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Key Points: 

 We simulate multiple seismic cycles in a laboratory-scale subduction zone with two 

asperities. 

 Slip-deficit appears to be diagnostic of the location of highest slip but is poorly 

informative of the size of next event.  

 Deciphering the spatially and temporally complex surface deformation history, ML 

predicts the timing and size of analog earthquakes.   
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Abstract 

Despite the growing spatio-temporal density of geophysical observations at subduction zones, 

predicting the timing and size of future earthquakes remains a challenge. Here, we simulate 

multiple seismic cycles in a laboratory-scale subduction zone. The model creates both partial 

and full margin ruptures, simulating magnitude Mw 6.2-8.3 earthquakes with a coefficient of 

variation in recurrence intervals of 0.5, similar to real subduction zones. We show that the 

common procedure of estimating the next earthquake size from slip-deficit is unreliable. On 

the contrary, Machine Learning predicts well the timing and size of laboratory earthquakes by 

reconstructing and properly interpreting the spatio-temporally complex loading history of the 

system. These results promise substantial progress in real earthquake forecasting, as they 

suggest that the complex motion recorded by geodesists at subduction zones might be 

diagnostic of earthquake imminence. 

Plain Language Summary 

Large and devastating subduction earthquakes, such as the 2011 magnitude 9.0 Tohoku-oki 

earthquake (Japan), are currently considered unpredictable. Scientists lack a long enough 

seismic catalogue that is necessary for drawing statistical insights and developing predictions. 

For this reason, we simulate tens of earthquakes using a small-scale experimental replica of a 

subduction zone. We show that Machine Learning (ML - a group of algorithms that make 

predictions based on the “information” acquired in past “experience”) can predict when, 

where and how big the next experimental earthquake will be. The “information” in our study 

is provided by the slow deformation accumulating in the analog tectonic plates during the 

periods in-between earthquakes. Since such slow deformation is also measured by means of 

space geodesy along real subduction zones, there is the possibility that, in the future, 

variations of this ML approach can predict the timing and size of natural subduction 

earthquakes. 
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1 Introduction 

The subduction megathrust - the interface between subducting and overriding tectonic plates 

– has hosted the largest earthquakes of the last century, e.g., the 2011 Mw 9.0 Tohoku-Oki 

earthquake (Japan). Such events originate from sudden slip episodes that propagate for 

several hundreds of kilometers along the megathrust, displacing the Earth’s crust by tens of 

meters and relaxing the elastic stress that has accumulated due to the combination of tectonic 

plate convergence and friction acting along the megathrust. 

In the ideal case of (i) perfectly elastic plates, (ii) constant coupling between overriding and 

subducting plate, (iii) constant plate convergence velocity, and (iv) homogeneous frictional 

properties and pre-stress along the megathrust, earthquakes should occur at regular time 

intervals, with only small variations in magnitude (i.e., the characteristic earthquake model; 

Reid 1910). Other earthquake recurrence models, including the time- and slip-predictable 

models (Shimazaki & Nakata, 1980) and the non-periodic non-characteristic model (Satake 

and Atwater, 2007), take into account temporal variations of fault strength, stress drop and 

loading rate. Such variations move the system towards a more complex recurrence pattern 

(e.g., Brodsky and Kanamori, 2004). Subduction megathrusts follow irregular rupture 

patterns with recurrence times for large earthquakes spanning from a few hours to centuries 

or more (Ando 1970; Sieh et al 2008; Goldfinger 2017). Such variability can be explained by 

the interplay between spatio-temporal variations of interplate coupling
 
(e.g., Moreno et al., 

2011; Tsang 2015), spatial variations of frictional properties
 
(e.g., Cubas et al., 2013), 

differences of interplate roughness (e.g., Lallemand et al., 2018) and non-steadiness of plate 

motions (Heki and Mitsui, 2013; Loveless and Meade 2016). 

