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Abstract

In the framework of the IAVCEI (International Association of Volcanology and
Chemistry of the Earth Interior) intercomparison study on volcanic plume mod-
els, we present three-dimensional (3D) numerical simulations carried out with
the ASHEE (ASH Equilibrium Eulerian) model. The ASHEE model solves the
compressible balance equations of mass, momentum, and enthalpy of a gas-
particle mixture and it is able to describe the kinematic decoupling for particles
characterized by Stokes number (i.e., the ratio between the particle equilibrium
time and the flow characteristic time) below about 0.2 (or particles smaller than
about 1mm). The computational fluid dynamic model is designed to accurately
simulate a turbulent flow field by using a Large Eddy Simulation approach, and
it is thus suited to analyze the role of particle non-equilibrium in the dynamics
of turbulent volcanic plumes. The two reference scenarios analyzed correspond
to a weak (mass eruption rate =1.5 ∗ 106 kg/s) and a strong volcanic plume
(mass eruption rate = 1.5 ∗ 109 kg/s) in absence of wind. For each scenario, we
compare the 3D results, averaged in space and time, with theoretical results ob-
tained from integral plume models. Such an approach allows to quantitatively
evaluate the effects of grid resolution and subgrid-scale turbulence model, and
the influence of gas-particle non-equilibrium processes on the large-scale plume
dynamics. We thus demonstrate that the uncertainty on the numerical solution
associated with such effects can be significant (of the order of 20%), but still
lower than that typically associated with input data and integral model approxi-
mations. In the Weak Plume case, 3D results are consistent with the predictions
of integral models in the jet and plume regions, with an entrainment coefficient
around 0.10 in the plume region. In the Strong Plume case, the self-similarity
assumption is less appropriate and the entrainment coefficient in the plume re-
gion is more unstable, with an average value of 0.24. For both cases, integral
models predictions diverge from the 3D plume behavior in the umbrella region.
The presented analysis of 3D numerical simulations thus allows to identify the
critical hypotheses at the base of integral models used in operational studies.
In addition, high-resolution 3D runs allow to reproduce observables quantities
(such as infrasound signals) which can be useful to constrain eruption dynamics
in real cases.
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1. Introduction

Volcanic plumes are characterized by the injection in the atmosphere of
a high-velocity, high-temperature mixture of gases and pyroclasts of different5

densities and sizes, mostly in the range from a few tens of microns to several
millimeters. The dynamics of volcanic columns are largely governed by turbu-
lence, which controls air entrainment, heating and expansion, and the conse-
quent transition from a momentum-driven jet to a positively buoyant plume
or to a collapsing fountain (Sparks et al., 1997). Despite the advancement of10

the computational capability and the improvement of the measurement tech-
niques in the laboratory, turbulence still is one of the least understood scientific
problems. One major difficulty, of course, is that the governing equations of
fluid dynamics are nonlinear and little is known about their solutions at high
Reynolds number, even in simple geometries and for an ideal fluid. This picture15

is even more complicated when a dispersed solid phase is added to the turbulent
flows, as occurring in volcanic plumes.

Nonetheless, the need of providing interpreting models for volcanic obser-
vations and hazard forecast tools makes it urgent to develop and assess the
quality and reliability of volcanic plume models. To this aim, IAVCEI (the20

International Association of Volcanology and Chemistry of the Earth Interior)
has promoted the volcanic plume model inter-comparison study, a systematic
effort to compare different models performing a set of simulations using the
same input parameters (Costa et al., 2016; Suzuki et al., 2016). These represent
a weak (mass eruption rate =1.5 ∗ 106 kg/s) and strong (m.e.r.=1.5 ∗ 109 kg/s)25

volcanic plume in a stratified atmosphere. Input data were set assuming source
conditions and atmospheric profiles representative, respectively, of the 26 Jan-
uary 2011 Shinmoe-dake eruption (Suzuki and Koyaguchi, 2013) and the 15
June 1991 Pinatubo eruption (see, e.g. Holasek et al., 1996). In this framework
we have developed the present study, by just considering plume development in30

windless conditions.
One-dimensional (1D) models based on various developments of the Morton

et al. (1956) buoyant plume theory (we refer to them as integral or 1D models)
have been extremely useful in volcanology mainly because they have allowed to
correlate the observed (or reconstructed) column height with the mass eruption35

rate, which is usually extremely difficult to measure directly (Wilson et al., 1980;
Sparks, 1986). On the other hand, integral models are routinely used in hazard
assessment studies and whenever there is the need of computationally efficient
tools to forecast volcanic plume heights, e.g. for atmospheric ash dispersal
models (most of such 1D tools are reviewed by Costa et al., 2016, this issue).40

