parallel RC elements in series. The electrochemical basis of this interpretation is due to the fact that polarisations of ions or water dipoles take place in the interface layer rock-matrix/fluid-phase. This layer is known in electrochemistry as the electrochemical Double Layer (DL). The relaxation times $\tau$ of surface adsorbed cations and hydrated anions and cations within this DL differ in time constants depending on size, ion-concentration and interaction in narrow cracks. The chemistry of the pore electrolyte was fixed during the experiments, variations in relaxation times therefore must be due to geometric changes of the cracks or pores. From the non-linear least squares refinement four model parameters were derived ($R_1$, $C_1$, $R_2$, $C_2$). These are related to the above described effects. The product
The electrical signature of rock samples exposed to hydrostatic and triaxial pressures

Fig. 3. Complex response of a carbonate rock sample and an amphibolite from the KTB used in triaxial pressure experiments. The data are displayed as Cole-Cole-diagrams where the real part of the impedance is plotted versus the imaginary part. The intersection of the semicircle with the real axis gives the volume or bulk conductivity, which was usually measured at frequencies of about 1-5 kHz. Frequency develops from right to left, the left end of the semicircles corresponds to the 1 MHz data point.

Fig. 4. Variation of the refined model parameter C2 as derived from the equivalent circuit model. Capacity C2 is the electrical parameter that correlates with the inner surface of the sample. Pressure induced forming of microcracks increases the inner surface and the model capacity C2.

RC = τ defines the relaxation time. Figure 4 displays the variations of only two of the model parameters, C1 and C2. Both capacities are related to polarisations where C1 considers bulk and C2 surface related polarisations. As expected, C2 does not change significantly as a function of pressure, while C1 increases continuously as a function of pressure and most remarkably gives a sharp increase right before failure of the sample (table 1). Thus we can conclude that impedance spectroscopy provides a significant precursor signal before failure.

This «laboratory precursor signal» cannot be directly applied in field geophysics. But the Fourier transformation of the frequency dispersion data results in voltage decay curves in
Table 1. Refined model parameters of the equivalent circuit model consisting of two parallel RC elements in series.

<table>
<thead>
<tr>
<th>Sample</th>
<th>R1 Ω</th>
<th>C1 μF</th>
<th>R2 Ω</th>
<th>C2 μF</th>
<th>Pressure MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marble</td>
<td>1570</td>
<td>2.60E-03</td>
<td>2013</td>
<td>2.80E-03</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>387</td>
<td>1.12E-02</td>
<td>1251</td>
<td>3.00E-03</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>213</td>
<td>2.13E-02</td>
<td>988</td>
<td>3.20E-03</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>86</td>
<td>5.66E-02</td>
<td>604</td>
<td>4.00E-03</td>
<td>63</td>
</tr>
<tr>
<td>KTB</td>
<td>327</td>
<td>1.80E+01</td>
<td>54</td>
<td>4.30E-01</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>301</td>
<td>6.70E+01</td>
<td>39</td>
<td>5.50E-01</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>204</td>
<td>3.20E+01</td>
<td>64</td>
<td>7.50E-01</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>172</td>
<td>4.50E+02</td>
<td>29</td>
<td>9.00E-01</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>1.37E+03</td>
<td>12</td>
<td>1.10E-01</td>
<td>100</td>
</tr>
</tbody>
</table>

the time domain (Vallianatos and Tzanis, 1998, 1999; Colangelo et al., 2000). Thus laboratory AC-impedance data can be compared with field SP or IP signals. The voltage decay curve of IP measurements can be described in terms of Cole-Cole parameters with the proportionality $Z(\omega) = 1/(1 + (\omega \tau)^c)$, where $\tau$ is the relaxation time of the relaxation process ($\tau = RC$) and $\omega = 2\pi f$ ($f =$ frequency) and $c$ a parameter describing diffusion controlled processes (Pape et al., 1999). To check this assumption we are currently performing laboratory SP and AC-impedance spectroscopy measurements to prove the validity of the Fourier transformed dispersion data.

4. Conclusions

Hydrostatic and triaxial loading experiments on carbonate and crystalline rock samples indicate that a relation between an electrical parameter (complex conductivity) and a petrophysical parameter (inner surface) exists. In this sense increasing inner surface means an increase in crack density, a parameter being linked to the mechanical stability. This variation in crack density correlates with a variation of the complex electrical response. Consequently AC-impedance spectroscopy data can be used as a sensor for detecting the prefailure stability in rocks.

Acknowledgements

This work was financed by the Deutsche Forschungsgemeinschaft (DFG) under grant No. 294/8-1 which is gratefully acknowledged.

REFERENCES


tests for the permeability - formation factor relation on crystalline rocks from the KTB drilling project. Surv. Geophys., 16, 47-62.


NOVER, G., S. HEIKAMP and D. FREUND (2000): Electrical impedance spectroscopy used as a tool for the detection of fractures in rock samples exposed to a stress field, Natural Hazards, 21, 317-330.