Despite the international efforts to instrument and monitor subduction zones with 

unprecedented resolution (McGuire & Plank, 2017) it is still unclear how to constrain the 

timing and size of future earthquakes. There is increasing seismological evidence of 

phenomena related to the failure of highly locked zones (aka asperities) on the megathrust 

such as the increase of foreshocks
 
(Schurr et al., 2014) and repeating events that are 

indicative of a slow slip on the interface surrounding the asperity, pushing the megathrust to 

failure (Kato et al., 2012). Geodesy also yields useful information for understanding 

megathrust dynamics. By measuring the ratio between the overriding and incoming plate 

velocities, geodesists can identify coupled (locked) portions of the megathrust, where stress 

builds up interseismically and where this stress will likely be released through future 

earthquakes. Moreover, the recent identification of transients (i.e., interseismic accelerations 

and decelerations) in the geodetic time series prior to large earthquakes (e.g. Mavrommatis et 

al., 2014) suggests that the continental surface velocity is likely a good indicator of when a 

given portion of the megathrust is ready to fail. The recent progress in seismic and geodetic 

identification of earthquake precursory phenomena is accompanied by a rapidly increasing 

number of studies where Machine Learning (ML) algorithms have been used for earthquake 

related problems, such as predicting laboratory earthquakes (Rouet-Leduc et al., 2017), 

estimating lab-scale fault friction (Rouet-Leduc et al., 2018), predicting GPS displacement 

rates associated to slow slip events (Rouet-Leduc et al., 2018b), and forecast of aftershock 

locations (DeVries et al., 2018). 

Currently there are too few documented instances of precursory phenomena to facilitate a 

robust assessment of earthquake imminence. Moreover, seismic and geodetic records span 

only a small fraction of the seismic cycle duration, and therefore it is a challenge to determine 

which features of the data are indicative of the late-interseismic phase. 

To overcome the lack of long time series in real subduction zones, we profit from recent 

developments in analog seismotectonic modeling that allows for the simulation of multiple 

seismic cycles in a convenient experimental time and scale (Rosenau et al., 2017). We show 

that, while slip-deficit alone has a low informative power with respect to the size and timing 
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of future earthquakes, ML can decipher the geodetic-like signal preceding slip events, 

allowing for the prediction of both the timing and size of future events. 

2 The state of the art: Inferring the pattern of future earthquakes using interseismic 

coupling 

Megathrust earthquakes grow into Mw>9 events by unzipping multiple asperities along strike 

of the subduction zone (Lay and Kanamori 1981; Moreno et al., 2009; Subarya et al., 2006). 

Inferring the number of asperities that may fail is thus a first-order predictor for the size of 

future events. Estimates on potential along-strike rupture extent and, in turn, earthquake 

magnitude are aided by maps of interseismic coupling (ISC) generated from geodetic 

measurements (e.g., Avouac 2015). Higher landward velocities of coastal sites indicate more 

strongly coupled zones of the megathrust, where most of elastic energy and slip-deficit 

accumulate during the interseismic observation period.  

According to the slip-predictable model, coseismic slip equals slip-deficit, while the timing 

remains unknown
 
(Shimazaki & Nakata, 1980). Therefore, the pattern of ISC may serve as a 

proxy for constraining the size of future earthquakes. However, this simple model is 

supported by only a few observations from natural subduction zones (Moreno et al., 2010, 

Schurr et al., 2014) and numerical simulations (Kaneko et al., 2010). In contrast, recent 

investigations reveal that high ISC zones may span the whole range of coseismic slip 

magnitudes (Metois et al., 2016; Barnhart et al., 2016) and that earthquakes may leave large 

portions of highly coupled megathrust unruptured (e.g., Konca et al., 2008). Moreover, some 

earthquakes [e.g., Mw 8.4 Sumatra 2007] propagated or even nucleated into areas of low/no 

coupling (Konca et al., 2008) highlighting the potential for temporal variations in the ISC 

pattern as well as uncertainties associated to the ISC inversion method. Hence, the concept 

that slip-distribution mirrors ISC cannot be generalized. The 2010 Mw 8.8 Maule earthquake 

(Chile) demonstrates the challenges of setting up and interpreting ISC models. For Maule, 

slip-distributions have been suggested to correlate with ISC either very well (Moreno et al., 

2010; Melnick et al., 2012) or poorly (Lorito et al., 2011). This situation is partly due to 

uncertainties associated with inversion methods, inconsistent data availability before and 

after the event, and missing spatial coverage of the offshore seismogenic region, meaning that 

improving the robustness of spatial correlation between slip and locking models is an 

ongoing area of research (e.g., Loveless and Meade, 2011; Barnhart et al., 2016). Besides 

modeling issues, the major problem in determining the spatio-temporal relationship between 

slip-deficit and earthquake slip is the limited number of natural cases where large subduction 

zone earthquakes have been recorded by dense geodetic networks: this is where analog 

seismotectonic models can fill the gap. 

