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Abstract 9 

In this paper, we describe a Neural Network method for the fast discrimination 10 

between local earthquakes and regional and teleseismic earthquakes by using seismic 11 

records from a single station. Neural networks are data-driven nonlinear classifiers that 12 

learn from experience and can model real world complex relationships. For the 13 

discrimination task we implement a two-layer feed-forward Multi Layer Perceptron 14 

(MLP). MLP is a supervised technique that accomplishes the learning process by using a 15 

pre-classified dataset for the training phase. The dataset includes 70 teleseisms, 79 regional 16 

earthquakes and 103 local earthquakes. The seismic events are recorded at a single station, 17 

equipped with a short period sensor. We parameterize the seismograms in the frequency 18 

domain, using the Linear Predictive Coding (LPC).  This technique is mostly used in audio 19 

signal processing for efficiently encoding frequency features of digital signals in a 20 

compressed form. The obtained spectral features, or LPC coefficients, are the input to the 21 

neural model. We carry out several tests by shortening from 4 to 1 second the time window 22 

duration used for the LPC analysis. The proposed algorithm achieves a correct 23 

classification of 98.5% and 97.7% in discriminating local versus regional and local versus 24 

teleseismic earthquakes, respectively, on 1-second time window. These results indicate that 25 

our discrimination algorithm can be profitably exploited in automatic analysis of seismic 26 

data, which require fast responses, such as seismological monitoring systems and 27 

earthquake early warning systems. 28 

 29 
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Introduction 30 

The problem of fast discrimination among different seismic events is crucial for 31 

timely communications to Civil Protection Authorities and to people exposed to natural 32 

hazards  (earthquakes, tsunamis, volcanic eruptions and floods). Current technology allows 33 

to perform advanced automatic analysis to pick seismic phases (Allen 1978; Rowe et al., 34 

2002; Lomax et al., 2012 ), to locate earthquakes (Johnson et al., 1995; Olivieri and 35 

Clinton, 2012; www.earthwormcentral.org/; www.seiscomp3.org), to estimate the shaking 36 

intensity in the area where the earthquake occurred (Wald et al., 1999; Earle et al., 2009), 37 

to locate volcanic seismic events (Wassermann and Ohrnberger 2001; Giudicepietro et al. 38 

2009; De Cesare et al. 2009; Olivieri and Clinton, 2012), and VLP events (Auger et al., 39 

2006) and to classify seismic events (Langer et al., 2006; Esposito et al., 2006; Ochoa et 40 

al., 2014; Mousavi et al., 2016; Kortström et al., 2016; Vargas et al., 2016). A critical 41 

aspect of all of these advanced automatic analyses is a fast and robust recognition of 42 

seismic event types. 43 

In the last decades, the scientific community has made considerable efforts to 44 

develop Earthquake Early Warning (EEW) systems, aimed to warn people, allowing them 45 

to take protective actions several seconds before the arrival of potentially damaging 46 

seismic waves (Basher 2006; Böse et al., 2008; Alcik et al., 2009; Allen et al. 2009, Zollo 47 

et al. 2009; Given et al. 2014;  Zollo et al. 2014). For these advanced seismic systems too, 48 

the problem of a fast and robust seismic event discrimination is critical, in order to avoid 49 

false alarms. For this reason, researchers have focused their attention on improving the 50 

robustness and reliability of fast automatic seismic analyses.  51 

In this study we deal with discrimination among teleseisms, regional earthquakes and 52 
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local earthquakes, according to the traditional seismogram classification based on the 53 

epicentral distance (Lay and Wallace, 1995). This discrimination is important because it 54 

allows to recognize events that occurred outside the network of seismic stations, such as 55 

teleseismic and distant regional earthquakes, that are among the most common causes of 56 

failure of real-time earthquake systems (Lee and Stewart, 1981; Nakamura et al. 2009;  Li 57 

et al., 2013; Zschau and Küppers, 2013, Zollo et al. 2016;  Errata for Latest Earthquakes 58 

