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Abstract Most volcanic hazard studies focus on magmatic eruptions and their accompanying phenomena. However,

hazardous volcanic events can also occur during non-magmatic unrest, defined as a state of volcanic unrest
in which no migration of magma is recognised. Examples include tectonic unrest, and hydrothermal unrest
that may lead to phreatic eruptions. Recent events (e.g. Ontake eruption, September 2014) have
demonstrated that the successful forecasting of phreatic eruptions is still very difficult. It is therefore of
paramount importance to identify indicators that define the state of non-magmatic unrest. Often, this type
of unrest is driven by fluids-on-the-move, requiring alternative monitoring setups, beyond the classical
seismic-geodetic-geochemical architectures. Here we present a new version of the probabilistic model BET
(Bayesian Event Tree), called BET_UNREST, specifically developed to include the forecasting of non-
magmatic unrest and related hazards. The structure of BET_UNREST differs from the previous BET_EF
(BET for Eruption Forecasting) by adding a dedicated branch to detail non-magmatic unrest outcomes.
Probabilities are calculated at each node by merging prior models and past data with new incoming
monitoring data, and the results can be updated any time new data has been collected. Monitoring data are
weighted through pre-defined thresholds of anomaly, as in BET_EF. The BET_UNREST model is
introduced here, together with its software implementation PyBetUnrest, with the aim of creating a user-
friendly, open-access, and straightforward tool to support short-term volcanic forecasting (already
available on the VHub platform). The BET _UNREST model and PyBetUnrest tool are tested through three
case studies in the frame of the EU VUELCO project.

Resumen extendido

La mayoria de los estudios sobre amenazas volcanicas tiene su enfoque en las erupciones magmaticas y
fenomenos relacionados. Sin embargo, eventos volcanicos peligrosos pueden ocurrir durante una fase de
unrest no-magmatico, definido por el estado de unrest volcanico en el cual no se reconoce la migracion de



un magma. Ejemplos son unrest tectonico (capaz de causar preocupacion independientemente del resultado
posterior) y unrest hidrotermal, que puede resultar en erupciones freaticas. Eventos recientes (e.g. la
erupcion de Ontake en septiembre 2014) han demostrado que erupciones freaticas siguen siendo
dificilmente previsibles. Por estas razones, es de extrema importancia de identificar sefiales que definen un
estado de unrest no-magmatico. Muchas veces, este tipo de unrest es instigado por fluidos-en-movimiento,
y requiere la instalacion de un sistema de monitoreo alternativo, mas alla de la clasica arquitectura sismo-
-geodético-quimica. En este capitulo, presentamos la nueva version del modelo probabilistico BET (Arbol
de Eventos Bayesiano, por sus siglas en inglés), llamado BET UNREST, especificamente desarrollado
para incluir la prevision de unrest no-magmatico y sus amenazas relacionadas. La estructura de

BET UNREST se difiere de la version anterior BET EF (BET para Prevision de Erupciones, por sus
siglas en inglés), afladiendo un ramo dedicado para detallar los resultados amenazadores de unrest no-
-magmatico. Las probabilidades estan calculadas para cada nudo juntando modelos a priori y datos pasados
con los datos nuevos, provenientes del monitoreo. Los datos de monitoreo estan pesados mediante limites
predefinidos de anomalia, como es el caso en BET_EF. El capitulo ilustra el modelo e instrumento con tres
casos de estudio, dentro el marco del proyecto EU VUELCO:

(1) un andlisis retrospectivo para el volcan Popocatépetl, en donde no hay necesidad del ramo
hidrotermal, debido al caracter magmatico; Popocatépetl quedd en unrest desde diciembre 1994 al
presente. Para esta aplicacion, BET UNREST fue girado usando el Data Base de la UNAM (1997—
2012), con una aplicacion retrospectiva enfocando a prever erupciones mayores (columnas eruptivas
>8 km) durante el periodo abril-junio 2013.

(i) una aplicacion basada en el ejercicio de simulacro en el Cotopaxi; en este caso se prob6 con
BET UNREST de manera retrospectiva, pero, esta vez, usando los datos inventados previstos
durante el simulacro, junto a datos de input basado en la historia real del volcan preparados antes del
simulacro. Ofrecimos la prevision de erupciones magmaticas resultantes del simulacro mismo.

(iii) el simulacro en casi tiempo-real organizado en el marco de VUELCO en Dominica (mayo 2015). El
sistema volcanico de Dominica es “proto-tipo” para BET UNREST debido a su caracter hidrotermal.
Actividad freatica/freatomagmatica ocurrié durante el simulacro, cuando este resultado fue de hecho
bastante probable segin BET UNREST (la probabilidad media de unrest hidrotermal fue de 0.73,
mientras la probabilidad media de una erupcion hidrotermal fue de 0.32). También comprobamos el
uso de la probabilidad espacial, mediante mapas diferentes, de donde la apertura de una boca eruptiva
es mas probable, en el caso de erupciones magmaticas y freaticas.

. Con estos ejercicios, creemos arduamente de haber llevado BET un paso mas cerca hacia una
implementacion completa en situaciones de crisis. Al final, BET UNREST funciond como se esperaba.
Sin embargo, es importante de ser consiente de algunos puntos criticos que han salido de estas
aplicaciones, para lograr mas pruebas que pueden mejorar su “disefio” y comprobar su utilidad en casos
reales en el futuro. BET UNREST se introdujo junto a su implementacion software PyBetUnrest con el
objetivo de crear un instrumento de facil-uso, libre y diretto acceso (disponible a breve en el sitio web
Vhub) para ayudar en la prevision de amenaza volcéanica a corto-plazo.
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Abstract

Most volcanic hazard studies focus on magmatic eruptions and their
accompanying phenomena. However, hazardous volcanic events can also
occur during non-magmatic unrest, defined as a state of volcanic unrest in
which no migration of magma is recognised. Examples include tectonic
unrest, and hydrothermal unrest that may lead to phreatic eruptions.
Recent events (e.g. Ontake eruption, September 2014) have demonstrated
that the successful forecasting of phreatic eruptions is still very difficult. It
is therefore of paramount importance to identify indicators that define the
state of non-magmatic unrest. Often, this type of unrest is driven by
fluids-on-the-move, requiring alternative monitoring setups, beyond the
classical seismic-geodetic-geochemical architectures. Here we present a
new version of the probabilistic model BET (Bayesian Event Tree), called
BET_UNREST, specifically developed to include the forecasting of
non-magmatic unrest and related hazards. The structure of BET_UNREST
differs from the previous BET_EF (BET for Eruption Forecasting) by
adding a dedicated branch to detail non-magmatic unrest outcomes.
Probabilities are calculated at each node by merging prior models and past
data with new incoming monitoring data, and the results can be updated
any time nmew data has been collected. Monitoring data are weighted
through pre-defined thresholds of anomaly, as in BET_EF. The
BET_UNREST model is introduced here, together with its software

Sezione di Bologna, Istituto Nazionale di Geofisica e AT. Mendoza'R?S.aS o )
Vulcanologia, Via Donato Creti 12, Bologna, Italy Instituto de Geofisica, Universidad Nacional

e-mail: laura.sandri@ingyv.it

R. Tonini

Auténoma de México. C. Universitaria, Coyoacan
04510, México, D.F., Mexico

Sezione di Roma 1, Istituto Nazionale di Geofisica e D. Andrade - B. Bernard
Vulcanologia, Via di Vigna Murata 605, Rome, Italy Escuela Politécnica Nacional, Instituto Geofisico,

R. Constantinescu

Quito, Ecuador

Seismic Research Centre, University of West Indies,
Saint Augustine, Trinidad & Tobago

Advs in Volcanology

DOI: 10.1007/11157_2017_9

© The Author(s) 2017



Author Proof

Layout: T4 Grey
Chapter No.: 9

Series ID: 11157 MS No.: 11157_Gottsmann_Sandri
Date: 19-5-2017 Time: 6:09 pm Page: 2/20

L. Sandri et al.

implementation PyBetUnrest, with the aim of creating a user-friendly,
open-access, and straightforward tool to support short-term volcanic
forecasting (already available on the VHub platform). The BET_UNREST
model and PyBetUnrest tool are tested through three case studies in the
frame of the EU VUELCO project.