3 New analog models of megathrust earthquakes 

Analog modeling is an experimental technique allowing for the simulation of a given 

geologic process in a convenient spatial and temporal scale. The recent improvements in 

imaging and monitoring techniques associated to specific scaling (Rosenau et al., 2017) 

allows lab modelers to simulate the main features of the megathrust seismic cycle in a 

simplified but realistic way (e.g., Corbi et al., 2013). To conduct our model, we use a 52 x 34 

x 11 cm
3 

gelatin wedge (analog of the overriding plate) underthrusted at constant rate of 0.01 

cm/s by a 10° dipping, flat rigid plate (analog of the subducting plate, Fig. 1a). The analog 

megathrust embeds two velocity weakening patches (asperities) of equal size and friction 

separated by a velocity strengthening patch (barrier). Velocity weakening and strengthening 

behaviors are achieved with the gelatin on sandpaper and gelatin on plastic contacts, 

respectively (Corbi et al., 2013). After an initial stress build-up phase, the model experiences 
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stick-slip behavior consisting of periods of stress build-up interrupted by spontaneous 

nucleation of frictional instabilities propagating at the contact between the gelatin and the 

plate (Corbi et al., 2013). These instabilities are the analog earthquakes. The model produces 

ruptures across single (Fig. 1b) or twin asperities (Fig. 1c) which relative number depends on 

the barrier to asperities length ratio (Corbi et al., 2017). The analysis of the modeled surface 

deformation is performed via image cross correlation (MatPiv; Sveen, 2004). This analysis 

provides us the velocity field between consecutive images, discretized in 1350 interrogation 

windows that are analogs of homogeneously distributed “synthetic GPS stations” (1 station 

every 1.2 cm, equivalent to 1 station every 7.5 km in nature) above the whole model surface 

(Fig. 1d). 

4 Spatial correlation between slip and slip-deficit 

To evaluate the correlation between slip- and slip-deficit maps we select a 7 min long interval 

(Fig. S1; data are published open access in Corbi et al. 2019) during which the experiment 

produces 40 seismic cycles with average duration of about 10.5 s (standard deviation 4.9 s, 

Fig. 1e). The corresponding coefficient of variation (CV=standard deviation/mean) of ca. 

0.47 indicates a recurrence behavior intermediate between quasi-periodic (CV<0.1) and 

random (CV=1), and which reproduces the general behavior of natural subduction zones [e.g. 

Cascadia, CV=0.5 (Kulkarni et al., 2013); South Peru- North Chile, CV=0.3 (Comte & Pardo 

1991), South Chile, CV=0.4 (Bookhagen et al. 2006)]. The key advantages of experimental 

over natural data are straightforward: (i) a denser spatial coverage of synthetic GPS stations, 

(ii) availability of the offshore (hardly accessible) region up to the trench, and (iii) long time-

series spanning tens of seismic cycles (hundreds of thousands of years). In order to avoid 

inversion bias, we directly compare interseismic and coseismic surface motion rather than 

slip at depth. Accordingly, we will hereafter refer to the seaward surface motion as slip (i.e., 

seaward motion) and the landward surface motion as slip-deficit. Slip and slip-deficit maps of 

each cycle are constructed by summing incremental displacement fields during coseismic and 

interseismic phases, respectively. 

Our synthetic catalog of slip maps consists of 30 single asperity ruptures with scaled-to-

nature Mw [Mw is computed first scaling to nature the rupture area A and then using the 

following magnitude-rupture area proportionality (Strasser et al., 2010): Mw = 4.441 + 

0.846*(log10(A))] spanning from 6.2 to 8.0 (Fig. 1b) and 10 twin-asperity ruptures with 

scaled-to-nature Mw 8.3 (i.e., ruptures that saturate the entire model length; 2c). Slip-deficit 

maps are generally characterized by two patches of relatively higher deficit located above the 

two velocity weakening regions. The average ISC across all cycles is approximately 0.5 (Fig. 

S2). 