(https://www.usgs.gov/)). 59 

To this aim, we propose a neural classification of seismograms recorded at a single 60 

station, which can be used along with other methods based on the information produced by 61 

a seismic network of many stations (e.g. Earthworm, (Johnson et al., 1995)) to attain a 62 

In the last years, artificial 63 

neural networks have been successfully used to approach seismic signal automatic 64 

classification (Wang and Teng 1995; Falsaperla et al., 1996; Ezin et al., 2002; Avossa et 65 

al., 2003; Scarpetta et al., 2005; Langer et al., 2006; Esposito et al., 2006a,b; Esposito et 66 

al., 2008; Esposito et al., 2013a; Horstmann et al.,2013 ), and detect events of particular 67 

interest (Del Pezzo et al., 2003; Esposito et al., 2013a,b; Wiszniowski et al., 2014). These 68 

techniques require a data preprocessing, aimed at feature extraction from seismograms, 69 

which typically exploits several seconds of the seismic signal. The proposed neural 70 

analysis uses just a few seconds of the beginning of a seismogram, to allow a fast 71 

discrimination among local, regional and teleseismic earthquakes.  72 

Dataset 73 

Our dataset includes seismograms of local earthquakes, defined as earthquakes with 74 

epicentral distance <= 100 km, regional earthquakes with epicentral distance of 100 to 75 
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1400 km, and teleseisms, with large epicentral distance ( > = 30°) (see Lay and Wallace, 76 

1995). We use data from SGG seismic station, operated by the Osservatorio Vesuviano 77 

(INGV) that is located near San Gregorio Matese, a village situated in a seismically active 78 

area in the Southern Apennines, Italy (Fig.1). This station, equipped with a short period 79 

sensor (Geotech S-13), is operating since 1997. It has an analog system for data 80 

transmission. The data are then acquired by a 16-bit A/D converter system. Our dataset 81 

includes 70 teleseisms, 79 regional earthquakes, recorded between 1999 and 2015, and 103 82 

local earthquakes, most of which were recorded between 29 December 2013 and 30 83 

January 2014, when a seismic swarm occurred in that area. Data are courtesy of the 84 

Osservatorio Vesuviano (INGV) seismic Lab. In our analysis we use the vertical 85 

component. In order to apply a uniform automatic criterion for picking the onset of the 86 

seismic events, we exploit the ObsPy module for automatic P phase picking (Withers et al., 87 

1998; Trnkoczy 2012; Krischer et al., 2015). In general, seismic automatic systems include 88 

specific modules for avoiding false triggers through the analysis of sets of automatic 89 

90 

2016). For this reason, our data does not include false triggers, being their detection 91 

beyond the scope of our analysis.  92 

Figure 2 and Figure 3 show examples of the three types of seismic events considered 93 

for the analysis, with the markers of the automatic picking. The teleseismic earthquakes 94 

recorded at SGG station are characterized by a frequency range < 3 Hz (Fig 4). The 95 

regional earthquakes show higher frequency than the teleseismic ones (Fig 4). The local 96 

earthquakes have typical waveforms, characterized by an impulsive onset, and are higher 97 

in frequency than teleseisms and regional earthquakes (Fig 2, 3 and 4). SGG station 98 

sometimes records earthquakes with magnitude greater than 3.5, occurred at a small 99 
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distance (<100 km). These events lead to the saturation of the seismic records and are not 100 

considered in this paper. 101 

Analysis 102 

For each event, we cut an initial data window of 20 seconds. The data sampling rate 103 

is 100 Hz.  The starting point for the windows is the P phase picking (Fig. 3). Next, we 104 

select smaller signal windows, with a variable length of 400, 200 and 100 samples, i.e. 105 

from 4 to 1 second. We divide the time window of 400 samples (4 seconds) in two 106 

windows of 200 samples (2 seconds). Then, we apply the Linear Predictive Coding (LPC) 107 