Resumen extendido

La mayoria de los estudios sobre amenazas volcanicas tiene su enfoque en
las erupciones magmaticas y fendmenos relacionados. Sin embargo,
eventos volcanicos peligrosos pueden ocurrir durante una fase de unrest
no-magmatico, definido por el estado de unrest volcanico en el cual no se
reconoce la migracion de un magma. Ejemplos son unrest tectonico (capaz
de causar preocupacion independientemente del resultado posterior) y
unrest hidrotermal, que puede resultar en erupciones freéticas. Eventos
recientes (e.g. la erupcion de Ontake en septiembre 2014) han demostrado
que erupciones freaticas siguen siendo dificilmente previsibles. Por estas
razones, es de extrema importancia de identificar sefiales que definen un
estado de unrest no-magmatico. Muchas veces, este tipo de unrest es
instigado por fluidos-en-movimiento, y requiere la instalacion de un
sistema de monitoreo -alternativo,” mas allad de la clasica arquitectura
sismo-geodético-quimica. En este capitulo, presentamos la nueva version
del modelo probabilistico BET (Arbol de Eventos Bayesiano, por sus
siglas en inglés), llamado BET_UNREST, especificamente desarrollado
para incluir la prevision de unrest no-magmatico y sus amenazas
relacionadas. La estructura de BET UNREST se difiere de la version
anterior BET_EF (BET para Prevision de Erupciones, por sus siglas en
inglés), anadiendo un ramo dedicado para detallar los resultados
amenazadores de unrest no-magmatico. Las probabilidades estan calcu-
ladas‘para cada nudo juntando modelos a priori y datos pasados con los
datos nuevos, provenientes del monitoreo. Los datos de monitoreo estan
pesados mediante limites predefinidos de anomalia, como es el caso en
BET_EF. El capitulo ilustra el modelo e instrumento con tres casos de
estudio, dentro el marco del proyecto EU VUELCO:

(1) un analisis retrospectivo para el volcan Popocatépetl, en donde no
hay necesidad del ramo hidrotermal, debido al caracter magmatico;
Popocatépetl quedé en unrest desde diciembre 1994 al presente.
Para esta aplicacion, BET_UNREST fue girado usando el Data
Base de la UNAM (1997-2012), con una aplicacion retrospectiva
enfocando a prever erupciones mayores (columnas eruptivas >8
km) durante el periodo abril-junio 2013.

(i1) una aplicacion basada en el ejercicio de simulacro en el Cotopaxi;
en este caso se probd con BET_UNREST de manera retrospectiva,
pero, esta vez, usando los datos inventados previstos durante el
simulacro, junto a datos de input basado en la historia real del
volcan preparados antes del simulacro. Ofrecimos la prevision de
erupciones magmaticas resultantes del simulacro mismo.
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Introduction

The Need to Quantify Hazard Related to Non-magmatic Unrest ... 3

(iii) el simulacro en casi tiempo-real organizado en el marco de
VUELCO en Dominica (mayo 2015). El sistema volcanico de
Dominica es “proto-tipo” para BET_UNREST debido a su caracter
hidrotermal. Actividad freética/freatomagmatica ocurrié durante el
simulacro, cuando este resultado fue de hecho bastante probable
segun BET_UNREST (la probabilidad media de unrest hidrotermal
fue de 0.73, mientras la probabilidad media de una erupcion
hidrotermal fue de 0.32). También comprobamos el uso de la
probabilidad espacial, mediante mapas diferentes, de donde la
apertura de una boca eruptiva es mas_probable, en el caso de
erupciones magmadticas y freaticas.

Con estos ejercicios, creemos arduamente de haber llevado BET un paso
mas cerca hacia una implementacion completa en situaciones de crisis. Al
final, BET_UNREST funcioné como se esperaba. Sin embargo, es
importante de ser consiente de algunos puntos criticos que han salido de
estas aplicaciones, para lograr mas pruebas que pueden mejorar su “dis-
eflo” y comprobar su utilidad en casos reales en el futuro. BET_UNREST
se introdujo junto a su implementacion software PyBetUnrest con el
objetivo de crear un instrumentode facil-uso, libre y diretto acceso
(disponible a breve en el sitio web Vhub) para ayudar en la prevision de
amenaza volcénica a corto-plazo.

Keywords
Volcanic unrest - Forecasting - Hydrothermal - Magmatic - Bayesian
inference

Palabras clave
Unrest volcanico -
Bayesiana

Prevision - Hidrotermal - Magmatico - Inferencia

volcanic system, making it very difficult to find
general features or patterns (Phillipson et al.
2013). Unrest may be followed by volcanic

Monitoring activities represent the main source
of information to understand the behaviour of
volcanic systems on short time-scales and, pos-
sibly, during emergency crises. In this frame-
work, one of the main challenges of volcano
monitoring is the identification and characterisa-
tion of the phase defined as “unrest”, which
consists of a relevant physical or chemical
change in the volcanic system with respect to its
background behaviour, leading to cause for
concern. Unrest can be due to several factors and
depends on the local characteristics of each

eruptions due to the movement of magma, but
can also be associated with other dangerous
phenomena: indeed, in addition to magma-
related hazards (e.g., tephra fallout, lava flows,
ballistics), hydrothermal and tectonic activities,
without evidence for “magma-on-the-move”, can
also lead to dangerous outcomes (i.e., flank col-
lapses, gas emissions, phreatic explosions,
lahars). Such hazardous events related to
non-magmatic unrest are not easy to track and, in
volcanic hazard evaluations, are sometimes
underestimated (Rouwet et al. 2014). For
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instance, many volcanoes pass through a phase of
hydrothermal unrest for years, decades or even
centuries. Due to this long-term behavioural
similarity, it is often difficult to recognise how
hydrothermal unrest can lead to related hazards in
the short-term. Where the driving agent and the
main eruptive product is not magma, but water
(liquid or vapour) and occasionally liquid sul-
phur, or gas, this type of unrest can lead to
non-magmatic eruptions. On the other hand,
non-eruptive hydrothermal unrest can also pro-
mote volcanic hazards after prolonged gas emis-
sions, acidic fluid infiltration into aquifers, soils
and the hydrologic network, or deformation
induced by a rising fluid front (see Rouwet et al.
2014).

