Accepted Manuscript

Integrated crustal model beneath the Po Plain (Northern Italy) from surface wave tomography and Bouguer gravity data

Rosaria Tondi, Alessandro Vuan, Alessandra Borghi, Andrea Argnani

PII: S0040-1951(18)30346-9
DOI: https://doi.org/10.1016/j.tecto.2018.10.018
Reference: TECTO 127957
To appear in: Tectonophysics
Received date: 12 December 2017
Revised date: 8 October 2018
Accepted date: 14 October 2018

Please cite this article as: Rosaria Tondi, Alessandro Vuan, Alessandra Borghi, Andrea Argnani, Integrated crustal model beneath the Po Plain (Northern Italy) from surface wave tomography and Bouguer gravity data. Tecto (2018), https://doi.org/10.1016/j.tecto.2018.10.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Integrated crustal model beneath the Po Plain (Northern Italy) from surface wave tomography and Bouguer gravity data

Rosaria Tondi¹, Alessandro Vuan², Alessandra Borghi³, Andrea Argnani⁴

¹Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Via Donato Creti, 12, 40128 Bologna, Italy

²Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Ctr. Ric. Sismol., Borgo Grotta Gigante 42c, 34010 Trieste, Italy

³Università degli Studi eCampus, Via Isimbardi 10, 22060 Novedrate, Como, Italy

⁴ISMAR-CNR, Istituto di Scienze del Mare, Via Gobetti 10, 40129 Bologna, Italy.

Keywords: Po plain; 3D crustal model; surface waves; Bouguer gravity anomalies.

Abstract

To obtain a 3-D crustal density and shear-wave velocity structure beneath the Po plain we exploit seismic records gathered from 2006 to 2014 and Bouguer gravity data assembled for the last estimation of the Italian Geoid. 2-D maps for both Love and Rayleigh fundamental mode at periods between 4 and 20 s are obtained applying a tomographic inversion. The defined local dispersion curves are then jointly inverted using a linearized scheme to obtain a 3-D isotropic shear-wave velocity model across the Po plain region. The model, transformed into density through a priori velocity-density relationships, is then the input of the Sequential Integrated Inversion algorithm, which enables us to recover a new 3-D density-shear wave velocity coupling and inferences on the lithology and tectonics.

Low and fast S-wave velocities are highlighted for the shallow Pliocene–Quaternary sediments along the foredeep, in front of the Northern Apennines, and for the presence of limestone units in the upper crust, respectively. Whereas sediment trends seem to be consistent with the results obtained, the Mesozoic carbonates, which are inherently characterized by high variability, are less
resolved. A major result is the recovery of a high speed (3.3 km/s) - density (2.2 kg/m3) structure in the upper crust (6 - 10 km) localized beneath the arcuate Po plain thrust front expanding from the external margin of the Ferrara arc toward the Alps and the Adriatic Sea. At the boundaries of this brittle body, we locate earthquakes of the Emilia 2012 seismic sequence and the historical seismicity. Mapping lateral discontinuities in density and shear wave velocity could provide insights in defining strengthening and weakening zones, and in focusing on transition zones often prone to earthquakes.

1. Introduction

The Po plain is the foreland basin of both the Alps and the Apennines (Fig. 1; Pieri and Groppi, 1981; Castellarin et al., 1985). The subsidence of this area is heavily influenced by the tectonic and geodynamic processes responsible for the formation and structuring the Alps and the Northern Apennines mountain systems (Fantoni and Franciosi, 2010; Ghielmi et al., 2013). Foreland basins are characterized by thick successions of clastic sediments (gravels, sands, and silts) accumulated in relatively short geological time (Figs. 1 and S1). The space available for the deposition of these sediments is continuously created by the flexural subsidence due to the load of the rising chain. These deposits come from the mountain belt that is undergoing erosion, and their stratigraphic architecture reflects, more or less directly, the different tectonic phases that contributed to raising the Alps.

The Alpine chain, which is almost symmetrical with respect to its longitudinal axis, has produced two flexural basins: a proper foreland basin to the north (Molasse basin) and a retro-basin to the south (Po plain and Veneto-Friuli plain), the latter is partly connected to the south with the foreland basin originated by the load of the Northern Apennines (Fig. 1). These foreland basins of the Po Plain, even with different geological evolution, share a rapid deposition of Cenozoic heterogeneous
clastic successions on a pre-orogenic substrate, mostly characterized by Mesozoic carbonate rocks. It is, therefore, common to find in the subsurface, even at relatively shallow depths, porous and permeable geological bodies able to accommodate and release various kinds of fluids (water, oil, gas) alternating with substantially impermeable formations, capable of physically isolating the previous ones. The outer fronts of the Apennine and Southalpine belts are buried under the Po Plain, and in some instances, the deformation is still ongoing, with tectonic structures capable of producing earthquakes (e.g. the Emilia 2012 earthquakes, Carannante et al., 2016).

Although being only characterized by a relatively moderate seismic hazard level, when compared to other areas in Italy, several earthquakes have occurred in the past both within the Po plain and in the adjacent foothills (ISIDE WORKING GROUP 2010; Rovida et al., 2011), with the remarkable 2012 earthquake sequence (Meletti et al., 2012) that included two M ~ 6 shocks (see Fig. 1) due to thrust faulting (Pondrelli et al., 2012; Scognamiglio et al., 2012), located on the western Ferrara arc (e.g., Carannante et al., 2015 and references therein).

Because of the thick and extensive sedimentary cover, the complex geometry of the buried tectonic structures, and the lack of borehole seismic stations the seismological investigation of the Po plain area is challenging. Previous studies discussed the Po Plain as part of the broader Italian seismotectonic region in terms of seismicity (Chiarabba et al., 2005), seismogenic source characteristics and processes (Basili et al., 2008), present-day stress field and focal mechanisms (Montone et al., 2012; Pondrelli et al., 2006), and GPS analysis (Serpelloni et al., 2013). Other studies have concentrated on selected areas or specific seismo-tectonic related topics across the Po plain and the surrounding regions: Burrato et al., (2003) and Benedetti et al., (2003), adopted a geomorphological approach to identify the location of active thrust faults; Carannante et al., (2015) and Bonini et al., (2014) imaged the active faults in the Emilia area using reflection data; Montone and Mariucci, (2015) studied the present-day stress field reanalysing the stratigraphic profiles of wells and available sonic logs located in the plain and the surrounding regions .

As regards to three-dimensional modelling, which is a valuable tool to tackle highly complex
geological structures. Turrini et al., (2015), integrated the information from geological (Digital Earth Model, wells, isobath-maps, cross-sections, outcrop-trends) and seismological datasets to recover a comprehensive 3D seismo-tectonic geological volume of the crustal Po plain region. Similarly, Molinari et al., (2015), built a 3D model of the Po plain sedimentary basin, from the assemblage of extensive geological information available in the literature, and used it to compute the seismic response for the 2012 earthquakes. Vuan et al., (2011) verified the effectiveness of surface waves studies to long period strong motion within large and deep sedimentary basins like the Po and Venetian plains, which they reconstructed on the base of geophysical information from oil exploration and research. All these models represent a powerful tool to unravel the basin seismo-tectonic complexity. However, the inherent uncertainty in the assembled geological and geophysical information, the patchy hypocentre occurrence with highly concentrated clusters and the need to enhance the coverage of seismic stations within the Po plain limit the improvement of crustal images and the detailed definition of regional-scale features.