technique (Makhoul, 1975). This technique provides a compact data encoding that is 108 

suitable for reducing the input dimension to the neural network. In particular, the LPC 109 

models the signal spectrum in the frequency domain with an all-pole filter (Del Pezzo et 110 

al., 2003), which compresses spectral information. In seismology, the spectrogram, that is 111 

based on the Fourier transform, is typically used to characterize the signals, but it does not 112 

allow to obtain a compact representation as input to the neural network. The linear 113 

prediction is a very efficient technique for eliminating correlation and redundancy from a 114 

signal. It is typically used in audio signal processing and speech analysis for representing 115 

the spectral envelope of a speech signal in a compact way. The LPC algorithm models each 116 

signal window sn as a linear combination of its p previous samples as follows (Equation 1): 117 

Gscs
p

k knkn 1

*
                    (1) 118 

where sn is the signal at time n, s*n is the LPC estimated or predicted signal, p is the 119 

model order that is problem dependent, ck, k = 1,.., p, are the prediction coefficients and G 120 

is the gain. The ck estimation is obtained through a procedure that minimizes the error 121 
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between the true signal and its LPC estimate. This procedure computes the following misfit 122 

function (Equation 2): 123 

2))(*)(()(
n

nsnscE                    (2) 124 

where c is the vector of the ck prediction coefficients. The ck estimation is not time-125 

consuming (Vaidyanathan, P. 2007) therefore it can be performed in real time. 126 

In our experiments, we extract p = 14 coefficients for each signal window of 1 and 2 127 

seconds (100 and 200 samples), in order to maximize the data compression and minimize 128 

the corresponding error. So, for each of these time windows we obtain a vector of 14 129 

spectral features (LPC coefficients). Furthermore, the time window of 4 seconds is divided 130 

in two sub-windows of 2 seconds, and for each of them 14 LPC coefficients are extracted. 131 

So, the 4 second window is encoded by a vector of 14+14=28 spectral features. Figures 5, 132 

6 and 7 show the feature vectors obtained for signal windows of 1, 2 and 4 seconds, 133 

respectively. 134 

Method 135 

To discriminate among the different typologies of signals we use a Multi-Layer 136 

Perceptron (MLP) network (Bishop, 1995; Haykin, S., 1999). MLP networks are neural 137 

supervised techniques, meaning that the learning process is realized by training the net on a 138 

pre-labelled subset of data. The MLP architecture (Fig. 8) presents an input layer, one or 139 

more hidden layers, and an output layer. In our case, the input layer is the vector of the 140 

LPC coefficients computed for each signal, while the output layer provides the network 141 

response for each of the three examined classifications, i.e. Regional/Local, 142 

Teleseisms/Local and Teleseisms/Regional. There are neither intra-state not feedback 143 
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connections in the network so the input signal (x1, ...., xn), propagates from the input layer 144 

to the output one in a forward direction (i.e. feed-forward). MLP networks have been 145 

widely used for function approximation, pattern classification and recognition due to their 146 

structural simplicity and fast learning abilities. 147 

The dataset is divided into two subsets, one for training and the other one for testing 148 

the neural network. In particular, we use 5/8 of the available dataset for the training phase 149 

and the remaining 3/8 for the testing one. In this way, the testing set is large enough to 150 

evaluate the network performance. Table 1 shows the adopted data distribution for training 151 

and testing set in each classification task. 152 

The setting of the net parameters (e.g. the initial weights on the connections, the 153 

number of hidden nodes, the activation functions, the learning algorithm, the number of 154 

learning cycles) is tuned on the basis of previous works (Esposito et al., 2006b; 155 

Giudicepietro et al., 2008; Esposito et al., 2016). Moreover, we evaluate the Final 156 