In this light, although most volcanic hazard
assessments focus only on magmatic eruptions as
potential hazard sources, hazardous events can
also occur during non-magmatic unrest, which in
this chapter is defined as a state of volcanic
unrest in which no migration of magma is
recognised. Examples of non-magmatic unrest
include the tectonic (which causes concern
independently on how it evolves and eventually
ends), and hydrothermal unrest types; the latter
may eventually lead to phreatic eruptions. Recent
occurrences of phreatic eruptions (e.g.. Ontake
eruption, September 2014, Japan) have demon-
strated that they are still very hard to anticipate
from classical observations  based’ on
seismic-geodetic-geochemical monitoring archi-
tectures. For these reasons; it is of paramount
importance to identify indicators that define the
state of non-magmatic unrest. Often, this type of
unrest is driven by - “fluids-on-the-move”,
requiring alternative and innovative monitoring
setups, beyond the classical ones.

In the last decade it has become crucial to
provide forecasts of the possible outcomes of
volcanic unrest, to give quantitative support and
scientific’ advice to decision makers (e.g., Woo

L. Sandri et al.

2008; Marzocchi and Woo 2007, 2009). Because
of this, event tree schemes have been proposed
(e.g., Newhall and Hoblitt 2002; Marzocchi et al.
2004), and a few probabilistic tools based on
event trees and Bayesian inference have been
developed (e.g., BET_EF, Marzocchi et al. 2008;
HASSET, Sobradelo et al. 2013) with the ability
to quantify the probability of different possible
outcomes related to magmatic unrest. However,
the need for recognising and tracking the evo-
lution of any type of volcanic' unrest, and to
quantify the probability linked to non-magmatic
unrest as well, have led us, within the VUELCO
project, to the development of a new probabilistic
model, able to forecast both magmatic and
non-magmatic hazardous events related to vol-
canic unrest: BET UNREST. The BET_UNR-
EST model is based on an event tree, whose
structure is extended with respect to the previous
schemes such as BET_EF (see the generalisation
from BET_EF to BET_UNREST in Fig. 1,
highlighted in red) by adding a specific branch to
detail the track and outcome of non-magmatic
unrest. Nonetheless, BET_UNREST adopts from
BET_EF the Bayesian inferential paradigm and
the ability to account both for long-term data
(typically from the geological record) and

short-term  information  from  monitoring
networks.
In this chapter, we briefly present the

BET_UNREST model and its implementation in
the PyBetUnrest software tool (Tonini et al.
2016), made with the aim of providing a
user-friendly, open-access, and straightforward
tool to handle probabilistic forecasts and visu-
alise results, and that has already been included
on the Vhub platform (https://vhub.org/
resources/betunrest). The new event tree and
tool are applied here as illustrative examples to
the VUELCO target volcanoes Popocatépetl
(Mexico), Cotopaxi (Ecuador) and Dominica
(West Indies).
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LEVEL 1 LEVEL 2 LEVEL 3A LEVEL 4A LEVEL 5A LEVEL 6A
VENT LOCATION 1 S[ZEISTYLEL
VENT LOCATION 2 SERSIILES
ERUPTION VENT LOCATION | SIZE/STYLE |
VENT LOCATION N SEESLILEN
—— MAGMATI
NO ERUPTION
EFFUSIVE
— UNREST — VENT LOCATION 1 —|:
EXPLOSIVE
VENT LOCATION 2
BET_UNREST — EUBTION VENT LOCATION |
HYDROTHERMAL VENT LOCATION N
|__ NON- NO ERUPTION
MAGMATIC
TECTONIC
'~ NO UNREST
LEVEL 1 LEVEL 2 LEVEL 3B LEVEL 4B LEVEL 5B LEVEL 6B
PyBetUNREST x
PVHA SETTINGS SELECTED VOLCANO
Name: SouthDominica
Select PVHA folder settings Load PVHA
Central coordinates (UTM):
Show vent location
EVENT TREE SELECTION ABSOLUTE PROBABILITY
Voleano Selected Path:
Unrest I Volcano
B Unrest
Magmatic Non-Magmatic
Non-Magmatic Igydr;:_thermal
ruption
Hydrothermal Vent Location: All
Eruption
Vent Location: All
Effusive CONDITIONAL PROBABILITY
Explosive Selected Node:
Vent Location: 1 Vent Location: All
Vent Location: 2
Vent Location: 3
Vent Location: 4 COMPUTE
Vent Location: 5
Vent Location: 6 INFO CLOSE
Vent Location: 7
Vent Location: 8
Vent Location: 9
Vent Location: 10
Vant | aratinn: 11

Fig. 1 The new event tree as defined for the BET_UNREST model (on fop) and its visual implementation in the
software PyBetUnrest (on bottom). The red branch corresponds to the previous BET_EF model
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2 BET_UNREST Model
and PyBetUnrest Tool

As with all the previous BET models (e.g.,
BET_EF, for short- and long-term eruption
forecasting, Marzocchi et al. 2008; BET_VH, for
long-term volcanic hazard associated to any
potential hazardous phenomenon accompanying
an eruption, Marzocchi et al. 2010; Tonini et al.
2015; BET_VHst, a model that merges the pre-
vious two, Selva et al. 2014), BET_UNREST
performs probabilistic assessments in the frame
of volcanic hazard analysis, based on an event
tree scheme. The main novelty in the
BET_UNREST event tree is the introduction,
with respect to the BET_EF tree, of a new branch
(Fig. 1) for exploring and forecasting the out-
comes of non-magmatic unrest (Rouwet et al.
2014). Due to the resemblance of BET_UNR-
EST to other BET models from a methodological
and computational point of view, here we will
only give a brief overview. The papers by Mar-
zocchi et al. (2004, 2008) provide a more
detailed description.

BET_UNREST probabilities are evaluated by
a Bayesian inferential procedure, in order to
quantify both the aleatory and epistemic uncer-
tainty characterising the impact of volcanic
eruptions in terms of eruption forecasting and/or
hazard assessment. Such a procedure allows
merging all the available information, such as
models, a priori beliefs, past’data from volcanic
records and, when available, real-time monitor-
ing data in order to include, in principle, all the
knowledge about the considered volcanic system.

In general, the Bayesian inference procedure
at the basis of BET_UNREST assigns a proba-
bility to each node, providing a framework
where:

— probabilities are expressed through a proba-
bility " density function (pdf), and not as a
single: number, to account for a
best-evaluation value (for example the mean
of the probability density function, repre-
senting a degree of aleatory uncertainty) and
for a measure of the epistemic uncertainty
(the dispersion of the pdf);

L. Sandri et al.

— the posterior pdf, at each node, is achieved by
statistically combining, through Bayes’ theo-
rem, a prior probability distribution (usually
coming from theoretical models and/or expert
judgement) and information from the avail-
able data relevant for that node.

Asin BET_EF, the probability [0)] at each node
k is actually described by a statistical mixing of
two pdfs, describing respectively the “so-called”
long-term [0,{{M}] and short-term [B,EM}] regimes of
the volcano as follows:

[0 = 7008+ (1 — [0

where 7y, represents the weight in the interval
[0,1] depending on the degree of unrest (Mar-
zocchi et al. 2008). With such mixing,
BET UNREST switches between the two
“regimes”. In practice:

e When anomalies with respect to the volcano’s
background activity are not observed at time
t = ty, BET_UNREST relies on the so-called
long-term information to assign the proba-
bilities (hereinafter also referred to as back-
ground probabilities) at the various branches.

