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Abstract 

In this study, we investigate the occurrence of large aftershocks following the most significant 

earthquakes that occurred in Italy after 1980. In accordance with previous studies (Vorobieva et al., 

1993, Vorobieva, 1999), we group clusters associated with mainshocks into two categories: “type 

A” if, given a main shock of magnitude M, the subsequent strongest earthquake in the cluster has 

magnitude ≥M-1 or type B otherwise.  

In this paper, we apply a pattern recognition approach using statistical features to foresee the class 

of the analysed clusters. The classification of the two categories is based on some features of the 

time, space, and magnitude distribution of the aftershocks. 

Specifically, we analyse the temporal evolution of the radiated energy at different elapsed times 

after the mainshock, the spatio-temporal evolution of the aftershocks occurring within a few days, 

and the probability of a strong earthquake. 

An attempt is made to classify the studied region into smaller seismic zones with a prevalence of 

type A and B clusters. We demonstrate that the two types of clusters have distinct preferred 

geographic locations inside the Italian territory that likely reflected key properties of the deforming 

regions, different crustal domains and faulting style. We use decision trees as classifiers of single 

features to characterize the features depending on the cluster type. The performance of the 

classification is tested by the Leave-One-Out method. The analysis is performed on different time-

spans after the mainshock to simulate the dependence of the accuracy on the information available 

as data increased over a longer period with increasing time after the mainshock. 

http://www.sciencedirect.com/science/article/pii/S0031920116302801
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1. Introduction 
 

Italy is one of the most seismically active Mediterranean regions documented by historical and 

instrumental catalogues. More than 120,000 people were killed by earthquakes in Italy during the 

last century (Valensise and Pantosti, 2001). The worst earthquakes in terms of loss of human life 

were the 1908 Messina (Mw=7.0, Calabria-Sicily Strait), the 1915 Fucino (Mw=6.7, central 

Apennines), the 1980 Irpinia (Ms=6.9, southern Apennines), and the 1976 Friuli (Mw=6.5, eastern 

Alps) earthquakes. 

A peculiarity of many large earthquakes in Italy is that they are followed by large aftershocks of 

magnitude similar to the initial quake or even stronger mainshocks. These multiple mainshock 

sequences, known in literature as doublets or multiplets, occur in many regions where complex fault 

systems exist. The largest aftershock can occur within seconds to months on the same fault ruptured 

by the mainshock or in nearby faults.  

Multiple mainshock sequences have been observed for the 1968 M 6.1 Belice (Monaco et al., 

1996), 1976 M 6.4 Friuli, 1980 M 6.9 Irpinia (Bernard and Zollo, 1989), 1984 Mw 5.9 Val Comino 

(Milano and Di Giovambattista, 2011), 1997 Mw 5.7 Umbria-Marche (Miller at al., 2004), 2009 Mw 

6.1 l'Aquila (Di Luccio et al., 2010), 2012 Mw 5.9 Emilia (Ventura and Di Giovambattista, 2013) 

and the 2016 Mw 6.5 Amatrice earthquake. 

Repeated earthquakes cause accumulated damage to structures; therefore, forecasting the 

occurrence of the largest aftershocks based on immediate small aftershocks is a challenging task 

enabling reduced loss of lives. 

In this study, we propose an analysis of the earthquake clusters associated with M≥4.5 earthquakes 

that occurred in Italy from 1980 to today. Given an earthquake of magnitude M≥4.5, we are 

interested in identifying statistical features based on the spatiotemporal characteristics of seismicity 

to forecast a subsequent strong earthquake. We classify the clusters of seismicity associated with 



3 

 

mainshocks in which the strong aftershock has a magnitude ≥M-1 as type A and the others as type 

B.  

This paper is organized as follows: section 2 overviews the seismological and geodynamic settings 

of Italy and the main characteristics of Italian seismicity. Section 3 describes the earthquake 

catalogue used in this study and the cluster identification method applied. Section 4 provides 

detailed information on the different seismological precursors analysed and the statistical evaluation 

of their performance when applied to Italian seismicity. In section 5, we discuss the obtained results 

and compare them with the existing literature. Finally, we have included an Appendix with a 

comprehensive description of the decision-tree-based pattern recognition method implemented for 

the analysis described in this paper. 

2. Seismotectonics and Italian Seismicity 
 

 Previous papers have shown a clear dependence on stress and faulting styles of fundamental 

empirical statistical relations such as the Gutenberg-Richter (e.g., Frohlich and Davis, 1993; Kagan, 

2002; Schorlemmer et al., 2005), the Omori-Utsu (e.g., Narteau et al., 2009) and Båth’s law (Tahir 

et al., 2012). 

 In this paper, we briefly describe the tectonic style of the different regions in which we observed a 

prevalence of type A or B clusters to describe the findings of our research in terms of the influence 

of the tectonic structures on the occurrence of the largest aftershock of a sequence (see Figure 1). 

The Italian region can be divided into several main areas, each characterized by a dominant 

seismotectonic behaviour: continent–continent convergence (Alps and Dinarides), plate divergence 

across margins characterized by passive slab sinking (Northern Apennines and Calabrian Arc), plate 

divergence across a margin previously characterized by lithosphere sinking and afterwards 

discharged from the subducted slab (Southern Apennines), backarc basins (Northern Tyrrhenian Sea 

and Southern Tyrrhenian Sea), and transpression (Northern Sicily). Seismicity recorded since 1980 

has given new insight into the seismotectonics of the different areas. The most striking features 
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derived from seismicity recorded since 1980 are that much of the upper crustal seismicity is 

concentrated along a narrow bend beneath the Apennines and  that deep events located in the 

Southern Tyrrhenian delineate the still active subduction system. Subcrustal earthquakes occur 

beneath the northern Apennines and have been interpreted as evidence of subduction of the Adriatic 

lithosphere beneath the Apennine chain (Selvaggi and Amato, 1992).  

In the Alps, earthquakes occur mainly within the upper crust, and seismicity is concentrated to the 

south-east and west, whereas it is sparse and of low magnitude in the central Alps. The Eastern Alps 

are dominated by active compression normal to the mountain belt (Kiratzi & Papazachos, 1995; 

Becker, 2000; Vannucci et al., 2004), whereas in the Western Alps focal mechanism solutions are 

mostly characterized by extension in a direction perpendicular to the trend of the mountain belt 

(Frechet, 1978; Eva et al., 1997; Sue et al., 1999; Montone et al., 2004).  

In the Eastern Alps, two strong earthquakes occurred during the last 40 years (Friuli M=6.5, 6 May 

1976 and Kobarid M=5.6, 12 March 1998). The M 6.5 earthquake was followed on September 15 

by a strong aftershock (M=6.0) that was classified as a Related Strong Earthquake by Vorobieva 

and Panza (1993); the cluster was therefore of type A. The 12 March 1998 earthquake was followed 

by a smaller (M=4.2) aftershock (cluster of type B). 

The Apennines chain resulted from the contemporaneous opening of the Tyrrhenian Sea, the 

eastward migration of a compressive front, and the retreat of the lithospheric plate dipping below 

the Italian peninsula (Malinverno and Ryan, 1986; Doglioni, 1991, 1995). The Apennines belt 

consists of two main first-order segments: the Northern Apennines Arc and the NW-SE striking 

Southern Apennines. Seismological data and recent geodetic studies have revealed that the 

Apennines are undergoing a NE-trending extension, with seismic deformation rates higher in the 

southern Apennines (Anderson and Jackson, 1987; Westaway, 1992; Pondrelli et al., 2002; Hunstad 

et al., 2003). 
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The seismic activity of the Apennines concentrates in the axial sector of the chain 

(http://emidius.mi.ingv.it/CPTI/) from NW-trending alignments in the northern Apennines to NNE-

trending alignments in Calabria.  

The NW-SE striking normal faults that affect the Apennines are considered responsible for the 

larger historical earthquakes (e.g., in 1688 and 1805, (Io) ≥ 10 MCS), early instrumental 

earthquakes (1962, Ms=6.1; 1980, Ms=6.9, Valensise and Pantosti, 2001) and recent normal 

faulting earthquakes. 

NE-SW striking faults dissect the Apennines (Oldow et al., 1993; Sorgi et al., 1998), and low-

magnitude earthquake swarms cluster along these faults  at the tips of the main NW–SE striking 

faults (Milano et al., 2002, 2008; Valensise and Pantosti, 2001). 