We quantified the similarity between the slip-deficit pattern and the subsequent slip by means 

of spatial correlation computed both within the slip area (Rsa) and over the whole 

seismogenic zone (Rsz). We found that in 40% of seismic cycles, Rsa and Rsz show good 

correlations (i.e., both Rsz and Rsa >0.5; Fig. 2a), and in 50% of cycles, Rsa is high and Rsz 

is low (i.e., Rsa > 0.5 and Rsz < 0.5; Fig. 2b). The former case corresponds to a scenario of 

slip mirroring slip-deficit, the latter case corresponds to a scenario where slip matches well 

the slip-deficit pattern within the ruptured asperity but the second region of high slip-deficit 

remains unruptured. Over the analyzed 40 seismic cycles (Fig. S3), Rsa generally shows 

higher values (> 0.4), while Rsz spans homogeneously from 0 to 1 (Fig. 2c). This indicates 

that: a) velocity weakening regions are areas where slip-deficit accumulates interseismically 

and where the bulk of slip occurs (e.g., Kaneko et al., 2010); and b) slip-deficit represents 

only a weak proxy for constraining the lateral extent of future earthquakes because locked 

patches do not necessarily rupture in a given seismic cycle. Based on our modelling results, 
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we conclude that slip-deficit alone has low predictive potential with respect to the size of 

future events in a twin-asperity system. 

This variability of Rsz can be explained by the quasi-periodic behavior of each asperity 

(CV<0.1; Fig. S4). The asperities have mean recurrence times of 19.2±0.9 s and 16.1±1.3 s 

(where error is one standard deviation). This recurrence behavior of the two asperities results 

in occasional large (dual asperity) ruptures that correlate highly with the slip deficit of the 

whole subduction margin, whereas most of the smaller, single asperity ruptures correlate with 

the slip deficit local to the rupture.  

5 Machine Learning predicts the timing and size of laboratory earthquakes 

Our next modeling approach is inspired by the recent laboratory study of Rouet-Leduc et al. 

(2017) in which ML was used to determine which features of the continuous acoustic data of 

a block slider experiment
 
were most predictive of the time until failure. Following this 

supervised learning framework, we take the continuous “synthetic” geodetic signals from our 

experiment and construct a ML problem to determine which features of these data (if any) 

can predict time until failure. 

We use the Gradient Boosted Regression Trees (GBRT; Friedman 2001; Supplementary 

Information S1), a ML regression algorithm, to predict the time to the subsequent earthquake 

(hereafter time to failure, TTF) based on 94 features describing the surface deformation 

measured in the analog model (Table S1, none of the features refers to time). The GBRT is 

first trained on a portion of data: in this phase, the GBRT learns the relationships between 

data features and the target TTF (Supplementary Information S2). The trained algorithm is 

then fed with ‘test’ data (data not used in the training) and predicts the subsequent TTFs. To 

quantify the quality of the predictions, we report the correlation coefficient R. 

We use a shifting training window of N (N=2,...35) seismic cycles and a single (the 

subsequent) cycle to test. This data split ensures no “leakage” into the testing data (having a 

total of 40 seismic cycles available, we can run 40-N shifting tests). For each iteration, we 

select the most relevant features to be used for the prediction (Supplementary Information 

S2).  With respect to the standard approach of training the algorithm on a large fraction of 

the dataset and testing on the remaining part (e.g., training on 60% and testing on 40%; 

Supplementary Information S3; Fig. S5), our approach improves the prediction performances 

and also allows us to evaluate the influence of the training window length on prediction 

performances. We found that the best prediction performances are achieved for N=10 (see 

Supplementary Information S4 for details about the metrics used for discriminating between 

the prediction performance of models with different N; Fig. S6). In this case, R=0.3 over the 

whole time series (Fig. 3a; Fig. S7). Considering that in this case the GBRT has to predict 

TTF for a variety of event locations and magnitudes, this result shows that the model does a 

decent job of generalizing.  

Aiming to improve the fit to observations, we include an additional constraint: we train 

individual GBRT models for TTF at 9 target points equally distributed parallel to the trench 

(Fig. 1d). The TTF of individual points appears more regular/periodic (with CV<0.1 for 

target point 1, 2, 3, and 8; Fig. S4) and easier to interpret for the GBRT, especially those 

located above the asperities (Fig. S8). In fact, the GBRT is capable of predicting the TTF of 

individual target points with great accuracy (i.e., half of the target points located within the 

two asperities show 0.7<R<0.8), even when using a short training window length of N=5. By 

checking which and how many adjacent points will rupture simultaneously (i.e., analyzing 

the space-time distribution of TTF; Fig. 3b), this method allows predicting the location, size 

and timing of upcoming events. For example, in figure 3c we see that at time 3.05 min, the 