To compensate for this lack of knowledge, we jointly exploited the information given 1) by the surface wave data gathered from 2006 to 2014 seismicity and 2) by 73,590 gravity observations extracted from the Italian gravity database Italgeo05 (Barzaghi et al., 2007; Borghi et al., 2009). Seismic velocity models from surface-wave and compressional-wave tomography are frequently used as a reference to calibrate the interpretation of gravity data, being the inversion of density anomalies a highly non-unique process. On the other side, surface wave higher modes are often difficult to separate from the fundamental one, and multipathing effects complicate the modal pattern especially in deep sedimentary basins such as the Po plain. In this context, regional gravity information comes to the aid, having the highest resolving power at shallow depths.

The Sequential Integrated Inversion (SII) procedure (Tondi et al., 2012) is used to recover the 3D pattern of elements, with lateral sides of 0.033° and variable depth, for crustal (a) isotropic shear-wave speeds, (b) density-shear-wave velocity (ρ-vs) correlation coefficient and (c) densities which explain both surface-waves and gravity data information.
2. Data

2.1 Seismic data

The 2012 Emilia seismic sequence and other earthquakes occurred in northern Italy from 2006 to 2014 allowed gathering a significant dataset to investigate the Po plain crustal properties. We exploit accelerometric and velocimetric seismic records from national and regional networks to measure Rayleigh and Love group velocity wave dispersion properties at short periods (4s - 20s). Group velocity from recorded earthquakes are preferred to ambient noise phase velocity measurements because of: 1) the poor density of seismic stations that are recording data in continuous mode within the Po plain (see Fig. 1 in Molinari et al., 2015), 2) the low data quality of the few seismic stations within the deep basin (seismic stations are generally deployed at surface on soft sediments), 3) most of the seismic stations within the Po plain are accelerometers recording earthquakes in triggered mode.

We select shallow depth (hypocentre <30km) earthquakes with magnitude greater than 3.6 recorded in the distance range from 50 km to 400 km. In the period range 4s - 20s, lower magnitude earthquakes show no efficient propagation of surface waves at distance and source-receiver paths shorter than 50 km are not considered because fundamental mode surface wave trains are not separated from higher modes and shear-waves.

Travel times are determined using epicentral locations and origin times taken from national agencies. Group velocity dispersion curves are measured using an iterative application of a set of Gaussian multiple filters. The selection of the dispersion curves represents a critical point, and it must be guided by regional crustal models (Vuan et al., 2011; Sugan and Vuan, 2014; Barnaba et al., 2014). A semi-automatic phase match filtering is used to isolate the fundamental mode from interfering higher modes, and body waves.
The number of the Rayleigh and Love dispersion measurements, performed in the period band from 4 to 20 s, is approximately 5000 and 2500, respectively. The Po plain area is characterized by significant lateral variations in structure, which can result in multipathing and refraction or reflection of wave paths when they cross major structural boundaries such as the Alps and the Apennines. The cluster analysis on common paths and the subsequent quality check, to avoid outliers, reduced the average number of reliable dispersion curves to approximately 3000 and 1500 for Rayleigh and Love waves, respectively. In Figures 2 and S2 we show the 6 s Rayleigh and Love wave path coverage in the Po plain and, the number of paths as a function of the measured period after removing outliers and clustering. Rejected measurements at shorter periods (2 s) are mostly due to interfering higher modes that hamper an accurate estimation of the group velocities (see the histogram in Fig. S2).

Surface wave depth sensitivity is dependent on the period: the longer the period, the deeper the waves sample within the earth. The sensitivity curves are the Fréchet derivatives of the group velocities of the fundamental mode Love and Rayleigh waves with respect to shear-wave velocities at different depths. The derivatives are computed for the Po plain reference earth model (see Vuan et al., 2011) at different periods, and are shown in Fig. 3. From contouring, it is possible to infer the depth sensitivity of the group velocity dispersion curves in the 4 – 20s period range. We observe a low sensitivity at approximately 3 - 7 km of depth for the Rayleigh waves. At the same depth interval, Love waves behave differently demonstrating the need to use both Rayleigh and Love wave data to resolve the crustal model at shallow depth.

2.2 Bouguer gravity anomalies

The terrestrial gravity data set used in the computation of the crustal density in the Po Valley has been extracted by the validated gravity database formed for the last estimation of the Italian geoid, called Italgeo05 (Barzaghi et al., 2007; Borghi et al., 2007). In the area bounded between 44° N and 46°N in latitude and between 7.5°E and 12.5°E in longitude, 73,590 values of the free-air anomalies
are available (Fig. 4 a), with a spatial resolution strictly related to the topography of the area (few data in the sea basins and in high mountains regions).

To match seismological information to gravity ones, the required data resolution was approximately 1 km. Hence, to improve the computation speed, the original dataset has been gridded on a 1 km x 1 km interval (Fig. 4 b), using a weighted moving average approach with the data weighed as the inverse of the cube of the distance from the grid knot.

The gravimetric inverse problem is an ill-posed problem so, to impose the existence and the uniqueness of the solution, it is necessary to perform some regulations of the gravity data, as the computation of refined Bouguer gravity anomaly. The Bouguer gravity anomaly reduction describes the earth as composed of two layers with a fixed density contrast and without topography, so it represents a suitable type of observation to investigate crustal density anomalies. According to Heiskanen and Moritz (1990), the Bouguer gravity anomaly can be computed for a gravity station P as:

\[\Delta g_B = \Delta g_{FA} - A_B + A_{TC} \]

where:

\(\Delta g_B \) = Bouguer anomalies
\(\Delta g_{FA} \) = Free-air anomalies, that is the values of the absolute gravity reduced for the reference normal gravity \(\gamma \) and corrected for the height of the point P with respect to geoid surface, that is \(\Delta g_{FA} = g - \gamma + F \), where F is called free-air reduction
\(A_B \) = \(2\pi G \rho H \) = gravity of the Bouguer plate, where H is the orthometric height of the point in meters; G is the gravitational constant; \(\rho \) is the crustal density
\(A_{TC} \) = Terrain correction with density \(\rho \)

The Terrain Correction term (A\(_{TC}\)) is introduced in the formula to have the so-called refined Bouguer gravity anomaly (Fig. 4 b), where the systematic effects due to the topography, that is the gravity effects of the masses above the geoid, are removed. This contribution is computed by
integration of gravity effects of the terrain up to a distance of 120 km, modelled by rectangular prims of constant density, using the TC program of the GRAVSOFT software package [Forsberg and Tscherning, 2008]. The dimensions of the prims (3”x3”) are determined by the Italian DTM (Digital Terrain Model) based on SRTM3 and NOAA bathymetry, integrated along the coast with the 5”x7.5” Italian bathymetry (Borghi et al., 2007). The density value of the prims is chosen to exploit two different optimization methods (see Caratori Tontini et al., 2007), which have given the same optimal result of 2.45 g cm\(^{-3}\).