Unfortunately, such models are extremely sensitive to the choice of their main
empirical parameter, the entrainment coefficient. The entrainment coefficient
expresses empirically a proportionality between the rate of air entrainment at
a given height and the average plume vertical velocity. It is usually calibrated
from controlled experiments at the laboratory scale. The dominant control of45

the entrainment coefficient on integral model results is demonstrated, inter alia,
by the analysis presented by de’ Michieli Vitturi et al. (2016) in the framework of
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the same intercomparison study. A significant portion of the early and even more
recent literature on volcanic plume models has thus been devoted to identifying,
by means of experimental or theoretical studies, the right, or better value of the
entrainment coefficient, sometimes expressed as a function of height, density
contrast or Richardson number (Kaminski et al., 2005; Carazzo et al., 2008;5

Woods, 2010).
To overcome this difficulty, computational fluid dynamics bypasses the short-

comings of analytical methods and integral numerical models by offering Direct
Numerical Simulations (DNS), i.e., the simulation of the whole range of spatial
and temporal scales in the turbulent flow. With respect to other investiga-10

tion methods, DNS is more akin to an experiment, and no less valuable for
the immense quantity of data it produces. Unfortunately, as demonstrated
in Sect. 2, the DNS of volcanic plumes is presently computationally unafford-
able, because it would require an extremely fine numerical grid. The main
idea behind the Large Eddy Simulation (LES) approach adopted in this work15

is to reduce this computational cost by reducing the range of time- and length-
scales that are being solved for via a low-pass filtering of the equations. Such
a low-pass filtering effectively removes small-scale information from the numer-
ical solution. However, nonlinearity causes the coupling between the large and
the small scales, introducing subgrid-scale (SGS) terms that cannot in general20

be disregarded (Vreman et al., 1995). To mimic the SGS effect on the large
scales, reproducing correctly the resolved turbulent spectrum, SGS models take
advantage of the universal character of turbulence at the smallest scales.

In turbulent plumes, experimental and numerical studies (see e.g., da Silva
et al., 2014, for a review) support the idea that the rate of air entrainment is25

controlled by the dynamics of the large eddies, at the so-called Taylor microscale
(see Sect. 2). It is therefore necessary to understand to what extent LES is suited
to describe turbulent plumes and how important the unresolved SGS part of the
turbulent spectrum (which must be modeled) can be of practical volcanological
interest. The first objective of this work is therefore to quantify the sensitivity30

to grid resolution of three-dimensional (3D) LES of a volcanic plume model and
to provide an empirical quantitative estimate of the minimum grid size required
to minimize the effect of the modeled subgrid turbulence.

Just a few authors (Suzuki et al., 2005; Esposti Ongaro et al., 2008; Her-
zog and Graf, 2010; Cerminara et al., 2016), in the last ten years, have envis-35

aged the 3D LES of volcanic columns (such 3D models are reviewed by Suzuki
et al., 2016). Their works have allowed to explore the influence of more realistic
vent conditions on eruption dynamics and to put further constraints on semi-
empirical parameters needed by integral models, in particular, the entrainment
coefficient (Suzuki and Koyaguchi, 2010), also in presence of wind or water mi-40

crophysics (Suzuki and Koyaguchi, 2015; Van Eaton et al., 2015). The ASHEE
(Ash Equilibrium Eulerian) model adopted in this work and described in Sect. 3
has been recently developed (Cerminara et al., 2016) to accurately simulate the
spectral properties of dispersed multiphase turbulence for particles smaller than
about 1mm.45

ASHEE is implemented to describe mean (i.e. plume shape and height)
and fluctuation (i.e. turbulent infrasound) properties of volcanic plumes, and
the effects of kinematic decoupling on the dynamics of turbulent gas–particle
mixtures. It is indeed widely accepted that the structure of turbulent flows
can be largely affected by the presence of solid particles (e.g., Elghobashi, 1991,50
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1994; Toschi and Bodenschatz, 2009). Because of their inertia, particles tend to
preferentially concentrate in the regions of low shear (Balachandar and Eaton,
2010), thus creating large clusters which can eventually modify the eddy struc-
ture. How this phenomenon affects the turbulent mixing at the interface with
the ambient fluid is still an open question. In this work, we address the problem5

by comparing LES of turbulent volcanic plumes carried out with and without
including the effects of particle decoupling.