In the Central–Southern Apennines earthquakes often occur as multiple mainshock sequences, e.g., 

Irpinia (1962 and 1980), Abruzzo-Lazio (1984), Potenza (1990), and Umbria Marche (1997). The 

2009 L'Aquila sequence was composed of three mainshocks that ruptured distinct NW–SE striking 

fault segments (Di Luccio et al., 2010) mapped as disjoint segments in the surface but continuous at 

depth (Calderoni et al., 2012). Also the ongoing 2016 Amatrice seismic activity, very close to 

l’Aquila in the north, has shown a multiple mainshocks sequence (Gruppo di Lavoro INGV sul 

terremoto di Amatrice, 2016). 

At the front of the southern Apennines and in the Adriatic foreland, major E-W oriented shear zones 

have been suggested by several authors between latitudes 40.3N and 42.3N, (Di Bucci and Mazzoli, 

2003; Valensise et al., 2004, Kastelic et al., 2013). The interaction of these shear zones with the 

Apennines chain is still debated, and the presence of such a structural element in the source region 

of the 2002 Mw=5.7 Molise earthquakes focused more interest on their role. The Molise-Gondola 

shear zone and the Mattinata fault (Milano et al., 2005) are among the best- investigated right-

lateral E-W seismogenic faults and have been interpreted as reactivated inherited discontinuities. 

From a geodynamic point of view, this deformation belt has been interpreted as a right-lateral 

http://emidius.mi.ingv.it/CPTI/
http://onlinelibrary.wiley.com/doi/10.1029/2002GL015188/full#grl15906-bib-0024
http://onlinelibrary.wiley.com/doi/10.1029/2002GL015188/full#grl15906-bib-0020
http://onlinelibrary.wiley.com/doi/10.1029/2002GL015188/full#grl15906-bib-0023
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transfer zone accommodating higher roll-back velocities in the northern Adriatic slab with respect 

to the southern part (Doglioni et al., 1994).  

 

3. Earthquake Catalogue and Cluster Detection 
 

3.1 Catalogue 
We have analysed Italian seismicity for a period of over 35 years, from 1980 to March 2016. We 

used the catalogue of Lolli and Gasperini (2006) obtained by merging complementary catalogues: 

the CSTI that covers the 1981-1996 period (CSTI Working Group version 1.1), the CSI for the 

period 1997–2002 (Castello et al., 2006), and the Italian Seismic Bulletin 

(http://bollettinosismico.rm.ingv.it/) for the period January 2003 – December 2004. From 2005 we 

used data from the Italian Seismological Instrumental and Parametric Data-Base 

(http://iside.rm.ingv.it/iside/).  

All magnitudes were homogenized to ML (Lolli and Gasperini, 2006).  

The catalogue we used is mainly based on data recorded by the Italian Telemetered Seismic 

Network (ITSN) integrated with those of local networks. ITSN was started after the destructive 

1980 Irpinia earthquake and since then has been enlarged until the present configuration, counting 

of more than 470 stations. Recording was initially analogue; digital acquisition systems became 

operative after 1984. Particularly in analogue recordings, the immediate aftershocks of mainshocks 

can be masked by overlapping arrivals of waves from the mainshock and aftershocks, resulting in a 

lack of early aftershocks in the earthquake catalogues (Kagan, 2004).  

3.2 Cluster identification and classification 
The first step in the analysis was the choice of the cluster identification method. Many algorithms 

have been proposed in literature for this purpose: the most widely used are the Reasenberg (1985) 

algorithm and window-based methods (e.g., Gardner and Knopoff, 1974). Window-based methods 

define a time interval T and a circular area of radius R, where T and R are functions of the 

http://iside.rm.ingv.it/iside/
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mainshock magnitude Mm. Among all the earthquakes only the ones within the time-space distance 

T and R from the mainshock are considered as belonging to the cluster. Several different functions 

of Mm have been proposed for T and R in the literature (Gardner and Knopoff, 1974; Uhrhammer, 

1986; Knopoff, 2000; Lolli and Gasperini, 2003; Gentili and Bressan, 2008; Molchan and 

Dmitrieva, 1991). The Reasenberg (1985) method, originally developed for California, defines a 

seismic sequence as a chain of events linked to each other by spatial and temporal windows. The 

Reasenberg algorithm allows a data-driven selection of events belonging to the cluster in a non-

circular area. The main advantages of window-based methods over the Reasenberg (1985) method 

are that they are less sensitive to losing earthquakes because of failures of the network and 

catalogue incompleteness (Lolli and Gasperini, 2003) and that they can be applied more easily to a 

large amount of data. In Italy, Gentili (2010) showed that the window-based Knopoff et al. (2000) 

method, extended to smaller magnitudes as in Pace et al. (2006), outperformed Reasenberg’s 

method for Italian seismicity from 1994 to 2004. Lolli and Gasperini (2003) showed that a window-

based method outperformed Reasenberg’s method on seismicity from 1960 to 1996; they 

hypothesized that a simple window algorithm is more efficient than Reasenberg’s method for low 

quality or incomplete data, whereas Reasenberg’s method is preferable when the quality and the 

completeness of the catalogue is high. Several window-based methods have been applied to Italian 

seismicity. Lolli and Gasperini (2003) used an empirical formulation for time T and estimated R 

using Wells and Coppersmith’s (1994) scaling relationship. Pace and Peruzza (2006) and Gentili 

(2010) used an extension of the Knopoff et al. (2000) method, Gentili and Bressan (2008) proposed 

equations valid for NE Italy analysed by the OGS catalogue (expressed in duration magnitude), and 

Di Giovambattista and Tyupkin (2000) used the algorithm proposed by Molchan and Dmitrieva 

(1991) and coded by V. Smirnov. For further details, see also van Stiphout et al. (2012). 

Solving the problem of declustering a catalogue by removing the dependent earthquakes is easier 

than solving the problem of identifying each dependent event of a given cluster. The choice of the 
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cluster identification algorithm and the variation of the related parameters can have a great impact 

on the events associated with each cluster. 

In this paper, we decided to use a window-based method after several tests and their evaluation with 

respect to those obtained using single cluster analysis reported in literature. In fact, the quality of 

the catalogue in the 1980’s does not allow the use of a complex algorithm such as Reasenberg’s 

over the entire Italian territory. To estimate the radius R (in km) of the circular area around the 

mainshock where the cluster is assumed to be located, we used the Uhrhammer (1986) equation, 

which supplies a quite smaller radius with respect to other methods, such as the Gardner and 

Knopoff (1974) method (see e.g., van Stiphout et al., 2012). This choice avoids the inclusion of 

independent earthquakes in a cluster. The Uhrhammer (1986) equation is given by: 

mM
eR

804.0024.1 
              (1) 

where Mm is the mainshock magnitude. For T (in days), we adopted the Lolli and Gasperini (2003) 

empirical equation: 

)4(6060  mMT                        (2) 

This last equation supplies a longer T compared with Uhrhammer (1986) for earthquakes reported 

in the catalogue in the magnitude range [4.5, 6.5], which has the advantage of including late 

dependent events in the cluster. This procedure failed only in the case of the Gualdo Tadino 

earthquake that occurred on 3 April 1998, located in a positive stress area at the northwestern edge 

of the seismogenic volume activated by the 26 September Mw 6.0 mainshock of the 1997 Umbria-

Marche seismic sequence that was not included in the cluster. This caused a fictitious cluster around 

this earthquake with characteristics very different from the others. For this reason, Gualdo Tadino 

cluster was not included in the analysis. A further selection was made to eliminate earthquakes too 

far from Italian borders and in offshore areas that were not well monitored.  

We decided to use an operational definition of clusters that defines “mainshock” as the first shock 

of the cluster with a magnitude greater than 4.5 that is not necessarily the largest shock of the 
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cluster. We adopted this criterion to be able to apply the procedure immediately after the occurrence 

of a shock with M≥4.5 without waiting to verify if a stronger earthquake followed. We detected 100 

earthquake clusters from 1980 to 1 March 2016 (date of the Iside catalogue download).  

To classify aftershocks as type A or B, we need at least one aftershock with M≥Mm-1 for type A.  