Po plain Bouguer gravity anomaly map (the area of this study) is characterized by a main gravity low spanning [-180 -120] mgals in the lower left side of the studied area, below the provinces of Parma, Reggio Emilia and Modena, and positive anomalies in the range of [0:60] mgals below the Venetian provinces.

3. Methods

Our integrated approach (SII, Tondi et al., 2012) involves in finding the maximum of a likelihood function (L) that relates the density earth structure (\(\rho\)) to our Bouguer gravity observations (\(g\)) and to the seismic velocity structure (\(v\)) through three types of information: (i) gravity data, (ii) update of the shear velocity model computed by non linear inversion of the seismological data-set (\(\Delta v\)), and (iii) the physical correlation between the density and the velocity parameters (\(\alpha, C_{mm}\)):

\[
L(\Delta g, \Delta \rho, \Delta v) = \exp \left\{ -\frac{1}{2} [\Delta g - G \Delta \rho]^T C_{gg}^{-1} [\Delta g - G \Delta \rho] \right\} \exp \left\{ -\frac{1}{2} [\Delta \rho - \alpha \Delta v]^T C_{mm}^{-1} [\Delta \rho - \alpha \Delta v] \right\}
\]

The resulting SII algorithm allows the iterative estimation of the update (\(\Delta \rho\)) to the starting model (\(\rho_0\)):

\[
\Delta \rho = \left(G^T C_{gg}^{-1} G + C_{mm}^{-1} \right)^{-1} \left(G^T C_{gg}^{-1} \Delta g + \alpha C_{mm}^{-1} \Delta v \right)
\]

where \(G\) is the matrix of the partial derivatives of the Bouguer gravity observations (\(g = [g_1, g_2, \ldots, g_n]\)).
\[\text{\ldots g}_n, \ n \in [1,N] \] relative to the density model parameters \((\rho = [\rho_1, \rho_2, \ldots \rho_M], \ m \in [1,M])\), \(C_{gg}\) is the square diagonal covariance matrix of the gravity data uncertainties, \(C_{mm}\) is the covariance matrix that takes into account the error propagation from the velocity to the density model, \(\Delta g = (g^{OBS} - g^{(i)})\) the residual gravity vector with respect to the \(i\)-th model predicted gravity response, \(\alpha = [\alpha_1, \alpha_2, \ldots \alpha_M], \ m \in [1,M]\) the velocity-density gradient vector, in the same parametrization as the model, \(\Delta v (v - v_0)\) the seismological update to the starting velocity model \(v_0\) of dimension \(M\).

Following the flowchart in Fig. 5 the starting point of the proposed method is the estimate of the best-fit shear-wave velocity update \((\Delta v)\) to the starting velocity model \((\text{step 2})\). We dedicate the following section to its description.

3.1 Surface waves tomography

3.1.1 Regionalization of the dispersion measurements

The Po plain tomography is performed using two different methods: the Yanovskaya et al. (2000) tomographic codes and the Fast Marching Surface Tomography (FMST) package by Rawlinson and Sambridge (2003). Yanovskaja’s code is a 2D Bakus-Gilbert approach (Ditmar and Yanovskaja, 1987; Yanovskaja and Ditmar, 1990) based on first-spatial gradient smoothness constraints for local or regional application. The method, extensively used in group velocity tomography (e.g. Ritzwoller et al., 1998; Vdovin et al., 1999; Vuan et al., 2001; Vuan et al., 2014), uses iterative ray tracing of surface waves and the quality of the solution is estimated by comparing the initial mean square travel-time residual with the remaining unaccounted residual. FMST by Rawlinson and Sambridge (2003) solves the forward problem using a grid-based eikonal solver known as the fast marching method (e.g. FMM Sethian and Popovici, 1999), and the inverse problem using a subspace inversion method. The method is iterative and non-linear. The inversion step assumes local linearity, but repeated application of FMM and subspace inversion allows the non-linear relationship between velocity and traveltime perturbations to be reconciled. Yanovskaja’s code and
FMST do not require any *a priori* parameterization or truncation of any expansion, and both are widely tested. The Yanovskaya et al. (2000) method can reject data when the travel-time residual is three times higher than the remaining unaccounted residual, in which case the solution is recalculated. The density of paths, azimuthal coverage, and average path length, control the resolution of the dataset. Both the Yanovskaya et al. (2000) tomographic code and the Fast Marching Surface Tomography (FMST) package by Rawlinson and Sambridge (2003) obtain consistent results in the regionalisation of the measured dispersion curves.

Rayleigh wave velocities depend principally on the vertically polarised shear-wave and compressional-wave velocities and densities in the crust and upper mantle. The velocity of Love waves depends primarily on the horizontally polarised shear-wave velocity and the density. The Po plain area is here parameterised by a 2-D mesh consisting of square elements with sides of 0.2 degrees. Tomography is repeatedly performed using different origin coordinates of the grid to obtain four slightly different images from every 0.1 degrees staggered grid. Staggering variable grids, and averaging the corresponding values instead of inverting a single more refined model presents the advantage of reducing possible inversion instabilities and ambiguities. In so doing, we get a more complex image with higher nominal resolution.

We calculate the group slowness at the nodes of each square from dispersion measurements on intersecting propagation paths, and a four-point linear interpolation is used to evaluate the model within each square element in the area. The choice of a 0.2 degrees grid is made in agreement with the tomography resolution that is estimated both by performing checkerboard tests and by calculating the averaging length and azimuthal dependence. Path density, azimuth, and average path length influence the dataset resolution. Because small variations in the observed data can cause significant differences in the resulting inverted model, it is necessary to restore stability by using regularisation. We select a regularization parameter, so that (1) the regionalized velocities are within the velocity range defined by the individual observed dispersion relations and (2) the final unaccounted travel-time residuals are distributed randomly (Yanovskaya et al., 1998). Calculations
of group velocity maps are made for several regularization parameters, $\alpha = 0.05, 0.1, 0.2$ and 0.3. The lower the parameter α, the more we get a sharper solution region with an high solution error, whereas an increase in α leads to a smoother solution region with a lower solution error. Finally, we use the value of $\alpha = 0.2$, which gives relatively smooth maps with small solution errors.

In tomography, the knowledge of the resolution is important to estimate the minimum resolvable feature for a given sample and to determine those features that could represent a numerical artefact. Yanovskaja (1997) and Yanovskaja et al., (1998) proposed the use of two parameters as resolution estimators. The mean size of the averaging area is the first parameter (L) that can be defined as:

$$L = \frac{s_{\text{min}}(x,y) + s_{\text{max}}(x,y)}{2} \quad (4)$$

where $s_{\text{min}}(x, y)$ and $s_{\text{max}}(x, y)$ are the smallest and the largest axes of an ellipse that the averaging area can be approximated to, centred at each examined point (x, y). As the resolution is closely correlated to the density of the crossing ray paths in each cell, it is clear that small values of the mean size of the averaging area (corresponding to high resolution) should appear in the areas that are crossed by a large number of ray paths and vice versa.