Such background probabilities (i.e., [HiM} D
are based on theoretical models and infor-
mation from the geological and eruptive
record of the volcano studied, or of similar
volcanoes, and describe the long-term fre-
quencies of magmatic or non-magmatic
unrest, and subsequent outcomes at these
volcanic systems.

e When a clear state of unrest of whatever nat-
ure is detected at ¢ = 7o by BET_UNREST, the
probabilistic assignment at all the successive
nodes is based mainly on the monitoring
information. In practice, monitoring data are
transformed into subjective pdfs (i.e., [HIEM}])

relative to the occurrence of magmatic or

non-magmatic unrest and the following bran-
ches. Actually, at some nodes, monitoring
data are not considered as relevant (for
example, in forecasting the size of an eruption,
magmatic or not), and here BET_UNREST
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continues to rely on theoretical models and
long-term frequencies.

e When, at time r=1t, BET_UNREST
observes a “degree of unrest” (of whatever
nature) without it being completely clear, the
statistical mixing provides a resulting pdf
which accounts for both the regimes, giving
the short-term regime a weight equal to the
degree of unrest, and to the long-term regime
its complement.

In this way, during a phase of unrest, the past
data have less (null, in the case of complete
unrest) importance. The short term hazard/
eruption forecasting depends exclusively on the
translation of observed anomalies into pdfs
describing all the branches of the event tree. This
is done, separately at each node, by weighting
monitoring data through pre-defined thresholds of
anomaly (Marzocchi et al. 2008) and converting
the resulting “degree of anomaly” into a best-
evaluation probability, to which a degree of
variance is associated (Fig. 2). This is a very
simple and intuitive procedure, in which the basic
assumptions are:

1. the first anomaly detected is the most
informative

2. subsequent anomalies contribute less and less
to the increase of the degree of anomaly

3. strong non-linear coupling among anomalies
are neglected.

At each node, BET _UNREST evaluates the
following probabilities (see also Fig. 1) by
means of Bayesian inference (we give the acro-
nyms used throughout the chapter to indicate the
probability at each node in brackets):

e Unrest: probability (P(U)) of unrest in the
time period [7p; 7y + |], given the monitoring
observations at time ¢ = fy; the time window |
is defined by the user;

e Magmatic unrest. probability (P(MU)) that
the unrest is due to “magma-on-the-move”,
given the unrest;

e  Magmatic eruption: probability (P(MEr)).of a
magmatic eruption, given magmatic unrest;
the following sub-branches mirror - the
BET_EF structure, so we point-the reader to
Marzocchi et al. (Marzocchi et al. 2008) for
them;

e Non-magmatic unrest: this is the comple-
mentary of the Magmatic unrest branch, so by
definition is the probability of non-magmatic
unrest, given an unrest;

e Hydrothermal unrest: probability (P(HU)) of
hydrothermal unrest, given a non-magmatic
unrest;

e Tectonic unrest: this is the complementary of
the Hydrothermal ~unrest branch, so it
describes the probability (P(TU)) of a tectonic
unrest, given a non-magmatic unrest;

e Hydrothermal eruption: probability (P(HEY))
of a hydrothermal eruption, given a
hydrothermal unrest;

o Vent of hydrothermal eruption: here we
explore the spatial probability of vent opening
in a hydrothermal eruption, given a
hydrothermal eruption occurring; this node is
an extension with respect to the event tree
proposed in Rouwet et al. (2014);

o Size of hydrothermal eruption: probability of
an explosive hydrothermal eruption, given a
hydrothermal eruption occurring from a
specific vent; its complementary branch is the
effusive hydrothermal eruption.

In order to keep the structure of BET_UNR-
EST as simple as possible, an effort has been
made to maintain, where possible, a dichotomic
branching into complementary (i.e., exhaustive
and mutually exclusive) events. This is why the
Unrest node does not branch directly into mag-
matic, hydrothermal and tectonic, but first it
branches into magmatic-or-not. This allows a
simplification in the evaluation of short-term
probabilities. In particular, with this type of
ramification, the user defines which monitoring
measurements (plus thresholds and weight) affect
the pdf of one of the two branches; the pdf of the
complementary branch then comes
automatically.
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Fig. 2 This figure explains how monitoring measures
are transformed into a best-evaluation probability at a
given node of the event tree. First, a monitoring measure
X; is translated in a degree of anomaly z; according to a
selected anomaly function p(-) (a). In the above exam-
ple, a measure below x; is considered background,
above X, is anomalous, and in between it has a certain
degree of anomaly. After collecting the degree of
anomaly for all parameters considered at the node, we

The new BET_UNREST model is applied
here with its software implementation PyBe-
tUnrest presented in Tonini et al. (2016), which
aims to provide an open and usable tool to bridge
between the scientific'. community and decision
makers, with a graphical user interface which
allows the exploration of the event tree and the
visualisation of the results (see Fig. 1). This
solution “was also implemented in the VHub
cyber-infrastructure  (http://vhub.org/resources/
betunrest). In the present PyBetUnrest tool only
one file needs to be adapted when new

Phase 1 Phase 2 Phase 3

Probability (F)

Phase 1 Phase 2 Phase 3

Phase 1

Phase 2 Phase 3

combine them using a weighted average (i is the
weight of the i-th parameter) in order to obtain the total
degree of anomaly (b). Then the total degree of anomaly
is transformed into an average probability using a
predefined function, in BET_UNREST, we use the
function in (¢). The parameters, weights, and thresholds
are selected by the user, possibly through expert
opinions’ elicitation. Figure modified from (Marzocchi
and Bebbington 2012)

monitoring information is gathered. This struc-
ture makes PyBetUnrest extremely fast and
user-friendly during crisis situations. More on the
technical background of the BET_UNREST
model and PyBetUnrest tool can be found in the
VUELCO Deliverable 7.3 (at http://vhub.org)
and in Tonini et al. (2016).

So far BET_UNREST and PyBetUnrest have
not yet been blindly tested in real-time during an
actual volcanic crisis, but only retrospectively
(Tonini et al. 2016) at Kawah Ijen (Indonesia),
for the time period 2010-2012 (after a learning
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period based on the observations from 2000 to
2010). The term “blindly” signifies that the rules
of BET_UNREST (the long-term pdfs, and the
monitoring parameters, thresholds and weight at
the different nodes) are set before the beginning
of the application, on different data (the learning
dataset), and then the model is applied untouched
to new data (the voting dataset), typically cov-
ering a different time period (as in the case of
Tonini et al. 2016).

In the next section of this chapter, results and
performances of the new model and tool will be
discussed and validated by analysing the unrest
crises for VUELCO target volcanoes Popocaté-
petl, Cotopaxi and Dominica through blind
applications of BET_UNREST. The latter two
applications show the results of the VUELCO
crisis simulation exercises held in Quito
(November 2014) and Dominica (May 2015).