For B clusters a completeness magnitude Mc inside the cluster Mc≤Mm-1 is needed to exclude that 

the cluster could be of type A with large aftershocks missed. Several methods exist in the literature 

for estimating the completeness magnitude. For a more detailed description of completeness 

magnitude evaluation, see Mignan and Woessner (2012). The optimal method depends on the 

individual data set. When a large database with Mc heterogeneities is analysed, the well-known 

Maximum Curvature Technique (Wiemer and Wyss 2000) can underestimate the completeness 

magnitude and the EMR method (Entire Magnitude Range method - Woessner and Wiemer, 2005) 

produces more conservative results. However, the EMR method is especially suitable when a large 

database is available, whereas Mignan (2011) showed that the Maximum Curvature Technique does 

not underestimate Mc when considering a local data set with small heterogeneities in Mc. We 

preferred to apply a rougher estimation of completeness magnitude based on the Maximum 

Curvature Technique, which is more suitable when few data items are available. We required a 

minimum of 10 earthquakes (in addition to the mainshock) in the cluster in order to take into 

account the cluster for completeness magnitude estimation. The number of earthquakes necessary 

for a stable estimate by these methods is higher than 10; Torman et al. (2014) and Schorlemmer et 

al. (2003) e.g.  used 50 earthquakes; therefore, for cluster with a number of earthquakes between 10 

and 50, we validated the completeness magnitude by using a longer time span respect to the cluster 

duration (three years when available) in order to obtain more stable results. This evaluation does not 

take into account the increase of completeness magnitude observed immediately after the 

mainshock (see e.g. Helmstetter et al. 2006), due to waveforms overlapping. However, this is 

particularly complex in Italy, where in the first hours after a mainshock, temporary stations are 

added, decreasing the completeness magnitude. Methods for completeness estimation during the 
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clusters are based on the hypothesis that the seismic network is unchanged during the cluster (see 

e.g. Hainzl, 2016). We validated the obtained completeness magnitude with an automatic estimate 

of minimum detectable magnitude based on analysis of the S/N ratio implemented at INGV 

(Marzorati and Cattaneo, 2016) using the software PQLX (McNamara and Buland, 2004; 

McNamara and Boaz, 2011). 

 Our analysis supplies generally higher completeness magnitude respect to these methods, resulting 

in a more conservative approach. Table 1 shows a selection of detected clusters for which a 

classification of A or B class was possible (47 clusters), the number of events and the completeness 

magnitude of each cluster. The error on completeness magnitude has been obtained by 100 

bootstrap.  

4. Method of Analysis 
The method of analysis is based on several features described in detail in section 4.1. The 

performance of the features was evaluated using a pattern recognition approach described in section 

4.2 to develop a classifier described in section 4.3. 

4.1 Premonitory seismicity patterns 
We tested several precursory seismicity patterns to develop an automatic system to forecast in 

advance if a cluster is of type A or B. In the past, Vorobieva and Panza (1993) proposed a set of 

functions representing premonitory phenomena for Italy for which it was necessary to have an 

observation time (T) of 10 days after the analysed strong earthquake (an earlier version of the 

method required T=40 days for many functions). However, we verified that in our database of 

Italian seismicity 71.4% of clusters of type A had the stronger aftershock before the 10-day 

restriction and their method thus could not be applied. The main idea for the subsequent strong 

earthquake forecasting of all the functions proposed by Vorobieva and Panza (1993) is the same of 

M8 and CN algorithms for the preparation phase of the first strong earthquake (see e.g. Peresan et 

al. 2005).  The strong earthquake is considered a critical point (singularity) and, in agreement with 
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the theory of non-linear dynamical systems, significant variations of observables are expected, like 

high activity of the system and irregular behaviour, that are symptomatic of the critical state of the 

system before the strong earthquake. These variations can be seen from the physical point of view 

as the increased response of the lithosphere to tectonic stress.  

We checked Vorobieva and Panza (1993) functions for a shorter and variable T (from 6 hours to 7 

days). Additionally, we proposed a set of other functions calculated in the same period and aimed to 

capture high and irregular earthquakes activity. According to Vorobieva and Panza (1993) only 

earthquakes with magnitude greater or equal to at least the mainshock magnitude (Mm) minus a 

given feature-dependent threshold are to be considered. Each function is calculated at time intervals 

[s1,s2], with s1=1 hour after the mainshock and s2 increasing to simulate the increasing information 

with time after a strong earthquake. The precursors analysed by Vorobieva and Panza (1993) for the 

earthquakes that followed the strong event were the following: 

1. N: number of events with M≥Mm-3. In this paper, we also analysed the number of events 

greater than Mm-2 (we call it N2) to avoid problems connected with completeness on the first 

hours after the mainshock.  

2. S (total equivalent source area):  





i

Mm miiS
)(

10)(             (3) 

where mi is the magnitude of the ith event in the selected time interval. S corresponds to the 

area occupied by the aftershocks normalized to the area occupied by the mainshock. Only 

aftershocks with magnitude Mm-2 are considered in this function.  

3. Vm (cumulative variation of magnitude from event to event): 

 
i

iim mmiV ||)( 1            (4) 

All the events with M≥Mm-3 are considered. 

4. Vmed (cumulative variation of average magnitude from day to day): 
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i

iimed iV ||)( 1            (5) 

where μi is the average magnitude of the mainshocks on the ith day (M≥Mm-3). 

5. Vn (cumulative variation of the number of aftershocks from day to day): 

 
i

iin nniV ||)( 1             (6) 

where ni is the number of aftershocks that occurred on the ith day (M≥Mm-3). 

 

Additionally, Vorobieva and Panza (1993) used the following: 

6. Nfor (number of foreshocks with magnitude greater than Mm-1) in the time interval [s1, s2] 

with s1=5 years and s2=3 months before the mainshock origin time and in a radius that is 1.5 

times larger than the one considered for the aftershocks. The radius is estimated by Eq. (1). 

We did not analyse the function Rmax proposed by Vorobieva and Panza (1993), the largest distance 

between the mainshock and the aftershock with magnitude M≥Mm-3, because for Mm=4.5, this 

feature is very sensitive to noise from spurious background events.  

In addition to the analysis of the Vorobieva and Panza (1993) functions, we developed a set of 

original functions corresponding to seismic precursors; some of them were modified from others 

existing in the literature, whereas some original ones are proposed for the first time in this paper: 

7. Z (linear concentration of aftershocks) is similar to the feature Z of the M8 method for M≥8 

earthquake forecasting (e.g., Kossobokov et al., 1999); the difference is that in this case 

events with magnitude ≥ Mm-3 following a strong earthquake are considered instead of 

mainshocks such as in M8. The function Z is the ratio between the average diameter of the 

source of the aftershocks divided by the mean distance between aftershocks:  

)(

)10(
)(

22.369.0

ij

m

rmean

mean
iZ

i 

            (7) 

where rij is the distance between the generic ith  and jth aftershock. We set the starting time 

s1=1 hour for the mean value calculation. 
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8. SLCum is the cumulative deviation of S from the long-term trend. The interval ],[ 21 ss  is 

subdivided into smaller intervals ],2,[],,[ 1111 dtssdtss  … ],[ 11 ndtss   where 

21 sndts   and 21 )1( sdtns  . We chose dt=6 hour and s1=1 hour. The function 

SLCum is defined as: 





 

i

ii
dti

dti
tStSabsiSLCum ]

)1(
)()([)( 1         (8) 

where dtisti  1  and S(ti) is S calculated on the time interval ],[ 1 its . This feature is 

sensitive to abrupt variations of S. 

9. SLCum2 is the cumulative deviation of S from a sliding window from the long-term trend. In 

this case, the interval ],[ 21 ss  is subdivided into a set of smaller intervals 

],2,[],,[ 1111 dtsdtsdtss  … ],,)1([ 11 ndtsdtns   and another set  

],,[],,[ 1111  ddtsdtsdss  … ])1(,)1([ 11 ddtnsdtns   21 sndts   and 

21 )1( sdtns  . We chose dt=6 hours and dτ=1 hour. SLCum2 is defined as: 

 
i d

dt
ddtisdtisSdtisdtisSabsiSLCum ]]))1(,)1(([]),)1(([[)(2 1111


  

(9) 

where S[a, b] is S calculated over the generic time interval [a, b]. This feature is sensitive to 

abrupt variations of S, but differently from SLCum, the window does not start at a fixed time 

close to the mainshock origin time. 

10. Q (Normalized Radiated Energy). This feature describes the total energy released by the 

aftershocks normalized to that of the mainshock. Some previous works have studied this 

feature (Di Giovambattista and Tyupkin, 2002) or its inverse (RES - Gentili and Bressan 

2008).  

m

i

i

E

E

iQ


)(            (10) 
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where Em is the energy of the mainshock and Ei is the energy of the ith aftershock. The 

energy E (in Joules) of an event of magnitude M is obtained by the equation 

8.4
2

3
)(10  MELog  (Gutenberg and Richter, 1956). 