The stretching of the averaging area is the second parameter, which provides information on the azimuthal distribution of the ray paths and is given by the ratio:

$$2[s_{\text{max}}(x, y) - s_{\text{min}}(x, y)]/[s_{\text{max}}(x, y) + s_{\text{min}}(x, y)] \quad (5)$$

Small values of the stretching parameter imply that the paths are more or less, uniformly distributed along all directions. Hence the resolution at each point can be represented by the mean size of the averaging area. On the contrary, large values of this parameter (usually >1) mean that the paths have a preferred orientation and that the resolution along this direction is likely to be quite small.
(Yanovskaya 1997). Averaging area and stretching correspond to “correlation length” and azimuthal dependence, respectively.

The resolution is initially determined using the correlation length of the effective smoothing area as estimated by Yanovskaya et al., (1998), and it is less than or equal to 20 km in the area. Furtherly, a more common approach to estimating the tomographic resolution, based on synthetic checkerboard tests, is applied by using different grids and FMST codes by Rawlinson and Sambridge (2003). The results, shown in checkerboards of Fig. 6, confirm the correlation length calculated with the Yanovskaya et al., (1998) technique. Checkerboard results are shown for Rayleigh and Love waves at periods of 4, 8, 12, 16 seconds. 20 km lateral discontinuities of the synthetic model are resolved by source-receiver paths shown in Fig. 2. Results of the checkerboard tests show that ray paths sample the selected area uniformly in the period range 4 – 20 s. Moreover, similar resolution is obtained for Rayleigh and Love waves.

3.1.2 S-wave Velocities

Shear-wave velocity profiling from surface wave dispersion curves is a non-linear inversion problem. To date, numerous papers have examined the surface wave inversion problem using global or heuristic algorithms [e.g., Beaty et al., 2002; Wathelet et al., 2004; Yamanaka, 2005]. Global method solutions typically require large computational efforts because they are based on genetic or Monte Carlo algorithms. An alternative approach is a linearized inversion, which has been extensively applied using least squares methods [e.g., Wiggins, 1972; Nolet, 1981; Gabriels et al., 1987; Xia et al., 1999; Herrmann, 2013].

The local dispersion relations retrieved from the tomographic maps for both the Love and Rayleigh fundamental mode are jointly inverted using a linearized scheme (Herrmann, 2013) to obtain refined isotropic shear-wave velocity models across the Po plain. The shear-wave velocity models described in Vuan et al., (2011) are considered a reference in the inversion when its predicted dispersion values are consistent with local observations. When group velocities in specific sub-
regions are inconsistent with local dispersion curves at periods longer than 10 s, we use the reference shear-wave velocity models from EPcrust (Molinari and Morelli, 2011) or, as an alternative and only in few cases, from Malagnini et al., (2012).

The Love and Rayleigh group velocity measurements sample with maximum sensitivity depths that vary between approximately 1 km and 20-25 km. At these depths, the crustal structure is modelled as a stacking of \(N \) homogeneous isotropic layers that are each defined by compressional and shear wave velocity, thickness, density, and attenuation. The shear-wave velocity is the only independent parameter that is optimized for the inversion. The compressional-wave velocities and densities, which are needed for the computation of the dispersion curves, are shear-wave-dependent parameters that are iteratively changed during the linearized inversion accordingly with Nafe and Drake (1957) experimental measurements for the sediments \((v_S<=2.58 \text{ km/s})\) and Brocher (2005) for higher velocities. Other parameters of the model, such as thickness and attenuation are fixed \textit{a priori}. Our strategy of inversion is guided by seeking iteratively for solutions that are linearly close to the shear-wave reference model (Table 1.) [Parker, 1994]. This procedure allows us to identify a reliable solution that fits the surface wave data and facilitates the computation of the associated errors [Gabriels et al., 1987]. Uncertainties related to the optimized shear-wave velocities are determined by considering several different parameterizations for the inversion procedure, that is, the number of layers, the smoothness of the perturbation function and the compressional to shear-wave velocity ratio. In general, there is a trade-off between resolution (the number of layers in a specific depth range of the model) and variance. The robustness and stability of the inversion algorithm are guaranteed using a procedure, which checks the dispersion curve sensitivity about the applied perturbations to limit the number of inversions. Moreover, the application of smoothing constraints prevents large variations between layer velocities. Two criteria are used to accept a model: (1) the group velocity curves compared to any given period must lie within the uncertainty bounds of the observed data \((0.040 \text{ km/s})\), and (2) the root mean square of the difference between the calculated curve and the observed data must be less than \(0.020 \text{ km/s}\). After the inversion, a
simple linear interpolation scheme between the centres of the cells is adopted and 3D images of the shear-wave velocity structure of the Po plain are obtained.

3.2 The physical correlation between the density and the velocity parameters

The combination of information coming from seismic and gravity data into a single inversion scheme is based on the optimum choice of the physical relationships between the seismic velocities and bulk densities. To ensure this objective:

1. The 3-D velocity and density models share the same parametrization.

2. We assume a node-dependent linear relationship: \(\rho_m = \alpha_m v_m + \beta_m, \) \(m \in [1,M], \) i.e. upon \(a-priori \) information, we can use different relationships (correlation coefficients \(\alpha \) and \(\beta \)) for different rel \(\rho-v_S \) scaling relationships.

3. Through the maximization of eq. (2) with respect to \(\alpha, \) taking in account that in explicit linear form \(g = G\alpha(m)v, \) \(\alpha \) is now inverted and optimized independently for each model parameter:

 \[
 \left[\left(g^T c_{gg}^{-1} g \right)^{-1} (g^T \Delta g) \right] m \]

with \(v_m^0, \) \(m \in [1,M], \) the starting velocity model;

4. the \(C_{mm} \) matrix takes into account the error propagation from the velocity to the density model:

 \[
 \sigma(\rho_m) = v_m \sigma(v_m) + \alpha_m \sigma(v_m) + \sigma(\beta_m) \]

where \(\sigma(v_m) \) is taken from the square roots of the diagonal elements of the \(a \ posteriori \) seismic covariance operator (0.250 km/s for depths from 0. to 4 km, 0.150 km/s from depths from 4 to 8 km and 0.80 km/s for depths from 8 to 20 km), \(\sigma(\alpha_m) \) and \(\sigma(\beta_m) \) are the uncertainties in the coefficients of the scaling \(\rho_m-v_m \) relationship.
To control the amount of variation and to allow for correct changes in the parameter values, the values on the main diagonal of C_{mm} matrix (under the assumption that there is no correlation between the errors in each node) are chosen for an optimum trade-off between the data variance and the solution variance. Through the comparison of the gravity kernel $\left(G^T g_g g^{-1} G \right)$ and C_{mm}^{-1}, we can conveniently assign $\sigma(\alpha_m)$ and $\sigma(\beta_m)$ uncertainties and obtain over-regularized solutions where the density model remains close to the seismic model (high values of C_{mm}^{-1}) or under-regularized solutions where the gravity information gives a significant contribution during the optimization process (low values of C_{mm}^{-1}). This enables the complementarities of the seismological and gravity data sets to be exploited, and reliable solutions to be also obtained below the seismic depth resolution.