The buoyant plume theory provides a valuable tool to get insight into 3D
simulation results, and it is therefore complementary to LES. We introduce
in Appendix C two integral models: a new formulation (ASH1D) of the 1D10

plume model proposed by Woods (1988), and its zero-dimensional asymptotic
approximation for dilute regimes (ASH0D). A methodology to coherently com-
pare time- and space-averaged 3D simulations and integral model outcomes is
introduced in Sect. 3.4. Comparison between ASHEE, ASH1D and ASH0D re-
sults in Sect. 4 and Sect. 5 allows to critically revise the hypotheses at the base15

of 1D models and, in particular, to discuss the entrainment hypothesis and the
value of the entrainment coefficient which can be derived from 3D numerical
models.

2. Time and length scales of volcanic plumes

Turbulence is a multiscale physical phenomenon involving many different20

scales, from the integral scale of the flow to the scale of the smallest eddy of the
turbulent field. The turbulent entrainment process at the interface between two
regions at different turbulent intensity (such as the boundary between the plume
and the atmosphere) is carried out through two different mechanisms: large-
scale eddies are responsible of the engulfment of parcels of air (Townsend, 1966),25

whereas small-scale turbulence controls the so-called nibbling process (Mathew
and Basu, 2002; Bisset et al., 2002). Although experimental studies (Westerweel
et al., 2005) suggest that the nibbling process controls the development of the
turbulent/non-turbulent interface, it is still believed that the global rate of
entrainment is imposed by the large-scale engulfment (e.g., Taveira et al., 2011;30

da Silva et al., 2014).
The smallest scale in a volcanic plume is given by the Kolmogorov scale (Pope,

2000)

η = AηDRe−
3
4 . (1)

Here, D is the vent diameter, Aη is a constant depending on the geometry of the
problem and Re = DU/ν is the Reynolds number based on the flow properties at35

the vent (U is the vent velocity and ν is the kinematic viscosity). Plourde et al.
(2008) estimated Aη ' 5.6 for a pure plume. The Kolmogorov characteristic
time scale of the smallest eddies is τη = η2/ν. In volcanic eruptions, the order of
magnitude of the Kolmogorov microscales typically is η ≈ 10µm and τη ≈ 10µs.

The order of magnitude of the integral scale for the plume development is40

the plume height. This can be estimated as a function of the steady release of
thermal energy at the crater Q̇W = ρmUπ(D/2)2Cβ(Tβ − Tα), by means of the
following formula:

Htop = AW Q̇
1
4

W , (2)
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where Cβ and Tβ are the specific heat at constant pressure and the temperature
of the ejected mixture, respectively, while Tα is the surrounding atmosphere
temperature. Wilson et al. (1978) estimated AW ' 8.2 for volcanic plumes.

When Re is high (in volcanic plumes it typically ranges in 106 ÷ 1010) the
integral and the Kolmogorov scales are separated by many orders of magnitude5

(cf. Eq. (1)). Between these two scales there exists the so called inertial sub-
range, where the turbulent properties of the flow are universal and do not depend
on the integral scale configuration. This sub-range is characterized by the Taylor
microscale λT. Because λT depends on the flow configuration, it is difficult
to estimate it a-priori. In Sects. 4 and 5, we will compute this length scale10

a-posteriori from the results of 3D simulations.
The temporal integral scale ttop can be evaluated thanks to Morton et al.

(1956). It depends only on atmospheric parameters:

ttop '

√
T1

gΓ(1 + n)
, (3)

where Γ is the atmospheric adiabatic lapse rate, T1 is the atmospheric temper-
ature at the vent level and n is the ratio of the vertical temperature gradient15

to the lapse rate Γ. In standard atmospheric conditions (Γ = 9.8K/km and
n = −0.66), we obtain ttop ' 100 s. We recall that this time scale depends
only on atmospheric parameters because the only temporal scale in stratified
self-similar plumes is the Brunt-Väisällä frequency (through the gravity accel-
eration).20

2.1. Degrees of freedom of volcanic plumes

On the basis of the scaling analysis above, we are able to estimate the number
of degrees of freedom to be resolved to fully simulate a turbulent volcanic plume
in a DNS. The order of magnitude of the number of spatial and temporal degrees
of freedom can be given by25

Nspatial ≈
(
Htop

η

)3

(4)

Ntemporal =
ttop

τη
. (5)

Thus, the number of degrees of freedom to be resolved in a volcanic simulation
is:

Nd.o.f. = NspatialNtemporal =
ttopH

3
topU

A5
ηD

4
Re

11
4 =

=
ttopA

3
W(ρmCβ(Tβ − Tα))

3
4

A5
η

U
9
2D

1
4

ν
11
4

. (6)