 

11.  QLCum is the cumulative deviation of Q from a long-term trend. It is calculated similarly to 

SLCum for the S function: the interval ],[ 21 ss is subdivided into smaller intervals 

],2,[],,[ 1111 dtssdtss  … ],[ 11 ndtss  , 21 sndts   and 21 )1( sdtns  . We chose dt=6 

hours and s1=1 hour. QLCum is defined as: 





 

i

ii
dti

dti
tQtQabsiQLCum ]

)1(
)()([)( 1       (11) 

where dtisti  1  and Q is calculated on the time interval ],[ 1 its . 

12. QLCum2 is the cumulative deviation of Q from the long-term trend with a sliding window. 

Analogously to QLcum it is calculated similarly to QLcum2 for the Q function: in this case, 

the interval ],[ 21 ss  is subdivided into a set of smaller intervals 

],2,[],,[ 1111 dtsdtsdtss  … ],,)1([ 11 ndtsdtns   and another set  

],,[],,[ 1111  ddtsdtsdss  … ])1(,)1([ 11 ddtnsdtns   21 sndts   and 

21 )1( sdtns  . We chose dt=6 hours and dτ=1 hour. QLCum2 is defined as: 

 
i d

dt
ddtisdtisQdtisdtisQabsiQLCum ]]))1(,)1(([]),)1(([[)(2 1111


  

(12) 

where Q[a, b] is Q calculated on the generic interval [a, b]. Analogously to SLCum2, this 

feature is sensitive to abrupt variations of Q differently from QLCum, the window does not 

start at a fixed time close to the mainshock origin time. 

 



15 

 

Additionally, we added four features that depend only on the following mainshock source 

characteristics: 

13. Mainshock location 

14. Mainshock magnitude 

15. Mainshock depth 

16. Mainshock focal mechanism 

 

4.2 Precursor classification and performance evaluation 
We applied the pattern recognition approach to develop and test possible classifiers based on 

precursors able to predict the classification of a cluster. The precursor functions described in section 

4.1 supply a numerical response (features) for each cluster. These responses are organized into a 

vector ),...( 1 nppp 


, called “pattern”, that corresponds to the measured features of the cluster. We 

used different classifiers for all the features; therefore, the pattern dimension is 1, except for the 

feature based on cluster positions in the Italian territory, for which the pattern dimension is 2, 

corresponding to latitude and longitude. Our classes are two: “clusters of type A” and “clusters of 

type B”. In binary classifiers, one class is defined as positive (we chose the A class) or negative (B 

class). 

We decided to use decision trees (e.g., Breiman et al., 1984; Jang et al., 1997) that allow a clear 

understanding of the characteristics of the precursors depending on the class of the cluster (for 

details see Appendix A).  

To evaluate the performance of the classifier, we adopted the Leave-One-Out (or LOO) method (see 

appendix A). In terms of accuracy, LOO often results in high variance as an estimator for the test 

error and a high computational cost. However, in our case we had to address a very limited dataset 

and it was thus necessary to enlarge the training set as much as possible to capture the variability of 
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the patterns inside the same class. Because of the small dataset, the large computational cost of the 

LOO method was not a problem for us to consider. 

In estimating the performance of each instance of a binary classifier, four possible outcomes are 

possible: 

 True Positive (Hit): the instance is positive and is classified as positive;  

 False Negative (Miss - type II error): the instance is positive and is classified as negative; 

 True Negative: the instance is negative and is classified as negative; 

 False Positive (False alarm - type I error): the instance is negative and is classified as 

positive.  

Classifier performance was evaluated in terms of the total number of True Positive (TP), False 

Negative (FN), True Negative (TN) and False Positive (FP) in the test sets defined by the LOO 

method by using the three functions called Precision, Recall and Accuracy (e.g., Powers, 2011; for 

definitions see appendix A). These functions are defined in the interval [0, 1]; the best performance 

is obtained when a feature is 1, the worst when it is 0. 

The comparison between different features is shown by the Receiving Operating Characteristics 

(ROC) graph (Egan, 1975; Swets et al., 2000, Fawcett, 2006 – see Appendix A). Note that ROC 

graphs are usually not used in earthquake forecasting method performance assessment because they 

do not account for the fact that earthquakes are clustered in space; Molchan diagrams (Molchan 

1991; Molchan and Kagan 1992) are preferred. However, our analysis dealt with distinct clusters 

and therefore ROC graphs could be applied (for details see Appendix A).  

For every selected time interval, a different value of Precision, Recall, Accuracy and a point in the 

ROC graph were estimated for every precursor.  

4.3 Forecasting strong subsequent earthquakes  
To develop a classifier able to forecast strong subsequent earthquakes in a cluster, it is necessary to 

merge together all the information supplied by different features. Many pattern recognition methods 
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for earthquake forecasting (Vorobieva 1999; Vorobieva and Panza 1993; Kossobokov et al., 1999) 

simply count the number of precursors supplying positive results, and if the number is over a given 

threshold, the issue is classified as positive. However, Grandori et al. (1984) showed that a 

combination of precursors does not always supply more useful forecasting than a simple precursor; 

lower performance of one precursor can decrease the quality of results, and dependent precursors do 

not improve the quality of the classification. In this study, we applied an original approach that 

weights the precursors in a different way depending on their performance to handle this problem. 

To do this, we used the Informedness concept (Powers, 2011) defined as: 

RateNegativeFalseRatePositiveTruessInformedne                   (13) 

where the True Positive Rate is the ratio between TP and the total number (T) of positive instances, 

whereas the False Negative Rate is the ratio between FN and the total number (N) of negative 

instances. Informedness derived from a ROC graph ranges between -1 and 1 and quantifies how 

informed a predictor is for the specified condition (Powers, 2011). An Informedness of 1 

corresponds to the point (0, 1) in the ROC graph (ideal predictor), whereas Informedness <0 

corresponds to the lower right triangle (worse than random guessing). For each time interval, we 

evaluated the precursors performance, estimated the Informedness of each precursor and set to 0 the 

ones with Informedness <0. We defined the precursors weights as: 




j

j

i
i
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W           (14) 

where Informednessi is the Informedness of the ith precursor and Wi is its resulting weight. 

We defined the final score Sc of an instance (cluster) as: 


i

iiCWSc             (15) 

where Ci is the class assigned to the ith precursor function, 1 if the classifier classifies it as A and -1 

if it classifies it as B. Sc ranges between -1 and 1; if Sc>0 the cluster is classified as A, otherwise it 

is classified as B. 
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This approach allowed to also have an estimate of the probability of an A cluster, not only a binary 

(A or B) answer. 

We defined the probability of an A cluster as: 

2

1
)Pr(




Sc
A            (16) 

In this way, a higher number of relevant (weight>0) precursors supplying A as the resulting class 

supplied a higher probability that the cluster was of class A. 

 

5 Results 
 

We characterized the occurrence of the largest subsequent stronger earthquake considering both the 

information of the mainshock and the time of occurrence and distance of the earthquakes that 

followed the mainshock.  

5.1 Mainshock based features 
We analysed the cluster type depending on the location, magnitude, rake and depth of the 

mainshock. Figure 2 shows the ROC graph obtained by the LOO method for all the features, 

together with the number of foreshocks. These features had the advantage of being available in a 

very short time after the mainshock (INGV, e.g., supplies automatic preliminary mainshock, 

location and magnitude within 100 seconds and reviews a moment tensor solution within a few 

minutes from the mainshock). However, their performance was generally quite poor.  

The only exception was the cluster location, which supplied high True Positive Rate and small False 

Positive Rate. Figure 3 shows that the Italian territory had a quite homogeneous behaviour in terms 

of cluster type in the different regions: the North-Eastern Alps and South-Eastern Italy were 

characterized by type B clusters, and the Central Apennines, Sicily and the Adriatic Sea were 

prevalently of type A, whereas the Po Valley had an intermediate behaviour. Training on the entire 

catalogue supplied a decision tree that can be summarized into the following rules:  
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 If latitude is ≥ 44.1 the class is B 

 If latitude is <44.1: 

 If longitude is ≥15.3 the class is B 

 If longitude is <15.3 the class is A 

(See the continuous lines in Figure 3.)  

We hypothesized another subdivision: 

 If latitude is <44.1 and ≥42 and longitude ≥15.3 the class is A. 

(See the dashed line in Figure 3.) This choice would have the advantage of dividing the Adriatic Sea 

from the southern area. However, because of the low statistical relevance of this subdivision (only 

three clusters were involved), neither the final classifier nor the estimated performance considered 

this hypothesis. 