Prediction Error (FPE)  function (Equation 3) (Akaike, 1970; Akaike, 1974): 157 

1

1
)(2

pN

pN
psFPE                     (3) 158 

where N is the number of samples and s2(p) is the prediction error. (N+p+1)/(N-p-1) 159 

increases with p and represents the inaccuracies in estimating the prediction parameters 160 

(Esposito et al. 2006b). We use a trial and error procedure to choose the appropriate 161 

number of LPC coefficients, in order to represent the envelope of the signal spectrum in a 162 

compressed form (Fig. 9). Therefore, we use five hidden nodes for the MLP architecture 163 

and, as node activation functions, the hyperbolic-tangent for the hidden units and the 164 

logistic sigmoidal for the output node. 165 
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The Quasi-Newton algorithm (Bishop, 1995; Dennis et al., 1983) is chosen for the 166 

weight optimization and the Cross-Entropy Error Function (Bishop, 1995) is used as error 167 

function for the output. The combined use of this algorithm with this function allows a 168 

probabilistic interpretation of the net response. We carry out 54 classification experiments, 169 

with a permutation of the training and testing subsets, to verify the stability of the network 170 

output, as described in the next section. 171 

The network training task takes less than one second on a PC with standard 172 

configuration. Once the network is trained, the recognition of a single event takes 173 

insignificant time (less than a hundredth of a second).  174 

Results 175 

Table 2 summarizes the results of our analyses, showing the net performances for the 176 

three pairs of signals, namely Regional/Local, Teleseisms/Local and Teleseisms/Regional, 177 

for a total of 54 classification experiments. For each classification task (Reg/Loc, Tel/Loc 178 

and Tel/Reg), we consider signal windows of the onset of the earthquakes with decreasing 179 

lengths (4 seconds, 2 seconds and 1 second). Each row in Table 2 reports the net 180 

classification accuracy (in percentage) obtained on six different permutations of the 181 

training and testing sets, and six random initial configuration of the net weights. Finally, 182 

the last column shows the average performance computed on each row. In Table 2, we can 183 

observe that good performance are obtained for Regional/Local and Teleseism/Local pair. 184 

In particular, an average of 98.53% of correct classification is achieved in the 185 

Regional/Local pair experiment, using only one second of the signal. For the 186 

Teleseism/Local pair an average of 97.69% correct classifications is obtained using one 187 

second of the signal and an average of 99.49% by using the first four seconds of signal. 188 
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The worst performances are those of the Teleseismic/Regional pair, showing only 61% of 189 

correct classification on a one second signal window. This performance increases up to 190 

78.27% of correct classifications when the first four seconds of the signal are considered, 191 

but it is still significantly lower than that of the other two classification tasks (Reg/Loc and 192 

Tel/Loc). In our application, the short-period station introduces a high-pass filter on the 193 

signal, due to the instrumental response. For this reason the regional earthquakes and the 194 

teleseisms are not sharply separated. 195 

Conclusions 196 

The goal of this work is to provide a reliable neural network algorithm, which works 197 

on signal windows as short as possible, to allow an early identification of the different 198 

types of earthquakes and detect events outside the seismic network. In our case, the events 199 

outside the seismic network are regional and teleseismic earthquakes. The results of the 200 

proposed automatic neural classification are encouraging, as good performance are 201 

preserved on Regional/Local and Teleseism/Local classification by shortening the signal 202 

window duration from 4 seconds up to 1 second. The method can be used with the signals 203 

of any short-period station, however, to achieve optimal performance, the neural network 204 

should be trained with examples of earthquakes recorded at that station, in order to realize 205 

a specialized detector (Scarpetta et al. 2005). For broadband sensors, which ensure better 206 

quality of the teleseismic and regional seismograms, the spectral encoding does not allow 207 

very small time window (e.g. window length < T, where T is the period of the dominant 208 

components of the first P-wave arrival). However, we can not exclude that, by using other 209 

parameterization techniques (D'Auria et al. 2006; Colombelli and  Zollo, 2016), it is 210 

possible to overcome this problem. 211 
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In our experiments, we are able to discriminate between local and regional 212 

earthquakes, and local earthquakes and teleseisms, using only the first second of the 213 

seismograms, with a percentage of correct classifications of 98.5% and 97.7% respectively. 214 