Setting the typical values for a volcanic eruption (cf. Wilson et al., 1978) to
(Tβ − Tα) = 1000K, ρm = 5 kg/m3, Cβ = 1100 J/(Kkg) and ν ' 2 ∗ 10−5 m2/s,
we obtain (in SI unit):30

Nd.o.f. = 9.5 ∗ 1019 ∗ U 9
2D

1
4 , (7)
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which is huge, even for small volcanic eruptions. The LES approach has been
developed to mitigate this unaffordable computational effort. This approach
takes advantage of the fact that in a fully turbulent flow the vast majority of
modes is below the Taylor microscale (Pope, 2000). In the LES approach this
small scales (far from the integral scales) are modeled by assuming that the5

spectrum has an universal shape. This approach has been demonstrated to be
accurate if the resolved scales ξ are in the inertial range.

For a volcanic plume, it has been numerically observed that the grid resolu-
tion at the vent must be at least ξ ' D/10 (cf. i.e., Zhou et al., 2001; Suzuki
et al., 2005) to approach the inertial sub-range. Therefore, we can recount the10

number of degrees of freedom for a volcanic LES by using D/10 as smallest spa-
tial scale and D/(10U) as smallest temporal scale (instead of the Kolmogorov
scales). We obtain:

Nd.o.f. = 104
ttopH

3
topU

D4
= 104 ttopA

3
W(ρmCβ(Tβ − Tα))

3
4U

7
4

D
5
2

, (8)

or, using the typical values for a volcanic eruption (in SI unit):

Nd.o.f. = 6.3 ∗ 1014 ∗ U 7
4D−

5
2 . (9)

It is worth noting here that, contrary to intuition, larger plumes are less ex-15

pensive to model than small ones. For example, a Plinian eruption can have
D ' 1000m and U ' 300m/s, bringing to Nd.o.f. ' 4.3 ∗ 1011 while a Strombo-
lian with D ' 10m and U ' 10m/s brings to Nd.o.f. = 1.1 ∗ 1014. Even if these
numbers are still very large, they could be mitigated by using non-homogeneous
grid geometries, because Re is not homogeneous in the domain. In Sects. 420

and 5, we use the ASHEE model for the LES of two volcanic plumes.

3. Model description

The ASHEE model is a multiphase fluid dynamic model conceived for mix-
tures composed by I gaseous components and J particulate phases of solid
particles. To identify the I gaseous components we use the index i, while j runs25

over the J solid phases. We use the index k for a generic phase or component in
the mixture. All the phases are treated using the Eulerian approach, identifying
a particle phase as a class of particles with similar dynamical properties (size,
density, shape and specific heat). In this section we review the model, which
has been presented in more detail by Cerminara et al. (2016) and Cerminara30

(2016). Numerical benchmarks demonstrating the quality and reliability of DNS
and LES of turbulent flows are also discussed by Cerminara et al. (2016).

3.1. Physical model

The physical model behind ASHEE is a generalization of the dusty-gas
([dusty], also known as pseudo-gas) model by Marble (1970).35

In the [dusty] model, the gas–particle mixture at position x ∈ Ω and time
t ∈ T is characterized by the following Eulerian fields: 1) the mixture density ρm;
2) the gas and solid mass fractions yi and yj respectively; 3) the mixture velocity
um; 4) the mixture enthalpy hm. The peculiarity of the [dusty] model with
respect to full multiphase models is the local equilibrium assumption between40
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all the phases. In other words, all the phases are assumed to be in kinematic
(ui = uj = um) and thermal (Ti = Tj = T ) equilibrium.

The non-dimensional number measuring the degree of disequilibrium be-
tween a particle class and the carrier gas phase is the Stokes number St (Bal-
achandar and Eaton, 2010). It compares the typical equilibrium time of a solid5

particle (the Stokes time τs) with the fastest time of the dynamical process under
analysis. In Cerminara et al. (2016) we show that St relative to kinematic and
thermal disequilibrium are of the same order of magnitude for volcanic ash. The
[dusty] model is well suited for solving multiphase mixtures if St < 10−3 (Bal-
achandar and Eaton, 2010) for all the evolution of the dynamical process under10

analysis. If the particle size increases the Stokes number increases, making the
disequilibrium between the gas and the particles more important. In volcanic
plumes, two main processes arise because of the kinematic decoupling: 1) parti-
cle settling; 2) preferential concentration. The first phenomenon is the fallout of
ash particles from the volcanic plume due to gravity acceleration and the den-15