3 BET_UNREST Applications

3.1 Popocatépetl, Mexico:
A Retrospective Application
Based
on the Popo-DataBase

Here we apply the BET _UNREST model to
Popocatépetl Volcano (Mexico), based on a cat-
alog of monitored parameters of the 1994-
ongoing eruptive period. Popocatépetl volcano
awakened in December 1994, after almost
48 years of volcanic quiescence. Since 1994,
Popocatépetl volcano has been one of the most
active volcanoes in - the world, and magmatic
activity has been nearly constant. This fact raises
the need to first redefine the concept of volcanic
unrest for Popocatépetl, as BET_UNREST, at the
Unrest node, requires’ indicative parameters to
verify if the given volcano is in a state of unrest,
or not. " In. stricto sensu, Popocatépetl has
remained at least in a state of unrest, or even
magmatic_or eruptive unrest, since 1994, as its
common manifestations are dome growth and
vulcanian eruptive phases. The continuous state
of unrest is reflected by the decision to never
decrease the level of alert from orange to green

(traffic light, De la Cruz-Reyna and  Tilling
2008). Nevertheless, many of these eruptions are
of no cause of concern (so, no unrest in laro
sensu), neither for volcanologists nor for popu-
lation. On the other hand, a practical scope of the
BET_UNREST application at Popocatépetl is to
forecast major eruptions, which can be consid-
ered a deviation from its current background
activity. During the past 23,000 years, nine Pli-
nian eruptions occurred at  Popocatépetl
(Mendoza-Rosas and De la Cruz-Reyna 2008),
while, since 1994, three eruptions with an erup-
tion column >8 km have occurred. No Plinian
eruptions have occurred during the 1994-ongoing
eruption cycle, and thus none of the past Plinian
eruptions have been ‘monitored. For practical
purposes; we thus define a major eruption for
Popocatépetl as an eruption with an eruption
column >8 km, as they are recorded during the
current monitoring period. These eruptions have
caused ash fall in the Puebla-Mexico City
metropolitan area, thus having an impact on
human activity. We aim at finding precursory
signals for major eruptions (>8 km, VEI 3) for
the period 1997-2012 (the learning period), and
test the BET_UNREST retrospectively, using
monitoring data of the volcanic activity observed
during 2013 (the voting period). The time win-
dow, |, is defined as 1 month.

In Table 1 we report the activity carried out
24/7 with regards to monitoring at Popocatépetl,
available as short-term information for unrest,
origin of unrest and eruption. However, for the
time period 1994-2012, the available data (as
listed in Mendoza-Rosas, VUELCO deliverable
5.1), are restricted mainly to seismicity (VT,
tremor, number of events) and visual observa-
tions (i.e. number of eruptions, column height).
No real-time SO, flux is available for our pur-
pose, and deformation data would need further
processing. Regarding past data (long-term
information for unrest, origin of unrest, and
eruption), there have been 13 unrest episodes,
and constant unrest since December 1994 (so, a
priori probability to be in a state of unrest for the
next month is about 85%). Out of the 13 unrest
episodes, 6 were due to magma-on-the-move
(magmatic unrest), of which 3 lead into a
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Table 1 Activity carried
out 24/7 as regards
monitoring at Popocatépetl

Observations

L. Sandri et al.

4 cameras for visual observations

5 three-component seismic stations

5 BB seismic stations

1 video camera + microwaves

1 doppler radar

3 biaxial inclinometers

Geochemical observations (3 sites)

Routine actions

Automatic alarm for anomalies in seismicity

Cell phone messages to personnel
Comité Técnico Cientifico Asesor UNAM/CENAPRED

Reports by SMS to population

magmatic major eruption. The monitoring
parameters listed in Table 2, along with respec-
tive thresholds and weight, have been identified
in the UNAM (Universidad Nacional Auténoma
de México) database for the period 1997-2012,
and used to set BET_UNREST for Popocatépetl.
The volcano is a stratocone with a higher prob-
ability of an eruption to occur from the central
vent. For the period of observation (1997-2012)
all eruptions were magmatic and occurred at the
central crater. The a priori spatial distribution of
vent opening is assigned as in Table 3. As a prior
model to define the size/style of magmatic
eruptions we take the power law from Simkin
and Siebert (1994). As past data we take the

Mendoza-Rosas and De la Cruz-Reyna (2008)
catalog for the past 23,000 years, and assume it
to be complete for VEI >= 2 (Table 3).

We retrospectively applied BET_UNREST
for the voting period April-June 2013, in which
respectively 10, 11 and 2 eruptions of 2, 3 and
4 km-high columns were observed. No major
eruption occurred. Observed anomalies include
ash eruptions up to 130/day (all with columns
<4 km), seismic tremor, incandescence in the
crater/dome, and VT events (but no shallow
event with depth <5 km). There was no anoma-
lous deformation, no dome growth, and no SO,
data available. Results of P(MEr) for the retro-
spective application period (weekly updated) are

Table 2 Monitoring parameters set for BET_UNREST at Popocatépetl

Parameters

Unrest
— Tremor Y/N
— Increase VT Y/N

Magmatic unrest

— # exhalations with ash (<4 km) > 20/day

— Incandescence dome Y/N, weight 2

— Duration tremor >6000 s, weight 1
— SO, >2000 t/d, weight 1

Magmatic eruption — Dome growth Y/N

— SO, >9000 t/d

— Tectonic EQ > M5.5 (along the coast/arc Michoacan-Chiapas) Y/N
— Incandescent debris Y/N
— Change in # tremor Y/N

— VT depth <5 km

— Increase # VT >M2 Y/N
— Duration tremor >30,000 s (inertia 2 months) Y/N
— Increase # ash eruptions >2000-4000 (inertia 2 months)

— Deformation Y/N
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Table 3 Left Part: Spatial probability of vent opening for magmatic eruptions assigned for BET_UNREST at
Popocatépetl: best guess a priori values. No past data are used. Right Part: Parameters of the magmatic eruption size
distribution assigned for BET_UNREST at Popocatépetl: best guess a priori values and past data

Spatial probability of vent opening in magmatic
eruptions

Vent A priori probability (best guess values;
location equivalent number of data = 1)
Central 0.99
vent
North 0.0025
flank
East 0.0025
flank
South 0.0025
flank
West 0.0025
flank
P{MEr) in %
0,50
0,38
0,25 Do MEAN
..--- 10th

0,13 o o
0,00 T I L

s (=] — (=] g

(=3 - -] [ (=]

o o o o 1=

s wn l.lﬂ o (=3

el @ el o el

Fig. 3 Time history of probability (expressed in percent-
age) to have a magmatic eruption in the retrospective
analysis at Popocatépetl

presented in Fig. 3. For the whole period, P
(METr) of a major eruption (>8 km eruption col-
umn) was <1% per month.