The majority of local earthquakes belong to a seismic sequence occurred between 215 

December 2013 and January 2014. Nonetheless, the neural network has correctly classified 216 

also the local earthquakes that do not belong to this seismic sequence. The seismic signal 217 

preprocessing is based on a speech signal processing technique, which allow effective data 218 

compression while maintaining the spectral information. Once network is trained, the 219 

computation time for the classification is negligible. Therefore, we can obtain a robust 220 

discrimination on very short windows of the earthquake onset signal, in real time. The 221 

analysts typically recognize different types of seismic events through visual analysis of the 222 

waveforms. However, even the most experienced analysts can hardly distinguish in real 223 

time among the three examined types of events, just considering the first second of the 224 

seismograms.  225 

This type of application of neural networks for the classification of seismic signals 226 

allows a profitable exploitation of old analog seismic stations, which have the advantage to 227 

provide a large number of regional earthquake and teleseism recordings. This neural 228 

method, in conjunction with real time earthquake analyses performed by advanced dense 229 

seismic networks, can improve the reliability of seismological monitoring systems. In 230 

particular, this technique can detect earthquakes that are located outside the seismic 231 

network. Furthermore, due to its very rapid response, the neural algorithm, with an 232 

appropriate tuning, can be also suitable for EEW systems, to reduce the incidence of false 233 

alarms and the resulting erroneous communications to the public. 234 
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Tables  421 

Table 1. Training and testing data sets used for each type of classification task. 422 

TASKs Training (5/8) Testing (3/8) Total 

Regional-local 114 68 182 

Teleseismic-Local 108 65 173 

Regional-Teleseismic 93 56 149 

423 
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 424 

Table 2. MLP Classification performances. For each classification task, the first 425 

column reports the signal window duration (in seconds), the corresponding number of 426 

samples and the number of the neural network input nodes. We performed six different 427 

classification experiments for each window length, varying the set of events used for the 428 

network training and testing phase (6 permutations of the training and testing datasets, e.g. 429 

430 

performance value obtained on each signal length under examination. 431 

Regional  Local %Performance    
Sec; Npt; input node T1#1 T1#2 T1#3 T1#4 T1#5 T1#6 Average 
4s; 400 samples; 28 input 98.52 100.00 100.00 100.00 97.05 98.52 99.02 
2s; 200 samples; 14 input 97.05 100.00 100.00 100.00 92.64 98.52 98.04 
1s; 100 samples; 14 input 98.52 97.05 100.00 100.00 95.58 100.00 98.53 
        
Teleseism  Local %Performance    
Sec; Npt; input node T2#1 T2#2 T2#3 T2#4 T2#5 T2#6 Average 
4s; 400 samples; 28 input 100.00 98.46 100.00 100.00 98.46 100.00 99.49 
2s; 200 samples; 14 input 100.00 98.46 96.92 96.92 98.46 96.92 97.95 
1s; 100 samples; 14 input 100.00 96.92 95.38 95.38 98.46 100.00 97.69 
        

Regional  Teleseism   %Performance    
Sec; Npt; input node T3#1 T3#2 T3#3 T3#4 T3#5 T3#6 Average 
4s; 400 samples; 28 input 78.57 78.57 76.78 82.14 71.42 82.14 78.27 
2s; 200 samples; 14 input 73.21 75.00 71.42 71.42 71.42 67.85 71.72 
1s; 100 samples; 14 input 56.35 60.71 58.92 58.92 66.07 66.07 61.17 
        

 432 

 433 

434 
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Figures 435 

 436 

Fig. 1 Location of SGG Station. 437 
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 438 