Starting relationships between the shear-wave crustal velocities and density values, as required by step 1 in Fig. 5, are derived from Nafe and Drake experimental measurements (Nafe and Drake, 1957) for the sediments ($v_S \leq 2.58 \text{ km/s}$) and Brocher (2005) for higher velocities. To account for additional dependencies on a wide range of factors, such as the presence of fluids or compositional variations, we allow the density-velocity scaling to vary laterally during the inversion, through (6), thus creating a fully 3-D relationship between the density and the shear-wave velocity (Fig. 7).

3.3 Gravity data inversion

From the 10 layers 1D a priori velocity model (v_0) (Table 1.) we obtain the starting density model (ρ_0) with the above specified scaling relationships. Hence, with the transformed 3-D grid of density values in the earth volume of $2.4^\circ \times 1.2^\circ \times 30 \text{ km}$, we define 45917 polyhedral bodies of $0.033^\circ \times 0.033^\circ$ and variable height. To counteract edge effects, the model is boxed into a region of $8^\circ \times 4^\circ \times 50 \text{ km}$.

The expression that was derived by Pohànka (1988), for a polyhedral body with a density that is linearly dependent on some coordinates, is used for the computation of the three components of
the gravity field (Tondi and de Franco, 2006) and the partial derivatives of each gravity measurement \(g_n \) with respect to each density model parameter \(\rho_m \) (step 3):

\[
G = \left[\left(\frac{\partial g_n}{\partial \rho_m} \right)_{n,m} \right]^{N \times M} \tag{8}
\]

The use of polyhedral bodies with linearly varying density enables us to appropriately match the density with the shear velocity parametrization during the sequential integrated modelling. As we work with Bouguer anomalies, tests are undertaken at each step to choose the appropriate background density, which is the density that minimizes the difference between the calculated vertical component of the gravity field and the observations (\(\Delta g \)). The computations are carried out in Cartesian coordinates, and Vincenty formulas (Vincenty, 1975) are used to move from the geographic to the Cartesian coordinate systems, and vice-versa.

For all the gravity data the \(a-priori \) error (the square root of the diagonal elements of \(C_{gg} \)) is set equal to 1.0 mGal, because no other information is available; the seismological update to the starting velocity model (\(\Delta \nu \)), obtained as described in 3.1, is interpolated through a tricubic B-splines function from the density grid, and we proceed to the step 4 of the flow chart (Fig. 5) with the optimization of the density-\(v_S \) scaling relationships (6) and of the density values with (3).

As illustrated in Fig. 5, the last step (point 5) of the SII procedure is the update of the density and velocity parameters and the evaluation of the results.

The gravity data misfit is expressed as the rms of the gravity residuals for each \(n \) observation:

\[
rms = \sqrt{\frac{\sum_{n=1}^{N} (g_{n}^{obs} - g_{n}^{(i)})^2}{N}} \tag{9}
\]

The \(a \ posteriori \) standard deviation, associated with the updated density parameters (\(\rho_m^i = \rho_m^{i-1} + \Delta \rho_m^i \)), is calculated as:

\[
\sigma \rho_m^i = \alpha_m^i \sigma (\nu_m^{i-1}) \left[1 - \left(VarRed (g_i) \frac{d_{mm}}{max(d_{mm})} \right) \right] (m=1, \ldots, M) (i=\text{the current iteration}) \tag{10}
\]

which is the propagation of uncertainty from the velocity to the density model, weighted with the gravity variance reduction \(VarRed (g_i) \), and the information provided by the gravity data (\(d_{mm} \) the
diagonal elements of the gravity kernel \((G^T C_{gg}^{-1} G)\).

The optimization process should be repeated until the fit to the observations deteriorates with respect to the former iteration. Differently from the surface-wave inversion, which is a non linear optimization problem, gravity is a linear function of density and as a consequence the minimization of the gravity residual vector is immediate.

3.4 Summary of the method

A summary of the used method is reported step by step:

1) building of the starting velocity model and transformation of it into density through a priori 1-D density-\(v_S\) scaling relationships;
2) inverting of local Rayleigh and Love wave group velocity curves from fundamental mode observed group velocity and estimation of the updates to the velocity model (\(\Delta v\));
3) solving of a 3D forward gravity problem;
4) updating of the density model with the constraint of \(\Delta v\) and optional optimization of the velocity-density scaling gradient;
5) computing of the new velocity model from the best fit density model and the estimated velocity-density scaling relationships and evaluation of data misfits and of the quality of the solution.

In this study we keep this one-iteration model as our final model because we believe that a better fit can be achieved only with a more precise seismic information (lower data uncertainties and more uniform coverage).

3. Results

We obtain Rayleigh and Love group velocity tomography maps in the period range from 4 to 20 s.
The 4 s to 10 s Rayleigh waves sample the upper crust and basin sediments at depths ranging from 1 km to 8 km whereas the 12s to 20s Rayleigh waves sample the middle-lower crust up to 25-30 km of depth. Love waves are characterized by a depth resolution shallower than Rayleigh waves (see Fig. 3). Group velocity tomography maps at 4s, 8s, 12s and 20s for Rayleigh and Love waves are shown in Figure 8 a,b. Low group velocity is found at shorter periods evidencing a strong correlation between the Po plain soft sediments and low velocities. Note that the negative group velocity anomalies follow the foredeep sediments close to the Apennines as highlighted by the geophysical information from oil exploration and research undertaken since 1960 (e.g., Pieri and Groppi, 1981; Cassano et al., 1986; Ambrosetti et al., 1987). Positive anomalies (+ 20 %) are found below the Alps and Apennines. Rayleigh and Love group velocity tomography maps agree with the Molinari et al., (2015) calculated group velocities for periods higher than 8 s (discrepancies are lower than 0.100 km/s in the investigated area). More significant differences up to 0.15 km/s, and 0.20 km/s in the Rayleigh and Love group velocities, respectively, are found at shorter periods and close to the Alpine and Apennine margins where the model complexity could affect the measure of the dispersion properties.

Shear-wave velocity models are obtained by inverting local dispersion properties retrieved from surface wave tomography. The shear-wave velocity profiles crossing the deep basin from S to N at longitudes from 10°E to 12.2°E are shown in Fig. S3. Along the profiles, the contouring of shear-wave velocities is performed with a 0.1-degree step in the velocity range from 0.5 km/s to 4.0 km/s. At shallow depth, low shear-wave velocities are found within the plains (Po and Venetian) and at depth for Pliocene–Quaternary sediments along the Northern Apennines. Fast shear-wave velocities at shallow depth are consistent with high P-wave anomalies related to the presence of Mesozoic limestone units.