3.2 Cotopaxi, Ecuador: Retrospective
Application Inspired
by the VUELCO Simulation
Exercise in Quito

A volcanic unrest simulation exercise for Coto-
paxi volcano (5872 m.a.s.l.) was performed on
November 13th, 2014 in Quito, Ecuador. The
ice-capped stratovolcano, with an andesitic to
rhyolitic composition, is one of the most active
and hazardous volcanoes in Ecuador. Historic

Size of magmatic eruption

Size A priori (best guess values; Past
equivalent number of data = 1) data
VEI 1 0.83 975
VEI 2 0.14 13
VEI 3 0.023 3
VEI 4 0.0038 7
VEI > 5  0.0008 2

eruptions at Cotopaxi produced large lithic-rich
pyroclastic flows, ash flows, lava flows as well as
large lahars (Barberi et al. 1995; Hall and Mothes
2008; Biass and Bonadonna 2011). Some lahars
reached the Pacific Ocean at >200 km distance
(Aguilera et al. 2004; Pistolesi et al. 2013).
Recent unrest periods at Cotopaxi occurred in
1975-1976 and 2001-2002 and were charac-
terised by increased fumarolic activity, elevated
seismicity and edifice deformation (Molina et al.
2008). Fumarolic activity is a concern due to the
heat transfer that may affect the ice cover
resulting in non-eruptive debris flows or lahars.
A still unstable version of PyBetUnrest was set
up (along with parameters and thresholds at each
node for Cotopaxi volcano derived from moni-
toring information) before the simulation exercise,
based on the available data in the literature up to
the beginning of the simulation (the learning per-
iod stopped with the beginning of the exercise), in
order to preliminarily test its value in decision
support by providing near-real time probabilities
of (i) the occurrence of unrest, (ii) the origin and
nature of unrest and (iii) eruptive activity. How-
ever, during the simulation, the reports from the
“volcano team” did not reflect the real eruptive and
unrest history of Cotopaxi, as the past activity for
the simulation was “invented”. A different setting
of BET_UNREST (and consequently of
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PyBetUnrest) on site was not possible due to the
lack of time and the still premature customisability
of the tool. This obliged us to set up and run the old
BET_EF tool during the exercise (Constantinescu
et al. 2015). Obviously, this prevented us from
providing probabilistic assessment of
non-magmatic events during the exercise at
Cotopaxi: this would have been possible with
BET_UNREST, enabling the -calculation of
probabilities for hydrothermal unrest and
hydrothermal eruptions (P(HU) and P(HEr)).
Nevertheless, the unrest scenario proposed by the
“volcano team” (Bulletins 1-5) did not emphasise
a significant state of hydrothermal unrest, which,
on the one hand, made our output less biased in not
providing an evaluation for P(HU) and P(HEr);
but on the other hand this simulation was probably
not the best case to test BET_UNREST.

Here, we will re-run BET_UNREST and
PyBetUnrest at Cotopaxi retrospectively for the
unrest phases described in the five bulletins
provided by the “volcano team” during the sim-
ulation exercise and using the BET_UNREST
setup prepared prior to the simulation based. on
the real past activity of the volcano (Table 4).
The time window | was set to 1 month. In
Table 5 we show the probabilities resulting from
the run of the code, after each bulletin:

(1) Phase 0: The background activity of Coto-
paxi (NO anomalies): results are based on
the past activity of Cotopaxi, with all
observation within background limits.

(2) Phase 1 (Bulletin 1):the observed anomalies
in this phase were limited to an increase in
seismic activity -.compared to background
level. Such an increased is indicative,
according to pre-set parameters, of magma-
on-the-move (P(MU) = 0.68). The consider-
able uncertainty is summarised by the 10th to
90th percentiles confidence interval.

(3) Phase 2 (Bulletin 2): the observed anomalies
in- this phase were: a drastic increase in
seismicity, an increase in SO, emission (5
times background levels), and a crater ther-
mal anomaly. As a consequence, the mean P

L. Sandri et al.

(MU) increases, along with a decrease in the
associated uncertainty.

(4) Phase 3 (Bulletin 3): the observed anomalies
in this phase were: an increase in VT and LP
events, occurrence of tremor, appearance of
new fumaroles, an increase in SO, emission,
and an increase in the crater thermal anom-
aly. As a consequence, the P(MU) is similar
to Bulletin 2, but the P(HU) increases
slightly, due to the new fumaroles.

(5) Phases 4 and 5 (Bulletins 4 and 5): the
observed anomalies in these phases were
similar, and included: intense fumarolic
activity, occurrence of hybrid seismic events,
an increase in SO, emission, and an increase in
the crater thermal anomaly. As a consequence,
P(MET) increases from 0.21 (phase 3) to 0.57,
combined with a lower uncertainty.

3.3 Dominica, West Indies,
Lesser Antilles: VUELCO
Simulation Exercise,
Dominica, May 2015

Dominica is characterised by hydrothermal
activity manifested as thermal springs (up to
boiling temperature), boiling-temperature
fumarolic emissions (e.g. Valley of Desolation)
and a crater lake, known as ‘Boiling Lake’, with
a particular hydrodynamic behaviour (Fournier
et al. 2009; Joseph et al. 2011; Rouwet et al.
2017). No high-temperature manifestations occur
on the island, so no clear evidence of active
magmatic degassing exists at the present time.

The simulation exercise, and consequently the
BET_UNREST application, for the VUELCO
target island of Dominica mainly focused on an
unrest scenario for the southern part of the island.
The purpose of the exercise was to test the
tracking/assessment of an unrest period, and the
decision making process undertaken by the sci-
entific advisory group and local authorities.

Due to the hydrothermal character of
Dominica, the application of BET_UNREST is
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Table 4 Monitoring parameters set for BET_UNREST at Cotopaxi

Node-parameter#
Unrest-parameter 1
Unrest-parameter 2
Unrest-parameter 3
Unrest-parameter 4 SO, (Y/N)
Magmatic unrest-parameter 1
Magmatic unrest-parameter 2
Magmatic unrest-parameter 3
Magmatic unrest-parameter 4
Magmatic unrest-parameter 5
Magmatic unrest-parameter 6
Magmatic unrest-parameter 7
Magmatic unrest-parameter 8
Magmatic unrest-parameter 9
Magmatic eruption-parameter 1
Magmatic eruption-parameter 2
Magmatic eruption-parameter 3
Hydrothermal unrest-parameter 1
Hydrothermal unrest-parameter 2
Hydrothermal unrest-parameter 3
Hydrothermal eruption-parameter 1
Hydrothermal eruption-parameter 2
Hydrothermal eruption-parameter 3
Hydrothermal eruption-parameter 4

Hydrothermal eruption-parameter 5

highly suited. Before the simulation exercise, the
PyBetUnrest tool was set for Dominica, based on
(1) existing literature of the past volcanic activity
(2) insights on the current hydrothermal activity
(3) discussion-based expert elicitation sessions
(4 sessions at SRC and 1 at INGV-Bologna) and
(4) exchanges with local experts in order to
fine-tune the code with the monitoring parame-
ters. We remark that all of this was done prior to
the start of the simulation exercise (the learning
period stopped at the beginning of the simulation
exercise, as for Cotopaxi), and again no hindsight
tuning was made. The long-term setup of
PyBetUnrest is done by filling up a configuration

Parameter and threshold(s) (Y/N indicates a Boolean observation)
LP/month (205-335) (Garcia-Aristazabal 2010)

VT/month (24-32) (Garcia-Aristazabal 2010)

M Tectonic EQ (3-4)

EQ depth (>4.5-5.5 km)

Deep VLP (Y/N)

T fumarole (>119 °C)

Appearance of acidic gas (Y/N)

VT/month (>32)

Increased deformation (Y/N)

VLP + LP together (Y/N)

Harmonic LP tremor (Y/N)

SO, flux (t/d) (>100-350)

sudden stop (Y/N)

SO, flux (t/d) (>2000-2500)

Tornillos (Y/N)

New fumarole (Y/N)

Anomalous glacier volume decrease (defrosting) (Y/N)
LP/month (>205-335) (Garcia-Aristazabal 2010)
Increase in T of fumarole (>120-200 °C)
Increase in extension of fumarolic field (Y/N)
Inflation of fumarolic field (Y/N)

Landslides in hydrothermal areas (Y/N)

New/extension of alteration areas (Y/N)

file that includes the a priori and past data
specifically for Dominica, whose main informa-
tion is summarised in Table 6. The short-term
information is listed in Table 7 (parameters and
thresholds identified prior to the exercise onset,
see above). Further details on the Dominica
simulation exercise and on the BET_UNREST
application are given in Constantinescu et al.
(under review).