The poorer performances in Figure 2 were supplied by the feature on the focal mechanism, which 

considered the rake angle. However, Figure 4 shows that the rake angle appears partially related to 

the cluster type: most strike slip and inverse faults were of type B. The low performance of the 

feature was because of normal faults, whose classes were mixed depending on the region where the 

mainshock occurred. The Central Apennines were mainly characterized by A clusters, whereas 

southern ones were mainly characterized by B clusters (see Figure 3). For this reason, the previous 

position-based features had better results and rake based features were no longer be considered in 

this study.  

Other features we considered were depth and mainshock magnitude. The depth distribution of 

mainshocks may be related to the differences in magnitude between mainshock and subsequent 

strong earthquakes; however, the accuracy of depth estimation in the early years of the catalogues 

was too low and this feature should be disregarded. 

There was a general hint that the strongest magnitude mainshocks (Mm≥5.8) may correspond to A 

class clusters. Of five Mm≥5.8 earthquakes, 4 were of type A. The only one belonging to class B 

was the Irpinia one, in which strong aftershocks may have been hidden in the mainshock because of 



20 

 

the waveform superposition and the analogue recording in the 1980’s. Additionally, the Friuli 

earthquake cluster that occurred in 1976 (Mm=6.4), not included in this database, was of type A and 

the very recent Amatrice cluster (first strong shock on 24 August 2016 Mm=6), also not included, 

was of type A. Because of the extremely low number of observations over the threshold, these 

results cannot be confirmed from a statistical point of view, and a larger dataset should be used. The 

performance of this feature is affected by the fact that for M<5.8 the two classes are mixed and the 

developed decision trees may be complex. If the hypothesis that for Mm≥5.8 clusters are all type A 

will be confirmed in future work, this feature could be used as a strong condition for B class option 

elimination (if Mm>5.8 the cluster could be automatically classified as A).  

We found analogous results that could not be confirmed from a statistical point of view for the 

feature Nfor. All the clusters with Nfor≥2 were of type A. For this feature the False Positive Rate was 

equal to 0; however, the number of clusters for which Nfor≥2 was very low (4 clusters). If this result 

will be confirmed on a larger dataset, this would be a strong condition for B class option elimination 

(if Nfor≥2 the cluster could be automatically classified as A). 

5.2 Features based on subsequent earthquakes 
 

Other features are based on the ongoing seismic activity after the mainshock. The analysis of the 24 

selected type A clusters showed that 67% of the stronger subsequent earthquakes occurred before 

10 days. To compare the performance of precursors we selected 10 different time periods (in days: 

[0, 0.25] [0,0.5] [0,0.75] [0,1], [0, 2] … [0, 7]) and we calculated the values of all the tested 

precursors for each period.  

Because of limitations connected with completeness magnitude and the fact that we could 

“forecast” a cluster as type A only if the strongest aftershock occurred after the end of the selected 

period, the number of available clusters was low, ranging from 24 (10 A clusters and 14 B clusters) 

for the time interval [0,0.25] to 19 (5 A clusters and 14 B clusters) for the time interval [0,7]. 
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Figure 5 shows an example of the performance of a feature (N2) at different time intervals. The 

black lines show the values of Precision Recall and Accuracy if N2 were calculated for the entire 

period examined. Accuracy should never be lower that the line corresponding to the B clusters 

percentage; otherwise the classifier would perform worse than one that always classified the 

clusters as B. All the parameters should be greater than 0.5 (50% correctly classified, i.e., a random 

classifier for a balanced dataset). For several features, the performance changed with time and for 

the shortest time of observation they were poorer (e.g., in Figure 5 performance after 6 hours was 

lower than after 12). This trend was related to the lower number of earthquakes released in a shorter 

time interval leading to poorer statistics. Another possible reason was the higher percentage of type 

A clusters for shorter time intervals with respect to longer ones mainly populated by Type B 

clusters. Imbalanced datasets are known to affect classifier performance. However, performance 

was  lower when the time lapse was increased (in Figure 5 for T>12 hours). This trend could have 

been caused by several factors, such as the influence of the background seismicity and activation of 

nearby fault segments, particularly in the case of larger earthquakes, or, more simply, it may have 

been because of the smaller available database and therefore the lower ability of the classification 

system to discriminate between classes.  

Red lines correspond to the performance if only the information on the first 12 hours was used for 

all time periods longer or equal to 12 hours. Performance did not decrease as in the case in which all 

the available information was used. Fluctuations in the values were no longer connected with the 

feature value but only to the changes in the dataset. 

The time at which we obtained best performance changed from one feature to another; for most 

features the best performance was obtained for time intervals less than or equal to 2 days, whereas 

for Vm and Vmed longer time intervals were necessary. For each feature we assumed a maximum s2 

corresponding to the best performance of the feature (hereafter S2).  

Figure 6 shows the ROC graph obtained by the LOO method for different time periods; for shorter 

time periods, not all of the features could be calculated: SLcum, SLcum2, QLcum, QLcum2 needed 
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at least 12 hours, and Vn and Vmed needed 3 days. Given a feature, its performance is shown only for 

s2≤S2. From the analysis of Figure 6 we can conclude that the performances of features Q, S, SLcum 

and SLcum2 were among the best, depending on the considered period. By considering only 

functions with Informedness>0 and using all the available dataset we could develop one-node 

decision trees for each feature based on subsequent earthquakes. In other words, a simple threshold 

was enough to discriminate between class A and class B. 

Table 2 shows the value of S2 for each feature and the values of the threshold for each feature for 

s2≤ S2 calculated on the entire available dataset. For the Vmed feature, the class was A if Vmed was 

smaller than the corresponding threshold and B if Vmed was greater or equal. For all the other feature 

vice-versa. For Vmed only the threshold for reliable values of the performance (better than random) 

are shown. When longer time intervals were analysed, the feature was calculated using only the 

information on the time interval [s1, S2]. Note that for s2=6 hours SLcum, SLcum2, QLcum, and 

QLcum2 could not be calculated because of the choice of s1=1 h and dt=6 hours; for s2=12 hours 

SLcum≡SLcum2 and QLcum≡QLcum2. 

  

5.3 Scoring of the features for future forecasting 
 

In previous papers, a voting approach was applied in which all the features contributed with equal 

weight and the positive class was assigned if the number of votes was over a given threshold. 

However, this approach often causes an overweighting of less-relevant features with respect to the 

most relevant ones.  

We decided to develop a classifier that considered the different performances. To this end, we 

considered the Informedness of each feature (see Figure 7), and we derived the scores of each 

feature as described in section 4.3. We used the entire available dataset to develop a classifier for 

future clusters. Using the classification of each decision tree and the corresponding weight it was 

possible to determine the probability that a given cluster would be of type A (see section 4.3). To 
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develop a robust classifier, we eliminated the features with Informedness < 0.2 and used the 

Informedness calculated in the time interval [s1,S2] for all the intervals [s1,T] with T>S2. The feature 

QLcum2 was not used in the final classifier because it supplied the best results at a time S2=12 

hours when it coincided with QLCum. SLcum2 was used for T>12 hours. The only feature we used 

based on mainshock information was the epicentral position (Informedness=0.49) because the 

others had Informedness<0.2. Table 3 shows the weights we adopted for each feature.  

In order to verify that the previous result do not depend on the choice of declustering windows of 

eq. (1) and (2) we applied, we repeated the whole procedure using Gardner and Knopoff (1974) 

equations for R (in km) and T (in days):   
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R                      (17) 
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Gardner and Knopoff (1974) equations supply larger R (for Mm≤6.5) and T than the ones in eq. (1) 

and (2), causing the arbitrary introduction of background seismicity. Table 1 and 2 in Electronic 

Supplements show the comparison between the values of Informedness with both declustering 

methods. The performances are very similar for all the features with little better performances using 

the declustering we adopted, confirming the stability of the method. The only feature for which the 

Informedness never reaches positive values is Vmed; this feature is therefore very sensitive to 

declustering method, and should be accurately checked if the method is applied to a different 

region/catalogue. For all the other features the thresholds are the same of Table 2, confirming the 

stability of the applied method. 