GBRT correctly predicts an upcoming event occurring in the northern part of the trench, 

involving 4 to 5 target points [≈86-107 km when scaled to nature (Corbi et al., 2013), 
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corresponding to Mw 7.9/8.0 according to the magnitude-rupture length scaling (Strasser et 

al., 2010)]. Similarly, the GBRT successfully predicts an upcoming event at time 3.85 min 

spanning the whole model width (i.e., 7 target points corresponding to a rupture length of 150 

km in nature and therefore a Mw 8.3). There are still some misfits (e.g., the false alarm at 5.05 

min in the northern asperity) that make our analysis still only semi-quantitative. However, the 

success of this ML approach raises the challenging possibility that features of real geodetic 

signals may be used as a proxy for constraining the onset time of future earthquakes. 

6 Identifying diagnostic features in geodetic time-series 

Understanding which features are the most important for a successful prediction is essential 

for exporting this method to real subduction zones. When ranking our features in terms of 

predictor importance (Supplementary Information S5) we observe that the top 15 features are 

representations of the cumulative displacement (or elastic loading) of the plate margin (Fig. 

S9a). In particular, the algorithm identified the trench parallel component of cumulative 

displacement measured at target point 2 and 7 (i.e., Dv2 and Dv7) as the most influent 

features of the whole set. Dv2 and Dv7 are indeed roughly linearly related to TTF so that they 

became a valid proxy for TTF (Fig. S9b). Therefore, the GBRT is mostly informed by the 

relative loading history of various positions on the surface of the model (Fig. S10).  

The dominant role of cumulative displacement is not a surprise: the elastic wedge cannot be 

loaded by convergence indefinitely but only as much as its frictional base is able to sustain in 

agreement with the elastic rebound theory. Rather, what is remarkable, is that the GRBT 

keeps track of the site specific loading history and reconstructs when the strength limit is 

approaching at individual surface locations. 

7 Implications and outlook: Towards earthquake prediction? 

We have used an analog model that reproduces multiple subduction megathrust seismic 

cycles to overcome the limits caused by (i) the short temporal span of geodetic data with 

respect to the duration of natural seismic cycles, (ii) the fragmentary coverage of the geodetic 

network, and (iii) uncertainties related to inversion of inland data to the predominantly 

offshore seismogenic zone. 

We observed that slip-deficit accumulated during the last interseismic phase is diagnostic of 

the location of highest slip. However, it is a poor indicator for constraining the lateral extent 

of a future rupture, and thus the magnitude of future earthquakes. Extending the analysis of 

spatial correlation back in time (beyond the latest interseismic period) could result in an 

improvement of this correlation, although the optimal number of previous interseismic cycles 

for correlation with the latest coseismic slip is very likely linked to the particular 

configuration of the asperities such as size, inter-asperity distance, and friction (Kaneko et al., 

2010). In the long-term perspective, asperities tend to synchronize if conditions for 

interaction are met (Kaneko et al., 2010; Corbi et al., 2017) leading the system to produce 

giant earthquakes. Unfortunately, the stage of the synchronization of a given megathrust is 

unknown and, most importantly, if and how the pattern of asperities evolves thought 

subsequent seismic cycles is still debated
 
(Park & Mori, 2007). Another limiting factor of the 

slip-deficit analysis is that it does not hold any information about the timing of future 

earthquakes. 

Our analysis showed that analog-earthquake prediction requires the reconstruction of the 

spatio-temporally complex loading history. This reconstruction is implicitly done by ML 

using the training data. We thus showed that 10 seismic cycles of dense-network observations 

are required for training the algorithm to maximize its predictive accuracy, and that the 

training length may be decreased when predicting the TTF of a specific region. It is possible 
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that these results may be analog-model dependent and that a larger number of cycles might be 

necessary for training more complicated models that incorporate frictional, rheological, and 

geometrical variations. However, even a low complexity model such as ours, creates 

variations in magnitude and recurrence time making the system "realistically unpredictable". 

Using ML, we were able to counterbalance this unpredictability by training the algorithm to 

recognize patterns that are difficult to detect by human inspection.  