During the simulation exercise (May 14—15,
2015) three phases of changes in volcanic
activity, each with a duration of six months, were
distributed by the “volcano team” to the opera-
tors of the unrest crisis. The reports included four
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Table 5 Resulting

probabilities from

retrospective application of

BET_UNREST at Phase 0 Mean
Cotopaxi (Background) L0th

percentile
50th
percentile
90th
percentile

Phase 1 Mean
10th
percentile
50th
percentile
90th
percentile

Phase 2 Mean
10th
percentile
50th
percentile
90th
percentile

Phase 3 Mean
10th
percentile
50th

percentile

90th
percentile

Phase 4 and 5 Mean
10th
percentile
50th
percentile

90th
percentile

types of observations: (1) seismic bulletin,
(2) GPS, (3) geothermal monitoring data, and
(4) other observations.

The translation of the reported bulletins into
the values for the selected parameters in the
BET_UNREST for Dominica setup were repor-
ted back to 'the team of experts in real-time

Time: 6:09 pm Page: 14/20
L. Sandri et al.

P(U) p p P(HU) P

(MU) (MEr) (HEr)
0.005 0.002 0.0005  0.001 0.0006
0.0013 0.0002 0O 0 0
0.004 0.001 0.0002  0.0006  0.0002
0.009 0.004 0.001 0.003 0.001
1 0.68 0.18 0.08 0.02
1 0.07 0 0 0
1 0.84 0.02 0.001 0
1 1 0.69 0.30 0.04
1 0.83 0.22 0.05 0.013
1 0.27 0 0 0
1 1 0.04 0 0
1 1 0.75 0.13 0.008
1 0.80 0.21 0.13 0.07
1 0.14 0 0 0
1 1 0.04 0.002 0.0003
1 1 0.72 0.54 0.22
1 0.81 0.57 0.12 0.07
1 0.23 0.02 0 0
1 1 0.65 0.0004  0.0002
1 1 1 0.49 0.28

during the simulation. In Table 8 we provide the
probabilities resulting from the run of the code
after each bulletin. In Fig. 4 we also provide the
time evolution of some of the most relevant
probability distributions, across all the time
periods spanned by the simulation exercise in
Dominica. For each bulletin, among the output
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Table 6 Set up of BET_UNREST at Dominica in terms of long-term information

Unrest

Magmatic

Magmatic eruption

Magmatic vent location
Hydrothermal vent location

Size distribution (Magmatic)

A priori mean (equivalent n data in brackets) Past data

0.5 (1)

Past data (successes) = 14
Past data (total) = 608

0.5 (1) Past data (successes) = 13
past data (total) = 14

0.58 from Phillipson et al. (2013) (1) Past data (successes) = 0
Past data (total) = 13

file file

file file

Dome extrusion: 0.83 Dome extrusion: 0

Small explosive: 0.14 Small explosive: 5

Large explosive: 0.03 Large explosive: 2

1

Some of the data are too many to be listed (this is indicated by the label “file” in the table). They can be provided in the

form of files on request

Table 7 Monitoring parameters set for BET_UNREST at Dominica

Node—parameter#
Unrest-parameter 1
Unrest-parameter 2
Unrest-parameter 3
Unrest-parameter 4
Unrest-parameter 5
Unrest-parameter 6
Unrest-parameter 7
Unrest-parameter 8
Unrest-parameter 9

Magmatic unrest-parameter 1
Magmatic unrest -parameter 2
Magmatic unrest-parameter 3
Magmatic unrest-parameter 4
Magmatic unrest-parameter 5
Magmatic unrest-parameter 6
Magmatic unrest-parameter 7
Magmatic unrest-parameter 8
Magmatic unrest-parameter 9
Magmatic eruption-parameter 1
Magmatic eruption-parameter 2
Magmatic eruption-parameter 3
Magmatic eruption-parameter 4

Magmatic eruption-parameter 5

Parameter and threshold(s) (Y/N indicates a boolean observation)
Increased CO, flux above background (Y/N)

Increase in T of hot springs and/or fumaroles (Y/N)

Changes in H,O/CO, (Y/N)

Appearance of new fumaroles and/or hot springs (Y/N)
Vegetation die back (Y/N)

Appearance of LPs and hybrid EQs (Y/N)

Large regional tectonic event (M > 7) (Y/N)

Number of VTs [if >10/day for two weeks]

Detectable ground deformation (Y/N)

Increase in C/S, or decrease after increase (Y/N)

Detectable SO,, HCI, HF (Y/N)

Extreme increase in T [>300 °C]

Any VLPs (Y/N)

No. of LPs after significant VT swarms (#/day) (>5-10)
Consistent increase in No. of VTs for 1 month (Y/N)

Deep VTs [>8 km] (#/week) (4-5)

Detectable radial deformation (localized-coherent signal) (Y/N)
Surface deformation (island wide, >6 c¢m in over 6 months) (Y/N)
Decreasing C/S after increase (Y/N)

Increase in Cl, Br, F content in hot springs/pools (Y/N)
Decrease in H,O/CO, and/or H,S/SO, and/or SO,/HCI (Y/N)
Phreatic activity (Y/N)

Large thermal anomaly [incandescense] (Y/N)

(continued)
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Table 7 (continued)