Figure 8 shows a test used on the entire dataset to verify how the data corresponded to the 

developed model. The assigned probability to have an A cluster was evaluated for all the B (blue 

curves) and A (red curves) clusters of our dataset. Each cluster is represented by a different curve. It 

is important to note that (unlike the results presented in Figg. 5, 6 and 7) this is not a reliable 

estimate of the method performance because the training test and the test set coincided. However, 
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this application may be useful to outline clusters with an anomalous behaviour with respect to the 

developed model. Moreover, it provides an estimate of the upper limit of the performance possible 

with an independent test set. The worst performance was obtained immediately after the mainshock 

occurrence when only the location of the mainshock could be used (10 out of the 47 clusters were 

misclassified – see Table 3 in Electronic Supplement). Using an interval of 6 hours, only two A 

class clusters were misclassified, with a probability of A being 0.43 and 0.45. The total number of 

clusters available was 24. For intervals greater or equal to 18 hours, we had a wrong classification 

in only one case: the Reggio Emilia earthquake of 15 October 1996 (Di Giovambattista and 

Tyupkin 1999), when a B cluster was wrongly classified as A; the probability of A ranged from 

0.53 to 0.62, depending on the interval used. The high percentage of right classifications, with the 

probability values far from 0.5, together with the fact that wrong classifications were close to 0.5, 

suggested the adoption of a fuzzy approach in which intermediate values of probability, i.e., 

Prob(A) between 0.4 and 0.6 (see black lines in Figure 8), do not contribute to the  classification. 

Also in this case, we checked the performances of the method using Gardner and Knopoff (1974) 

declustering. Tables 3 and 4 in the Electronic Supplements show the values of Prob(A) for both 

methods, in all the considered time intervals for each cluster. Due to the merging of different 

clusters and to changes in completeness magnitude and due to the larger area and time span 

considered, there are few differences in the clusters with smallest magnitude mainshock 

identification; in particular, 2 out of 47 clusters are not detected by the different declustering 

method and 4 new ones are identified. All these differences  concern the analysis of the mainshocks 

characteristics only, because no one of these 6 clusters has enough productivity/completeness 

magnitude to be checked for longer time span. For all the other clusters the performances remain 

very similar, showing once again the stability of the method for different choices of declustering.  
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6 Summary and Discussion 
 

In this paper, we developed a new method based on pattern recognition for a fast estimate of the 

probability that, given a strong earthquake, another strong one will follow. We analysed the 

characteristics of the mainshock in terms of position, magnitude and focal mechanism, together 

with a spatio-temporal analysis of both foreshocks and seismicity in the first hours after the 

mainshock. The study was performed by analysing each feature separately, classifying them by a 

decision tree and evaluating the performances by a ROC graph based on the LOO method. The 

performance estimates allowed us to develop a new multi-feature classifier in which each feature is 

weighted depending on its performance. The performance of this new classifier should be evaluated 

on future earthquakes.   

Regarding the features based on mainshock characteristics, good results were obtained by 

considering the cluster position; in particular, the Central Apennines were characterized by clusters 

of type A. This may be explained by the presence of fluids in the area. Swarms that are type A 

clusters have often been assumed to result from fluid intrusion in seismogenetic areas (Hainzl, 

2004). In a study on this area, Miller et al. (2004), proposed that aftershocks of the 1997 Col Fiorito 

cluster were driven by the coseismic release of fluids by ruptures created by the larger events. 

Zhuang (2015a) and Zhuang et al. (2017) proposed a zonation of Italy into different regions with 

different seismic characteristics in terms of ETAS parameters by using a weighted likelihood 

estimator to obtain stable estimates of spatial changes of the parameters (Zhuang, 2015b). The 

zonation is very similar to our subdivision into A and B regions.  

With respect to the focal mechanism, most clusters with strike slip and inverse mechanisms in our 

database were associated with type B clusters, whereas, for normal faults, the cluster class also 

depended on the area where it was located (see Figure 4). The dependence of the magnitude of the 

aftershocks on the rake angle was previously analysed by Zakharova et al. (2013), who found a 

higher seismic moment ratio (the difference of cumulative moment of aftershocks minus cumulative 
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moment of foreshocks, all normalized to the mainshock magnitude) for normal faulting earthquakes 

compared with strike slip earthquakes. These researchers’ findings are therefore compatible with 

our results. However, the focal mechanism has also been related to the b-value (Gulia and Wiemer, 

2010, Schorlemmer et al., 2005); the highest b-values have been found for normal faults, 

intermediate values for strike-slip faults, and the lowest ones for inverse faults. Because the 

magnitude of the strongest aftershock is inversely proportional to the b value (Shcherbakov and 

Turcotte, 2004), normal faults should have higher Δm with respect to inverse faults, in contradiction 

to our findings, in which most clusters associated with inverse faults were of type B, whereas many 

normal fault clusters were of type A. This contradiction may be explained by the differences in 

productivity a of the clusters (the strongest aftershock magnitude m*=a/b, Shcherbakov and 

Turcotte, 2004) or to changes in the values of b in time throughout the cluster (see e.g., Passarelli et 

al., 2015). Tahir and Grasso (2015) found a lower aftershock rate for strike slip faults compared 

with normal faults. This is compatible with our result that most clusters with the mainshock 

characterized by the strike slip focal mechanism were of type B. Because many different factors 

affect the value of Δm for the same focal mechanism, we prefer to base our algorithm on the cluster 

position feature, which supplies better results (see section 5.1). 

A relation between the cluster class and the mainshock magnitude Mm (the class is A if Mm≥5.8) or 

the number of foreshocks with magnitude ≥Mm-1 (the class is A if Nfor≥2) was evidenced, although 

the statistical basis was too low. It may be hypothesized that larger earthquakes activate more 

complex tectonic structures, such as contiguous faults, or apparently disjoint segments contiguous 

in depth, increasing in this way the probability of a subsequent strong event. On the other hand, 

Båth law (Båth, 1965) states that Δm is approximately constant and does not depend on Mm. Several 

studies have outlined the large variance of Δm (e.g., Shcherbakov and Turcotte, 2004); however, the 

dependence on Mm is still debated. Tahir et al. (2012), analysing the USGS global earthquake 

catalogue, found no dependence of Δm on the magnitude of the mainshock for earthquakes in the 

magnitude range [7, 8.3] (larger than ours).  
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The analysis of early subsequent earthquakes was performed using functions existing in literature or 

developed for this paper. Our analysis indicates that the features based on the magnitude of the 

events (such as the trend of radiated energy and total equivalent source area in time) together with 

the features based on their number (cluster productivity) supply the best results and provide a robust 

tool to hypothesize if an earthquake will be followed by a large aftershock. The dependence of Δm 

on the number of recorded subsequent earthquakes (lower Δm if N is larger) was also found by 

Chan and Wu (2013)  by analysing 706 clusters in Taiwan, even if their results could have been 

biased by the spatial variation of the completeness magnitude. Gentili and Bressan (2008) related 

the inverse of Q to Δm based on a small dataset of seismic sequences from 1977 to 2007 in NE 

Italy. 

Our results are based on a limited number of available clusters. Nonetheless, the test by the LOO 

method and the good capability of the method to discriminate the two classes suggest that our 

results are not due to limited statistics. The results of this paper may be used to develop improved 

region-specific hazard estimates for large subsequent earthquakes.  

A first partial test of the method resulted from a very recent earthquake, not included in the 

database, which struck Italy during the writing of this paper: the 24 August 2016 ML=6 Amatrice 

earthquake (preliminary data are available). One hour after the mainshock, a strong earthquake 

(M=5.3) followed the mainshock. The cluster was therefore of type A. Unfortunately, because of 

the short time between the mainshock and the subsequent strong earthquake none of the features 

based on subsequent earthquakes could be applied. However, the feature based on the mainshock 

could supply a first estimate: the cluster happened in the Central Apennines, a type A region based 

on our results, and the mainshock magnitude was greater than 5.8, compatible with the hypothesis 

of a type A cluster. However, the number of foreshocks did not supply any information because no 

foreshock with magnitude ≥Mm-1 was recorded before the mainshock, and the mechanism is 

normal, i.e., a mechanism for which the cluster class is region-dependent. 
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Table Captions 

 
 

Table 1: Detected clusters. Mm=mainshock magnitude, Latitude and Longitude=mainshock latitude 

and longitude, Naft=number of aftershocks in the cluster, Mc=Completeness magnitude, 

Type=cluster classification, Dm=difference in magnitude between the mainshock (see operative 

definition of mainshock in the text) and the strongest subsequent earthquake.  

Table 2: Values of thresholds and of S2 for each feature. Thresholds are shown only for s2≤S2 and 

for Informedness>0. 

Table 3: Weights for each feature and time interval for the classification. 

 

Figure Captions 
 

Figure 1: Major Italian earthquakes from CPTI11 (Rovida et al., 2011) and seismogenic sources 

from DISS Working Group (2015). N. Apennines = Northern Apennines; C. Apennines = Central 

Apennines; S. Apennines = Southern Apennines. 