Following the optimization of both shear velocities and densities, we also obtain an updated ρ-v_s correlation coefficient (α_{m}). We observe a normal distribution around the initial values with a standard deviation of about 10% of the starting value (Fig. 7). An anomalous greater difference is
observed between 1.5 and 2.5 km/s, which, following Molinari et al. (2015), corresponds to Oligo-Miocene and Paleocene-Eocene units which were deposited during the thrusting of the southern Alpine front and the initial building of the Alpine belt, respectively.

Depth sections of the resulting SII-\(v_s\) density models, up to 10 km depth, after the first SII iteration, are plotted in Figures 9 and 10. The *a posteriori* standard deviation, associated with the density parameters, ranges between 32 and 66 kg/m\(^3\). Higher reliability of the density model, associated with smaller values of standard deviation, is obtained within the upper-mid crust (depths < 12 km).

This is evidenced by the seismic misfit obtained for both the seismic and the SII-\(v_s\) model after the first (and last) iteration, with lower residuals between periods of 7 and 14 s (Fig. 11).

The most prominent feature of the SII models, is a high shear-wave velocity (\(\geq 3.3\) km/s) density (\(\geq 2.2\) kg/m\(^3\)) structure between the accretionary wedge of Northern Apennines and the foothills of the Southern Alps, at the northeastern margin of the Ferrara arc. This structure, which is buried below the thick Pliocene-Quaternary succession that fills in the Po plain, characterizes our study area at depths ranging from 6 to 10 km (Figs. 9 and 10) and forms an extended arc-shaped 100 km long 40 km wide structure. Moderate to high local seismicity (\(M_L \geq 4\)) is concentrated at the edge of the transition from high to low compressibility, in the middle and southwest of the investigated area. The hypocenters of the 2012 earthquake sequence appear to outline an inherited major Mesozoic extensional fault (Carannante et al., 2012), which may bound domains with different litho-mechanical properties.

The gravity data field reproduced by the resulting SII density model is shown in Figure 12 a). We obtain a mean gravity data misfit (9) (Fig. 12 b) of 4.10 mgals (with respect to 56.34 mgals of the seismological model scaled into a density model) and a data variance reduction (10) of 94.03% (with respect to 34.28% of the scaled seismological model).

Gravity residuals reveal that Bouguer gravity anomalies are very well fitted except in some random spots, mostly placed beneath the Apennines chain, and the unconsolidated Holocene deposits in the
middle and north-east of the study area. Positive residuals are localized where the SII model shows in depth anomalous high velocity-density structures, thus justifying a possible additional bulk density.

4. The crustal model and the correlation with known geological and structural features

A comprehensive look at the recovered 3D shear-wave velocity and mass density evidence some important shared features which can be correlated to known geological structures.

The foredeep basin domain is well expressed by the group velocity anomaly maps (Fig. S3), particularly at short periods (4-8 s), as a low-velocity anomaly running along the Apennines plunging southward in the Ferrara region and eventually extending into the northern Adriatic Sea. The narrowing of the basin in the region of the Ferrara arc is well reproduced, as well as the southern "nose" of the foreland, characterized by higher values likely given by carbonate rocks at shallow depth.

Deeper, higher velocity-density structures replace the Pliocene-Quaternary successions and the 8 km depth maps (Figs. 9 and 10) show the clastic foredeep sediments tapering out south-eastward. The distribution of high values of SII shear velocity (3.6 – 4 km/s – Fig. 9) and densities (2.7 – 3 g/cm³ – Fig. 10) follows the extent of the carbonate rocks: in the foreland, in the Ferrara folds and the thrust units close to the pede-Apennine.

The Ferrara arc is part of a group of three main structural arcs buried underneath the Po Plain, namely from west to east: the Monferrato arc, the Emilia arc, and the Ferrara-Romagna arc. The origin of this system of arcs seems related to the inherited Mesozoic paleogeography and the ensuing lithostratigraphic characteristics of the units affected by thrusting (Castellarin and Vai, 1986; Fantoni and Franciosi, 2010; Masetti et al., 2012). These three arcs represent at the broad scale the termination of the external northern Apenninic arc and the origin of their arcuate shape is
still debated (Montone and Mariucci, 1999). It is hypothesized to be due to:

a) transversal NE-SW oriented lineaments that accompanied the emplacements of the arcs (Pieri and Groppi, 1981);

b) different shortening values, increasing from west to east (Pieri and Groppi, 1981, Gasperi et al., 1985 Royden et al., 1987)

c) the presence of rigid crustal blocks such as intrusive volcanic bodies or the elevation of crystalline basement which prevented lateral propagation of the tectonic detachment area (Perotti, 1991, Castellarin and Vai, 1986)

d) the bending of a previous straight belt with vertical-axis rotation during thrust emplacement (Speranza et al., 1997).

Considering the high susceptibility towards diagenetic alterations of carbonates (Anselmetti and Eberli, 1993, Brigaud et al., 2010), our results suggest that the arc-shaped arrangement of the Po Plain front can be explained by admitting a more rigid behaviour of the zones with high positive anomaly linked to structural highs of the crystalline basement and to strengthening of their cover through magmatic events (Castellarin and Vai, 1986). Additionally, the localization of the 2012 seismic events evidences that active tectonic loading occurs at the margins of this rigid volume (Sugan et al., 2018).

To examine in detail the recovered structures, three geological cross sections from the Apennines to the Southern Alps, derived from seismic studies, are matched with vertical sections cutting across the 3D distributions of the density and shear velocity (Figs. 13, 14 and 15). The three cross sections (see Fig. 1 for the localization) sample the investigated area from West (Fig. 13) to East (Fig. 15), crossing the area of the 2012 seismic sequence in Emilia (Fig. 14).

In our modelling, we are not imposing constraints about the interfaces or overhang structures shown in the geological sections. It is well known that instability in the inversion of geophysical data generally results in situations where small changes in data result in large fluctuations in a model.
The degree of instability could be reduced either by imposing constraints or by including an extra independent data set to the inversion procedure. Because the information on the overhang structures comes from isolated boreholes that reach at maximum 5 km of depth, and from the interpretation of old seismic sections that cannot resolve at depth these structures, we preferred not to constrain their interfaces. Moreover, as remarked in the paper, the carbonatic rocks show a high degree of Vs variation that we preferred to explore without imposing possible lateral inhomogeneities. In our case the inversion is stabilized by reducing the resolution of the inverted Vs model, and by combining surface wave with density data.

Although the main structures are well represented by all the models, a fine comparison between the geological models derived from seismic interpretation and our model evidences mismatches, especially below 6-8 km of depth, where the a posteriori standard deviation values associated to SII model are higher (7% compared to 2-3% of the density value in the shallower layers).

Section A in Fig. 13, is characterized by a thick and wide foredeep basin filled with Pliocene clastic sediments, with thrust faults mostly located close to the pede-Apennines. The foredeep basin is narrower and more segmented in the sectors crossed by sections B, and C, (Figs. 14, 15) and the thrust faults extend into the foreland, to originate the Ferrara folds (Fig. 14). The Mesozoic carbonates units are heavily involved in the deformation, all the way to the thrust front.