Given that we have shown predictability in an already fairly realistic model, there is hope that 

similar approaches could be developed for real subduction zones. Currently, the available 

geodetic record is far shorter than the number of cycles needed by our approach on the analog 

model, although in nature there are shorter cycles of smaller-magnitude events. This leads to 

two straightforward paths of future development: (i) to develop ML approaches on simulated 

data (analog or numerical) that can be trained on a variety of models to predict the time to 

failure on a range of spatio-temporal scales, and (ii) to tailor ML approaches at natural 

subduction zone observatories with the aim of predicting also smaller-magnitude events or 

the whole spectrum of subduction seismicity including inter-, intra- and upper-plate 

earthquakes. Additionally, there is considerable scope for investigating further features 

beyond the ones used in this study as they might not be complete enough for natural cases 

where e.g. strength variations might occur due to pore fluid pressure variation or where 

foreshocks, slow earthquakes, or mantle relaxation additionally influence the loading history.  

Future work can focus on engineering features and approaches that are more likely to succeed 

both in lab and nature. Comparable or better predictions can be likely obtained using a 

fraction of the data currently needed for training with a wider fan of features. Accordingly, 

we tested the two most important features in a linear implementation (linear regression) of the 

prediction of TTF (Supplementary Information S4; Fig. S11). The linear implementation, 

while producing good fits in some cycles, also produced a drift in the prediction of later 

cycles and unphysical negative TTF values. From this limited investigation, it remains 

unclear if a linear model trained on a small subset of features could improve upon the success 

of the GBRT. 

Alternatively, changes in the framing of the problem may lead to other types of predictions: 

This study frames the regression to the time to failure since we choose to first demonstrate 

that ML recognizes a specific deformation pattern as indicative of a given stage of the 

interseismic period. Other framings, however, such as the classification of earthquake 

imminence (e.g., binary classification distinguishing if an event will happen in the next 

seconds), or regression to the future surface velocity, are all yet to be explored. Another 

possibility is treating surface deformation data as an image analysis problem (e.g., using 

Convolutional Neural Networks) and directly training the algorithm to predict the upcoming 

slip area. 

Securing the society against natural disasters is a social priority. In this era of "big data" in 

earthquake science, advanced data analysis methods, such as ML, could open the door to a 

situation where earthquakes are increasingly predictable. We have shown that the application 

of ML to surface velocities at plate boundaries is a promising avenue for further research 

towards this goal. 
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Figure 1: Analog model of megathrust earthquakes. Panel a: Oblique view of the 

experimental setup. Cyan rectangles highlight the two velocity weakening patches. The 

analog model produces spontaneous ruptures that involve either one (panel b) or both 

velocity weakening zones (panel c). Ruptures are characterized in terms of apparent slip (i.e., 

coseismic surface displacement; red contour with interval of 0.15 mm). White/red stars in 

panels b and c represent the epicenters. Experimental monitoring is performed with a video 

camera from top view (orthogonal to the x-y plane); image analysis allows dense resolution 

of the velocity field (white points) also above the offshore seismogenic zone (panel d). The 

nine blue points highlight target stations used for the Machine Learning analysis. Panel e: 

Time series of analog earthquakes magnitude. The light and dark gray shading highlight the 

fraction of the experiment shown in figure 3 panel a - b and the zoom of panel c, respectively. 
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 Figure 2: Spatial correlation between apparent slip and slip-deficit. Example of seismic 

cycles where the slip correlates well with slip-deficit both along the whole margin and within 

the slip area (panel a) and where slip correlates well with slip-deficit only within the slip area 

(panel b). Slip and slip-deficit maps have the same contour interval of 0.15 mm. The 

white/red stars represent the epicenters. Histogram quantifying the number of seismic cycles 

with given correlation coefficient (panel c). 
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Figure 3: Machine learning results. Panel a: TTF versus experimental time. The red and blue 

time series refer to observation and prediction, respectively. The color-coded horizontal line 

highlight the performances of the prediction cycle by cycle quantified by means of relative 

root mean squared error RRMSE. Dark blue RRMSE colors highlight cycles with a good fit. 

Panel b: Space-time evolution of the predicted time to failure calculated for the 9 target 

points. The blue shading highlights the prediction of an upcoming event at a given location. 

The red squares indicate the spatio-temporal distribution of observed analog earthquakes 

(width of red squares not scaling with time). Panel c: one minute long zoom of panel b. 

Synchronous existence of low time to failure values for several target points along the margin 

suggests that a large magnitude earthquake is impending. 