Figure 2: ROC graph for mainshock-based features 

Figure 3: Epicentral distribution as a function of the class. Red stars: A class clusters; Blue stars: B 

class clusters. Rows: area subdivision by decision tree 

Figure 4: Rake angle as a function of the difference Dm between the mainshock and the strongest 

subsequent event magnitude. Orange and blue points represent the rakes of the two focal planes. 

Red rectangles correspond to strike-slip mechanisms, green to normal and blue to inverse. 

Figure 5: Feature N2 performance. Black lines: the feature is calculated for every time interval. Red 

lines: the feature is calculated only for 6 and 12 hours and kept constant for longer periods.  

Figure 6:  ROC diagram for the selected time intervals. The time interval of 7 days is not shown 

because S2 ≤ 6 days for all features. The observation time (s2) is shown at the top of each figure.  
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Figure 7: Informedness of features for different time intervals. 

Figure 8: Prob(A): Probability to have an A cluster. Each line corresponds to a different cluster. 

Red lines: type A clusters. Blue lines: type B clusters. 
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Tables 

 

 

Date Time Mm Latitude Longitude Naft Mc Type Dm 

23/11/1980 18:34:52 6.5 40.8 15.37 41 3.0±0.3 B 1.6 

15/08/1982 15:09:54 4.5 40.94 15.32 2 - A 1 

29/04/1984 05:02:59 5.2 43.2 12.59 135 2.0±0.1 A 1 

07/05/1984 17:49:42 5.8 41.67 13.82 112 2.5±0.1 A 0.6 

08/01/1986 00:27:21 4.5 42.69 15.62 11 4.2±0.5 A 0.3 

26/04/1988 00:53:45 5.1 42.21 16.66 43 3.1±0.2 A 0.4 

05/05/1990 07:21:17 5.6 40.65 15.88 40 2.3±0.1 B 1.1 

05/06/1993 19:16:17 4.5 43.12 12.72 73 1.7±0.2 B 2 

30/09/1995 10:14:34 5.4 41.79 15.97 34 1.9±0.1 B 1.7 

10/10/1995 06:54:22 4.8 44.11 10.00 17 1.8±0.2 B 2 

13/04/1996 13:00:22 4.6 46.32 12.59 20 1.3±0.3 B 1.1 

15/10/1996 09:56:00 5.5 44.8 10.68 70 2.0±0.2 B 1.4 

12/05/1997 13:50:15 4.5 42.76 12.53 157 1.7±0.1 A 1 

26/09/1997 00:33:13 5.6 43.02 12.89 550 1.6±0.1 A -0.2 

12/04/1998 10:55:33 5.6 46.28 13.57 24 1.7±0.1 B 1.4 

09/09/1998 11:28:00 5.6 40.06 15.95 47 1.9±0.1 B 1.9 

29/12/1999 20:42:35 4.6 46.61 10.22 12 1.8±0.7 B 1.9 

21/08/2000 17:14:28 4.6 44.77 8.43 35 1.8±0.1 A -0.2 

06/09/2002 01:21:29 5.6 38.38 13.65 164 2.1±0.1 A 1 

27/10/2002 02:50:27 4.8 37.77 15.11 116 2.7±0.2 A 0.5 

29/10/2002 10:02:24 4.5 37.61 15.14 37 2.4±0.1 A 0.4 

31/10/2002 10:32:59 5.4 41.72 14.89 122 1.8±0.1 A 0.1 

27/03/2003 16:10:38 4.7 43.09 15.42 143 3.2±0.1 A -0.7 

11/04/2003 09:26:58 4.7 44.76 8.87 15 2.5±0.2 B 1.4 

14/09/2003 21:42:53 5 44.26 11.38 208 2.2±0.1 B 1.4 

12/07/2004 13:04:06 5.2 46.36 13.64 48 2.2±0.2 B 1.8 

24/11/2004 22:59:39 5.2 45.69 10.52 11 2.1±0.3 B 2.5 
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29/05/2006 02:20:06 4.5 41.8 15.9 51 1.7±0.2 B 1.7 

23/11/2006 13:31:54 4.6 35.88 12.68 3 - A 1 

01/03/2008 07:43:13 4.5 44.06 11.25 127 1.9±0.1 A 0.5 

23/12/2008 15:24:22 4.9 44.54 10.35 230 2.3±0.1 A 0.5 

05/04/2009 20:20:53 4.5 44.23 11.91 45 1.6±0.2 B 1.2 

06/04/2009 01:32:40 6.1 42.34 13.38 208 1.4±0.1 A 0.7 

07/09/2009 21:26:30 4.6 38.73 14.04 8 - A 1 

23/06/2011 22:02:47 4.5 38.06 14.78 285 1.8±0.2 A 0.6 

17/07/2011 18:30:27 4.5 45.01 11.37 11 2.3±0.4 B 1.5 

25/01/2012 08:06:37 4.9 44.87 10.51 22 2.1±0.1 B 1.3 

27/01/2012 14:53:13 4.9 44.52 10.01 10 2.5±0.4 B 1.8 

20/05/2012 02:03:50 5.8 44.9 11.26 424 2.2±0.1 A 0.2 

28/08/2012 23:12:15 4.5 38.2 15.73 17 1.6±0.2 A 0.1 

25/10/2012 23:05:25 5.2 39.88 16.02 177 1.4±0.1 B 1.6 

25/01/2013 14:48:18 4.8 44.16 10.45 125 1.4±0.1 B 1.5 

16/02/2013 21:16:09 4.8 41.71 13.57 22 1.2±0.2 B 1.6 

21/06/2013 10:33:56 5.1 44.09 10.06 230 1.2±0.1 A 0.6 

21/07/2013 01:32:24 4.9 43.51 13.72 73 1.8±0.1 A 0.7 

29/12/2013 17:08:43 5 41.4 14.43 75 1.4±0.1 A 0.8 

07/04/2014 19:27:00 4.7 44.5 6.71 44 1.2±0.1 B 1.4 

Table 1 
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Feature 

 

S2 

Threshold 

 

6 h 

 

12 h 

 

18 h 

 

1 day 

 

2 days 

 

3 days 

 

4 days 

 

5 days 

 

6 days 

N 12 h 6.5 7.5        

N2 12  h 0.5 3.5        

S 12 h 0.016 0.016        

Z 12 h 0.004 0.004        

SLCum 2 days - 0.1044 0.145 0.145 0.24     

QLCum 1 day - 3.1 4.1 4.1      

SLCum2 2 days - 0.1044 0.1044 0.1044 0.1044     

QLCum2 12 h - 3.1        

Q 12 h 0.002 0.002        

Vm 18 h 5.0 5.6 8.6       

Vmed 6 days - - - - - - - - 0.9 

Vn 6 days - - - - - 7.5 15.5 15.5 19.5 

 

Table 2 

 

 0 h 6 h 12 h 18 h 1 day 2 days 3 days 4 days 5 days 6 days 7 days 

Epicenter 1.00 0.15 0.08 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 

N 0.00 0.18 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 

N2 0.00 0.10 0.12 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09 

S 0.00 0.12 0.14 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 

Z 0.00 0.16 0.12 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09 

SLCum 0.00 0.00 0.09 0.09 0.09 0.11 0.11 0.10 0.10 0.10 0.10 
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QLCum 0.00 0.00 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.09 

SLCum2 0.00 0.00 0.00 0.09 0.09 0.11 0.11 0.10 0.10 0.10 0.10 

QLCum2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Q 0.00 0.12 0.14 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 

Vm 0.00 0.18 0.10 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09 

Vmed 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.04 

Vn 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.05 0.05 0.06 0.06 

 

Table 3. 
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Figures 
 

 
 

Figure 1. 
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Figure 4. 
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48 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Observation Time 4.00 [days]

random

V
med

V
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Observation Time 5.00 [days]

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 

 

random

V
med

V
n

 

(g)                                                              (h) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Observation Time 6.00 [days]

random

V
med

V
n

 

Figure 6. 
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Appendix A 

 
One possible approach to the classification problem is to build a learning classifier. A learning 

sample (training set) P consists of data )},),...(,(),,{( 2211 nnppp 


 where ip


 (i = 1,…, n) are the 

patterns corresponding to different classes i  ( i  may be “A” or “B”). A decision tree (e.g., 

Breiman et al, 1984, Jang et al., 1997) is constructed (trained) by defining repeated splits of subsets 

of the measurement space X into two or more descendant subsets, beginning with X itself. Because 

we have two output classes the decision trees we developed are binary classifiers called “binary 

decision trees”.  