Fig. 2 Waveforms of a teleseism (panel A), a regional earthquake (panel B) and a 439 

local earthquake (panel C). The red markers indicate the P wave onset obtained by using 440 

r. 441 

 442 
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 443 

Fig. 3 Onset examples of two teleseisms (panel A), two regional earthquakes (panel 444 

B) and two local earthquakes (panel C). The red markers indicate the P wave onset 445 

obtained by using ObsPy automatic picker.  446 

 447 
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 448 

Fig. 4 Spectrograms of a teleseism (panel A), a regional earthquake (panel B) and a 449 

local earthquake (panel C). 450 

451 



 28 

 452 

Fig. 5 Parameterization of one second of the seismic event onset. Teleseisms (panel 453 

A), regional earthquakes (panel B) and local earthquakes (panel C). 454 

455 
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 456 

 457 

Fig. 6 Parameterization of 2 seconds of the seismic event onset. Teleseisms (panel 458 

A), regional earthquakes (panel B) and local earthquakes (panel C). 459 

460 
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 461 
 462 

Fig. 7 Parameterization of 4 seconds of the seismic event onset. Teleseisms (panel 463 

A), regional earthquakes (panel B) and local earthquakes (panel C). 464 

465 
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 466 
 467 

Fig. 8 An example of two layer MLP architecture: the input vector (x1, ...., xn), i.e. the LPC 468 

coefficients, moves forward from the hidden layer to the output one, that is one three examined 469 

classification tasks, i.e. Regional/Local, Teleseisms/Local and Teleseisms/Regional. There are 470 

not  cycles and cross-connections between the layers. 471 

 472 
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 475 

Fig. 9 Final Prediction Error of the linear prediction coding evaluated for signal windows of 476 

100 (black line) and 200 (red line) samples (1 and 2 seconds respectively). 477 
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 479 
 480 

Caption of tables  481 

Table 1. Training and testing data sets used for each type of classification task. 482 

Table 2. MLP Classification performances. For each classification task, the first 483 

column reports the signal window duration (in seconds), the corresponding number of 484 

samples and the number of the neural network input nodes. We performed six different 485 

classification experiments for each window length, varying the set of events used for the 486 

network training and testing phase (6 permutations of the training and testing datasets, e.g. 487 

488 

performance value obtained on each signal length under examination. 489 

490 
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Caption of figures  491 

Fig. 1 Location of SGG Station. 492 

Fig. 2 Waveforms of a teleseism (panel A), a regional earthquake (panel B) and a 493 

local earthquake (panel C). The red markers indicate the P wave onset obtained by using 494 

 495 

Fig. 3 Onset examples of two teleseisms (panel A), two regional earthquakes (panel 496 

B) and two local earthquakes (panel C). The red markers indicate the P wave onset 497 

obtained by using ObsPy automatic picker.  498 

Fig. 4 Spectrograms of a teleseism (panel A), a regional earthquake (panel B) and a 499 

local earthquake (panel C). 500 

Fig. 5 Parameterization of one second of the seismic event onset. Teleseisms (panel 501 

A), regional earthquakes (panel B) and local earthquakes (panel C). 502 

Fig. 6 Parameterization of 2 seconds of the seismic event onset. Teleseisms (panel 503 

A), regional earthquakes (panel B) and local earthquakes (panel C). 504 

Fig. 7 Parameterization of 4 seconds of the seismic event onset. Teleseisms (panel 505 

A), regional earthquakes (panel B) and local earthquakes (panel C). 506 

Fig. 8 An example of two layer MLP architecture: the input vector (x1, ...., xn), i.e. the LPC 507 

coefficients, moves forward from the hidden layer to the output one, that is one three examined 508 

classification tasks, i.e. Regional/Local, Teleseisms/Local and Teleseisms/Regional. There are 509 

not  cycles and cross-connections between the layers. 510 

Fig. 9 Final Prediction Error of the linear prediction coding evaluated for signal 511 
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windows of 100 (black line) and 200 (red line) samples (1 and 2 seconds respectively). 512 