Node—parameter# Parameter and threshold(s) (Y/N indicates a boolean observation)
Magmatic eruption-parameter 6 Landslides in hydrothermal areas (Y/N)
Magmatic eruption-parameter 7 Acceleration of VTs, LPs, hybrids [weekly] (Y/N)
Magmatic eruption-parameter 8 Presence of harmonic tremor (Y/N)
Magmatic eruption-parameter 9 Shallowing of VTs hypocenters in the ediffice
or shallow depths [<3 km] (Y/N)
Magmatic eruption-parameter 10 Sudden reversal of activity (Y/N)
Hydrothermal unrest-parameter 1 Anomalous behavior of Boiling Lake [overflow,
lower or higher T than usual, no return of lake, etc.] (Y/N)
Hydrothermal unrest-parameter 2 Changes in hydrothermal features (Y/N)
Hydrothermal unrest-parameter 3 Increase in B and/or NH, concentration in waters (Y/N)
Hydrothermal unrest-parameter 4 Increase in CH4/CO, (fumaroles) (Y/N)
Hydrothermal unrest-parameter 5 Increase in T of fumaroles (Y/N)
Hydrothermal eruption-parameter 1 Increase in T of fumaroles (fuzzy 120-200 °C)
Hydrothermal eruption-parameter 2 riSe of water level in pools/overflow of BL (Y/N)
Hydrothermal eruption-parameter 3 Increase in extension of fumarolic field (Y/N)
Hydrothermal eruption-parameter 4 Muddy pools (Y/N)
Hydrothermal eruption-parameter 5 Boiling/bubbling of pools that previously didn’t (Y/N)
Hydrothermal eruption-parameter 6 Inflation of fumarolic field (Y/N)
Hydrothermal eruption-parameter 7 Landslides in hydrothermal areas (Y/N)
Hydrothermal eruption-parameter 8 New/extension of alteration areas (Y/N)
Table 8 Resulting P(U) P(MU) P(MEr) P(HU) P(HEr) @ P(TU)
probabilities from real-time
application of Phase 1 | mean 1 0.26 0.06 0.62 0.42 0.12
BET_UNREST at 10th percentile | 1 0 0 0.05 001 0
Dominica during VUELCO .
simulation exercise 50th percentile 1 0.06 0 0.73 0.32 0
90th percentile | 1 0.85 0.22 1 0.95 0.5
Phase 2 mean 1 0.82 0.53 0.13 0.03 0.05
10th percentile | 1 0.29 0.01 0 0 0
50th percentile 1 1 0.56 0.001 0O 0
90th percentile 1 1 1 0.54 0.06 0.06
Phase 3 | mean 1 0.70 (0.24) | 0.17 (0.07) ' 0.08  0.02 0.22
10th percentile | 1 0.09 0 0 0 0
50th percentile 1 0.87 0.02 0 0 0.08
90th percentile | 1 1 0.68 0.27 0.03 0.80

In bracket estimates of mean values without including HC1 anomaly in Phase 3
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Fig. 4 Average values (top left) obtained by BET_UNR-
EST during the three phases of Dominica exercise for P
(MU), P(HU), P(ME¥) and P(HEY). Asterisk points are the
alternative average values for P(MU) and P(MEr) without
considering HCI as detectable. On the right column the
same probabilities are shown together with their

information from PyBetUnrest, there were two
maps of the spatial probability of vent opening:
one for the case of magmatic eruption, and one
for hydrothermal eruption (Fig.'4). We believe
this could be particularly useful, for example in a
volcanic system like Dominica, where there are
numerous areas showing hydrothermal activity,
thus increasing the uncertainty on the position of
a possible phreatic event.

The parameter “detectable SO,, HCI, HF”
created confusion and opened up a scientific
discussion. For the sake of transparency, we
provide the mean values of P(MU) and P(MEr)
including, or not, the HCl anomaly (Table 8).
Beyond the scientific implications of this issue,
this concern - reflected the sensitivity of
BET UNREST to the interpretation of some
parameters.. When relatively few monitoring
parameters are provided, the weight of a single
anomaly can be high: this is somehow a measure
of the epistemic uncertainty.

confidence interval between 10th and 90th percentiles.
On bottom left, a snapshot of PyBetUnrest tool shows the
spatial probability of vent opening during Phase 1,
localising the most probable position of the phreatic
eruption

4 Discussion and Implications
for Unrest Tracking

This chapter presents the need for an updated
BET model and tool that is able to account for
the non-magmatic nature of some volcanic unrest
episodes, which can often go under-estimated, if
not totally neglected. The new model
(BET_UNREST) and tool (PyBetUnrest) allow
the tracking of unrest phases at volcanic systems
and enables short-term volcanic forecasts. It has
been fully developed within the VUELCO pro-
ject, during which time it has been applied to
some of the project’s target volcanoes. In gen-
eral, when we are able to distinguish magma-
on-the-move (Rouwet et al. 2014) from the
monitoring observations the new model basically
“collapses” to BET_EF (or, better, the assess-
ment of the probabilities related to magmatic
outcomes provided by the two models coincide).
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On the other hand, if we are not able to identify a
magmatic “active role” in the unrest (from the
available monitoring observations), BET_UNR-
EST is still able to provide the probabilities of
hazardous events that accompany non-magmatic
volcanic unrest, rather than neglecting them. As
discussed in Rouwet et al. (2014), a very difficult
case is presented by phreatomagmatic eruptions
that, sometimes, can occur without any precur-
sors indicating magma movement. This is surely
an important limit to overcome which requires
further efforts to detect subtle changes in the very
short-term (hours to minutes) by improving
monitoring techniques.

The chapter illustrates the development and
implementation of BET_UNREST model and
PyBetUnrest tool through three different
applications:

(i) the pure retrospective analysis at Popoca-
tépetl volcano, where there is no com-
pelling need for a hydrothermal branch due
to the current magmatic nature of the
unrest  episodes.  Popocatépetl  has
remained in unrest from December 1994 to
present and, for this application,
BET_UNREST and PyBetUnrest were run
using the UNAM Data Base for the learn-
ing period 1997-2012, with aretrospective
application aiming to forecast major erup-
tions (column heights greater than 8 km)
for the April-June 2013 volcanic activity.

(i) the application based on a simulation
exercise at Cotopaxi. Here we tested the
BET_UNREST retrospectively, but, this
time, using the invented data provided
during the VUELCO simulation exercise,
in addition to data based on the real past
history of the volcano.

(iii) the almost real-time simulation exercise
organised by the VUELCO project in
Dominica (May 2015). The volcanic sys-
tem of Dominica presents a “prototype”
setting for BET_UNREST due to its
hydrothermal character. Phreatic/
phreatomagmatic activity occurred during

L. Sandri et al.

the simulation, coinciding with high asso-
ciated probabilities from BET_UNREST
(the average values P(HU) = 0.73 and P
(HEr) = 0.32). We also positively. tested
the feasibility of providing different maps
of the spatial probability of vent opening in
case of magmatic or phreatic eruption.

As mentioned in previous sections, we
implemented the BET_UNREST model into
PyBetUnrest software tool using a graphical user
interface aiming to provide a fast, open and
user-friendly tool, which extends the usage of
BET_UNREST to volcanologists with different
expertise. The PyBetUnrest tool reached a
mature and usable version during the Dominica
simulation and its first stable release has been
uploaded to Vhub cyber-infrastructure.

With these exercises we strongly believe we
have brought BET a step closer to a full and
proper implementation during a crisis situation.
The PyBetUnrest tool eventually worked as
expected, but it is important to take advantage of
the lessons learned during these applications and
pursue more tests that will improve its design and
prove its usefulness in real-case scenarios.

As a final comment, we would like to remark
that, as with any other event tree model (e.g.
BET models by Marzocchi et al. 2004, 2008,
2010; HASSET model by Sobradelo et al. 2013),
one can always apply and “populate” the
BET_UNREST model in any “volcanic” cir-
cumstance. The uncertainty on the results pro-
vided by BET_UNREST, and consequently their
practical use, will however be strongly dependent
on the available information and data used to set
up the models rules. If only a few pieces of
evidence are available, the models results will be
characterised by a large uncertainty, and thus
might be not very helpful for decision-makers.
As more and more knowledge is gathered,
BET_UNREST output probabilities will become
more attractive from a practical point of view,
since their uncertainty will be increasingly small.
This is an intrinsic feature of the Bayesian
inferential procedure at the basis of the model.
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