The training algorithm we adopted is the following: 

1. The training set is processed by a decision node that is a unit that decides how to subdivide 

the training set in two groups corresponding to the two classes of the problem. If the training 

set is composed of less than three instances of one of the classes, the node becomes a leaf 

node labelled with the class with more instances and the training ends for that subset. 

Otherwise, the training set is split into two disjoint subsets. 

2. A new level of 2 nodes (children nodes) is added to the tree. Each subset is assigned to a 

different child. If one or more subsets are entirely assigned to a class i, the corresponding 

children node becomes a leaf node labelled with the class i and the training ends for that 

subset.  

3. The nodes corresponding to subsets composed of different classes are transformed into 

decision nodes trained by the corresponding subset patterns. 

4. The procedure continues in a recurrent way following the steps 1-3 for all children.  

5. When all patterns reach a leaf, the algorithm ends. 



51 

 

Each leaf has a unique path that starts with the root node and ends with the leaf that corresponds to 

a splitting rule that is a conjunction of all the splitting conditions imposed by the decision-making 

units along the path.  

When the training is ended, the tree structure together with all the conditions imposed by the 

decision nodes are stored and used as a classification system (classifier). The classifier can be used 

to classify new instances not used for the training. In our case, given a new cluster, its features can 

be evaluated and classified with the previously trained corresponding decision tree. The 

classification algorithm is the following: 

 

Let R be the root node of the tree, a pattern to be classified, and v the current node.  

1. Set v=R.  

2. If v is a leaf node with label i, then the pattern p


 is assigned to the class i and the algorithm 

ends. 

3. If v is a splitting node, set v = v l or set v = vr, where vl and vr are the left and right child node, 

depending on the splitting rule results for that pattern, and go to 2. 

The decision trees we developed are usually referred to only one precursor. The resulting decision 

trees are thus defined by one or more thresholds on the analysed feature to subdivide the two 

classes.   

To evaluate the classifier performance, it is necessary to define a test set, disjoint from the training 

set, in which each instance (corresponding to a given cluster) has a known class. The classifier 

output for the instance is subsequently compared with its class. In binary classifiers one class is 

defined as positive (we chose A class) or negative (B class). Theoretically, both the training set and 

the test set should be representative of all the characteristics of A and B clusters. In real 

applications, where only a finite and small set of examples is available, it is well known that 

learning the parameters of a prediction function and testing it on the same data is a methodological 

mistake: the final model usually overfits the training data or, in other words, it makes an overly 
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complex model to explain idiosyncrasies in the data under study that often have some degree of 

error or random noise. This reduces the generalization capability and therefore the predictive power; 

on the other hand, the error rate estimate is overly optimistic (lower than the true error rate) because 

the model would just repeat the labels of the samples that it has just seen.  

It is therefore necessary to define an independent test set on which to perform the evaluation of the 

method. A possible solution to this problem is cross-validation. Cross-validation is a model 

validation technique for assessing how the results of a statistical analysis will generalize to an 

independent data set. In the basic approach, called k-fold cross-validation, the training set is split 

into k smaller sets, the model is trained using k-1 of the folds as training data and the resulting 

model is validated on the remaining part of the data. The cross-validation process is later repeated k 

times with each of the k subsamples used exactly once as the validation data.  The Leave-One-Out 

(or LOO) method is a case of k-fold cross-validation in which each learning set is created by taking 

all the samples except one, the test set being the sample left out. The procedure is repeated for all of 

the samples (see Fig. 1). 

Therefore, for n samples, we have n different training sets and n different test sets. LOO is an 

exhaustive cross-validation method, i.e., a method that learns and tests on all possible ways to 

divide the original sample into a training and a validation set. Different from the k-fold cross-

validation, n models from n samples are built instead of k models, where n>k and each is trained 

on n-1 samples rather than (k-1)n/k. Assuming that k<<n, LOO is more computationally expensive 

than k-fold cross validation. In terms of accuracy, LOO often results in high variance as an 

estimator for the test error. Intuitively, because n-1 of the n samples are used to build each model, 

models constructed from folds are virtually identical to each other and to the model built from the 

entire training set. However, in our work the LOO was preferable with respect to other k-fold cross-

validation methods because of the small database involved.  

In pattern recognition applications, the information on the performance of a binary classifier is 

stored in a two-by-two matrix called the confusion matrix (or contingency table) constructed using 
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the counts of the number of outcomes of the classification (i.e., TP, FN, TN and FP are the numbers 

of True Positives, False Negatives, True Negatives and False Positives, respectively). 

Fig. 2 shows the confusion matrix. The numbers along the major diagonal represent the correct 

decisions made, and the numbers off this diagonal represent the errors—the confusion—between 

the various classes.  

Another common way of evaluating the performance of a classifier is evaluating Recall, Precision 

and Accuracy. 

The Recall (also called true positive rate, hit rate, or sensitivity) is defined as 

 

FNTP

TP

P

TP

Positives

classifiedcorrectlyPositives
call


Re         (1) 

The Precision (also called positive predictive value, true positive accuracy or confidence) is defined 

as: 

FPTP

TP

Y

TP

positiveasClassified

classifiedcorrectlyPositives
ecision


Pr        (2) 

Recall and Precision and their combinations focus only on the positive examples and predictions 

and neither of them captures any information about how well the model handles negative cases, i.e., 

TN is disregarded. For this reason, to supply a complete description of the classifier performances it 

is necessary to also evaluate the Accuracy, which considers the classification of negatives. The 

Accuracy (also called Rand Accuracy) is defined as: 

TNFNFPTP

TNTP

NP

TNTP

All

classifiedCorrectly
Accuracy









       (3) 

In pattern recognition applications, the performances are usually visualized by a Receiver Operating 

Characteristics (ROC) graph (Egan, 1975; Swets et al., 2000). This type of graph is used for 

organizing and selecting classifiers based on their performance (Fawcett, 2006). These 

characteristics have become increasingly important in the presence of unbalanced classes (Fawcett, 

2006), i.e., cases, such as the one we are dealing with, in which one class has more instances with 
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respect to the other. ROC does not consider the Precision, but only the Recall (True Positive Rate) 

and the False Positive Rate (Fallout or Hit Rate) defined as: 

TNFP

FP

N

FP

negativesTotal

classifiedyincorrectlNegatives
RatePositiveFalse


       (4) 

In other words, a ROC graph depicts relative trade-offs between benefits (true positives) and costs 

(false positives). Fig. 3 shows a ROC graph. 

 

A discrete classifier produces a point of coordinates (False Positive Rate, True Positive Rate) in the 

ROC graph: 

 The point (0,0) corresponds to a classifier never issuing a positive classification; therefore, 

the classifier commits no false positive errors but also gains no true positives. In our tests, if 

we verified the performance of a constant feature, the decision trees for such features were 

simply one leaf classified as B because class B (negative) was larger than class A (positive). 

This classifier thus classifies all the test patterns into class B. 

 Point (1,1) represents a classifier unconditionally issuing positive classifications. In our 

case, we should have had a low Accuracy and Precision corresponding to this point because 

of the large number of B samples. 

 The point (0,1) represents a perfect classification.  

 The point (1,0) represents a classifier that classifies all positive instances in the negative 

class and all negative instances in the positive class  

 The diagonal represents random guessing. Any classifier that appears in the lower right 

triangle performs worse than random guessing. 

One point in ROC space is better than another if it is closer to the point (0,1) - higher true positive 

rate and/or low false negative rate. Mochan diagrams (Molchan 1991, Molchan and Kagan 1992) 

are generally preferred in ROC graphs in earthquake forecasting methods evaluation because they 

account for the fact that earthquakes are clustered in space. In a Molchan diagram the Hit rate is 
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substituted by the Miss Rate (that is, 1-hit rate, i.e., Inverse Recall) whereas the false positive rate is 

substituted by the fraction of the space time region occupied by an alarm. This approach is not 

useful in our analysis because we are interested in predicting only if a strong aftershock will follow 

inside a cluster and not where or when, as in the strong mainshock forecasting approach. For this 

reason, we adopted the ROC graph, together with Precision, Recall and Accuracy information, to 

assess the quality of our classifiers.  

 

Figure Captions 
 

Fig. 1: A schematic representation of the LOO method. 

Fig. 2: Confusion matrix. 

Fig. 3: The ROC graph. 
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Figure 2. 
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Figure 3. 

 

 

 