About our results, vs and densities along the cross section A (Fig. 13) show the following points:

1) The wide foredeep basin filled with clastic sediments is well represented in the first kilometers, both in the velocity and the density values; low values of the parameters are found up to 5 km of depth.

2) The best image of the "pristine" foreland region is possibly given by the central segment of the density section, with values rapidly increasing with depth. The low values of density and shear velocity at depth, beneath the Apennines, may be related to the stacking of thrust sheets, largely composed of clastic rocks deposited in previous foredeep basins. Deep fluids
migrating up-dip towards the foreland (e.g., Piana Agostinetti et al., 2011) can also contribute to decreasing the rock matrix.

3) To a large extent, foreland units below the clastic sediments are represented by Mesozoic carbonates. As discussed by Brigaud et al. (2010), sonic velocities in carbonates is controlled by the combined effect of depositional lithology and several post-depositional processes such as cementation or dissolution that lead to an extraordinarily wide range in velocities. Hence, fractures and faults can change the carbonate rock properties. Likewise, active tectonics in the area could explain the shear weakening/strengthening of the carbonate rocks.

The cross-section B (Fig.13) intersects the 2012 Emilia seismic sequence.

Under the Appenines, the structural trends of the foredeep basin, filled with the Pliocene-Quaternary clastic sediments, are similar to those observed in section A, with low density and shear velocity values at depth. Conversely, latitudes greater than 44.75° are characterized by high density-velocity values which are part of a wider structure which extends beneath the external margin of the Ferrara arc toward the Alps and the Adriatic Sea. The seismic events of the 2012 Emilia sequence are located within this sector and the change of the elastic properties at a depth of about 5 km in the crustal structure is consistent with the crustal model locally inferred to invert for source moment tensors (e.g., Malagnini et al., 2012).

Figure 15 shows the cross-section C located in the easternmost part of the investigated area. The sampled crustal structure extends from the Apennines to the north, close to the border between the Po plain and the Venetian plain (where the sedimentary cover is considerably thinner). The observations made for cross-sections A and B can be extended to cross section C. The sediments close to the Apennines are thicker than in the northern part, and the pattern of density and velocity values (Fig. 15 b and c) is consistent with these depth variations. The aspect of the "pristine" foreland, in the central segment of section C, is similar to that observed in the central segment of section A. The Mesozoic carbonates are faulted at depths ranging from 2 to 10 km, especially
beneath the Ferrara folds. A thinning of the clastic sedimentary cover going from the Apennines to the north is consistent with the mass density and the shear velocity sections (see Fig. 15 b and Fig. 15 c). An almost flat layer between 3 km and 5 km depth, extending for about 50 km from the Ferrara folds, is characterized by density values between $2-2.1 \text{ g/cm}^3$ and ν_S between 1.5-2 km/s. This shear weakening zone could be related to the presence of fluids.

In summary, the previous comparisons point out:

a) the lateral heterogeneities are often marked by tectonic discontinuities beneath the Northern Apennines and the structural high close to the 2012 seismic sequence.

b) undeformed Po Plain foredeep clastic units can be recognized by low velocities/densities.

c) the Mesozoic carbonates are not univocally defined in our inversions. This could be a limit of our methods or an effect due to their heterogeneity in physical properties.

Starting models are preliminarily obtained by surface wave tomography inversions at a larger grid than the subsequent gravity data inversion. This could have contributed to smoothed heterogeneities on a smaller scale. Moreover, the complex structural framework, the active tectonics, and thermal convection phenomena may cause variations in mineral composition, porosity, pore type, saturation, and pore pressure, making difficult the petrophysical characterization of carbonates.

5. Conclusions

The possibility to integrate high quality Love and Rayleigh group velocity measurements and a high resolution (1km x 1km) Bouguer gravity anomaly data-set enabled us to constrain the crustal structure of the Po plain, up to 20 km depth (with accuracy of the order of 0.033° x 0.033° within the first 12 km) and to derive new 3D shear-wave velocity (a posteriori seismic covariance of 0.250 km/s for depths from 0. to 4 km, 0.150 km/s from depths from 4 to 8 km and 0.80 km/s for depths from 8 to 20 km) and mass density models (a posteriori standard deviation which ranges between
32 and 66 kg/m3) that are jointly checked for both seismic and gravity data (data variance reduction of 94.03%). The models:

1) enable us to obtain a seismological and gravity data consistent 3D phase relationship between the isotropic shear-wave velocity and the density structure, which is optimized within the a priori value limits [-14 to 8] %;

2) enable us to make novel inferences on the lateral heterogeneities which characterize the buried tectonic structures.

We are confident that the fully 3D map of the density-v_s scaling relationship, that is well suited for both the seismological and mineral physics communities, is a step forward for a better understanding of the tectonic features and geophysical processes that occur within this complex region, as well as a contribution for improving earthquake location or studies of seismic sources.

Additionally, as new knowledge with respect to previous literature, our results identify:

a) at shallow depths a narrow volume of shear velocities ranging from 1.5 to 2.7 km/s and of densities in the interval [1.8 to 2.3] g/cm3 which possibly belongs to the consolidated clastic sediments of the Po Plain foredeep basin;

b) at depths ranging from 6 to 10 km the presence of a high shear-wave velocity (≥ 3.3 km/s) - density (≥ 2.2 kg/m3) body which is buried below the thick Pliocene-Quaternary succession that fills-in the Po plain and forms an extended arc-shaped 100 km long and 40 km wide structure. The finding is in agreement with a recent tomographic study by Kastle et al. (2018). The 2012 Emilia seismic sequence characterized by six earthquakes with $M > 5$ took place at the southern margin of this body, along a 50 km E-W trending segment. It is therefore not excluded that active tectonic stress can be focussed at the edges of this rigid structure.
Aknowledgments

The interpretation given in this report stems from the activities carried out by the authors from 2012 to 2015 within the DPC-INGV S1 Project (base-knowledge improvement for assessing the seismogenic potential of Italy). Seismological data are available from National Seismic Network (RSN https://doi.org/10.13127/SD/X0FXnH7QiY), operated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV), and from a regional network (OX https://doi.org/10.7914/SN/OX) operated by the Istituto Nazionale di Oceanografia e di Geofisica sperimentale (OGS). Accelerometric data are available at the ISMD (INGV Strong Motion Data web portal: http://ismd.mi.ingv.it/) providing in quasi real time the strong motion waveforms related to the Italian earthquakes with local magnitude (\(M_L\)) \(\geq 3.0\), and from RAN (Rete Accelerometrica Nazionale) http://ran.protezionecivile.it/IT/index.php.

We thank Tatiana Yanovskaja and Nick Rawlinson for allowing the use of surface wave tomography codes.

References

Carannante, S., Argnani, A., Massa, M., D'Alema, E., Lovati, S., Moretti, M., Cattaneo, M., Augliera, P., 2015. The May 20 (MW 6.1) and 29 (MW 6.0), 2012, Emilia (Po Plain, northern Italy)

https://doi.org/10.1016/j.tecto.2016.09.026

Figure captions

Fig. 1. Simplified map of the geological structures in Po Plain regions and surroundings (after Argnani et al., 2003 and Carannante et al., 2015). The traces of cross sections A,B and C are also indicated. The box represents the study area of the surface wave tomography and the Bouguer gravity modelling. Stars indicate the two Mw >=6 mainshocks of the 2012 Emilia sequence. FA Ferrara Arc, PP Po Plain, VP Venetian Plain. Red thin lines represent the main tectonic lines (Serpelloni et al., 2016).

Fig. 2. Path coverage map at 6 s (top) Rayleigh and (bottom) Love waves. Blue triangles and red stars mark the seismic stations and seismic events, respectively.

Fig. 3. Depth sensitivity of surface waves. The sensitivity curves are the Fréchet derivatives of the group velocities (dU) of the fundamental mode (left panel) Rayleigh and (right panel) Love waves with respect to shear-wave velocities (db) at different depths. The derivatives were computed for a Po plain reference model (Vuan et al., 2011).
Fig. 4. (top) Free-air gravity anomalies in the studied area extracted by the Italian database [Barzaghi et al., 2007; Borghi et al., 2009]. (bottom) Values of the Bouguer anomalies computed on the 1km x 1km grid.

Fig. 5. Flow chart of the inversion procedure, including optimization of density and velocity (indicated by black dashed lines). Different colors indicate the relevant steps of the procedure.

Fig. 6. Checkerboard synthetic test with 0.5 km/s distributed velocity anomalies for a) Rayleigh waves and b) Love waves input models. We add to the regular synthetic checkerboard a random structure with perturbations in excess of 50% relative to the background. The panels c, e, g, i) show reconstruction for Rayleigh group velocities at 4, 8, 12, 16s respectively. Love wave velocity reconstruction at 4, 8, 12, 16s is shown in d, f, h, l panels respectively.

Fig. 7. Comparison between the SII-ρ-v_s relationships and the starting ρ-v_s scaling factors (black line)

Fig. 8. (a) Rayleigh and (b) Love wave group velocity map through the Po plain at the periods indicated in the left upper corner of each panel. Blues indicate group velocities faster than average and reds slower than group velocity average. The black rectangle delimits the study area. Contours at 1 km intervals (white thick lines) define the thickness of sediments.

Fig. 9. Depth sections of the v_s perturbations in our optimized SII- v_s model. Seismic events from ISC catalogue with ML>4, relocalized by Carannante et al., (2015) are superimposed (white and black dots). Black balls indicate the 2012 seismic events. The traces of cross sections A,B and C (black stars) and main tectonic lines (black lines) are also indicated.
Fig. 10. Depth sections of the ρ perturbations in our optimized SII density model. Seismic events from ISC catalogue with $M_L > 4$, relocalized by Carannante et al., (2015), are superimposed. Black balls indicate the 2012 seismic events (white and black dots). The traces of cross sections A,B and C (black stars) and main tectonic lines (black lines) are also indicated.

Fig. 11. Seismic data misfit for group velocity ad different periods in the seismic and SII velocity model for a) Rayleigh and b) Love waves.

Fig. 12 a) Bouguer anomaly map reproduced by SII-ρ model in Fig. 8. b) Gravity misfit with respect to observations in Fig. 4 is 4.10 mgals and variance reduction is 94.03%.

Fig. 13. Profile A (after Fantoni and Franciosi, 2010) as shown in Fig. 1. (a) simplified geological structure, (b) density model, (c) shear-wave velocity model.

Fig. 14. Profile B, as shown in Fig. 1. (a) simplified geological structure (modified after Bonini et al., 2014); stratigraphic units as in Fig. 12, (b) density model, (c) shear-wave velocity model. Seismic sources (black circles) from the ISC catalogue, with $M_I \geq 2.5$, relocalized by Carannante et al., (2015) are superimposed on (b) and (c) and evidence the 2012 Emilia earthquakes sequence crossed by the profile.

Fig. 15. Profile C (modified after Picotti and Pazzaglia, 2008 and Cassano et al., 1986), as shown in Fig. 1. (a) simplified geological structure; stratigraphic units as in Fig. 10, (b) density model, (c) shear-wave velocity model.
Table captions

Table 1. The starting 1D shear-wave velocity structure below the studied area (v^0).
<table>
<thead>
<tr>
<th>DEPTH INTERVAL (km)</th>
<th>Vp (km/s)</th>
<th>Vs (km/s)</th>
<th>DENSITY (kg/m³)</th>
<th>LAYER</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00-1.00</td>
<td>1.5</td>
<td>0.6</td>
<td>1.00</td>
<td>Sediments</td>
</tr>
<tr>
<td>1.00-2.00</td>
<td>1.8</td>
<td>0.9</td>
<td>1.75</td>
<td>“</td>
</tr>
<tr>
<td>2.00-3.00</td>
<td>2.16</td>
<td>1.2</td>
<td>1.90</td>
<td>“</td>
</tr>
<tr>
<td>3.00-3.50</td>
<td>3.50</td>
<td>2.10</td>
<td>2.10</td>
<td>Consolidated sediments</td>
</tr>
<tr>
<td>3.50-4.00</td>
<td>4.15</td>
<td>2.40</td>
<td>2.32</td>
<td>“</td>
</tr>
<tr>
<td>4.00-5.00</td>
<td>4.75</td>
<td>2.75</td>
<td>2.37</td>
<td>“</td>
</tr>
<tr>
<td>5.00-6.00</td>
<td>5.33</td>
<td>3.05</td>
<td>2.41</td>
<td>Upper crust</td>
</tr>
<tr>
<td>6.00-10.00</td>
<td>5.88</td>
<td>3.40</td>
<td>2.44</td>
<td>“</td>
</tr>
<tr>
<td>10.00-20.00</td>
<td>6.34</td>
<td>3.67</td>
<td>2.51</td>
<td>Middle crust</td>
</tr>
<tr>
<td>20.00-30.00</td>
<td>6.80</td>
<td>3.93</td>
<td>2.75</td>
<td>Lower crust</td>
</tr>
</tbody>
</table>
Highlights:

✓ The density and shear-wave velocity structure of the Po Plain crust is proposed
✓ Surface waveform tomography and Bouguer gravity data are jointly explained
✓ Characterization of the seismic properties of the Po plain Pliocene sediments
✓ Evidenced a high structural heterogeneity in Miocene carbonates
Figure 3
Figure 4
coarse-to-fine grained clastics
fine grained clastics
Pliocene-Quaternary
clay and fine-grained clastics
sandstones
Oligo-Miocene
marls and marly limestones
Paleocene
limestones and dolomites
Mesozoic
Basement
Variscan metamorphics with patchy Permian sedimentary cover

Figure 16
Figure 17

- Rayleigh
- Love

Counts vs. Period (T)
Figure 18