sity contrast between ash and gas phases. The second is the tendency of heavy
particles to escape from turbulence eddies because of centrifugal acceleration.
The ASHEE model uses the equilibrium–Eulerian [eqEu] model (Ferry and Bal-
achandar, 2001) instead of [dusty], in order to extend its validity up to St ' 0.2
for the preferential concentration and to ash size ds ' 1mm for the settling20

of ash in the atmosphere (Cerminara, 2016). As we discuss in more detail in
the following, the Stokes number does not depend only on the properties of the
particles but also on the typical time of the dynamics. In turbulent flows, the
dynamics is characterized by the coexistence of a wide range of temporal and
spatial scales (eddies). Thus, St is different for each eddy scale ξ, and in partic-25

ular it is larger for smaller eddies (St ∝ ξ−2/3, Balachandar and Eaton, 2010).
Consequently, disequilibrium is more important at smaller scales. However, as
we discuss in the next section, typically in turbulence most of the energy is trans-
ported by large eddies (characterized by the Taylor microscale λT). Therefore
we will focus our analysis on disequilibrium at these scales.30

Besides the hypothesis on the Stokes number, ASHEE (as well as the dusty-
gas model) only considers the dilute regime. Elghobashi (1991, 1994) charac-
terized the dilute regime on the basis of the volumetric concentration of solid
particles in the mixture:

εs =

∑
j Vj

V
. 10−3 . (10)

In such a dilute limit, different coupling regimes can be described. In the35

two-way coupling regime, the mutual effects of the carrier fluid and particles
are considered, but interactions among particles are disregarded. The regime
in which all the possible interactions are taken into account is called four-way
coupling. In the present work, we are taking into account the effect of the par-
ticles on the gas phase because the mass fraction of the solid phase is not small.40

Indeed, in volcanic plumes, even if εs is small, the density contrast between the
ash and gas phase is large. Defining ρ̂g and ρ̂s the density of the gas and solid
phase respectively, and ρg and ρs their bulk densities, we have ρ̂s/ρ̂g ≈ 103, thus
the bulk density of the solid phase can be of the same order of that of the gas
phase:45

ρs = εsρ̂s . ρ̂g ' (1− εs)ρ̂g = εgρ̂g = ρg . (11)
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We recall here that the mixture density is defined as the sum of the bulk
densities of all the components and phases:

ρm ≡ ρg + ρs =
∑
i

ρi +
∑
j

ρj , (12)

and that the mass fractions are defined as:

yi =
ρi
ρm

, yj =
ρj
ρm

,
∑
i

yi +
∑
j

yj = 1 . (13)

We refer to a generic field f as associated to the gas components fi, to the solid
phases fj and to the mixture fm =

∑
i yifi+

∑
j yjfj . In other words, a quantity5

referred to the mixture is its mass weighted average over all the components
and phases.

The equations used in the ASHEE model are reported in Appendix B. Ad-
ditional details can be found in Cerminara et al. (2016) and Cerminara (2016).

3.2. Subgrid-scale models10

In ASHEE the spatial-scales below the grid scale are modeled using the LES
approach for compressible flows. In this approach, the model (B.1) is spatially-
filtered to separate the resolved scales from the subgrid scales. The contribution
of the subgrid scales endures in the model because of the presence of non-linear
terms. These terms can be modeled using the Boussinesq eddy viscosity hypoth-15

esis and the eddy diffusivity viscosity model (e.g., Garnier et al., 2009). Eddy
diffusivity models require that a few SGS coefficients are provided as a function
of the resolved variables. These are the eddy viscosity µt, the SGS kinetic energy
Kt and Prandtl number Prt. We refer to Erlebacher et al. (1990); Moin et al.
(1991); Garnier et al. (2009); Cerminara et al. (2016) for a description of the20

adopted LES approach. While our SGS models do not explicitly depend on the
spatial coordinate or direction, it is worth remarking that non-isotropic formu-
lations might be adopted in which eddy viscosity coefficients depend explicitly
on the position (see, e.g. Costa et al., 2006).

We have tested several state-of-the-art SGS models, both static and dy-25

namic (for which we present numerical benchmarks in Cerminara et al., 2016;
Cerminara, 2016). Dynamic models are preferable with respect to static ones be-
cause they do not require to evaluate the SGS coefficients empirically. Instead,
they are calculated locally, on the basis of the resolved turbulent spectrum.
This procedure is preferable even in presence of non-homogeneous LES dynam-30

ics and boundary conditions. In this work we present results obtained with:
the dynamic WALE model [dynWale] (see Nicoud and Ducros, 1999; Lodato
et al., 2009; Piscaglia et al., 2013); the dynamic Smagorinsky model [moin] in
the form by Moin et al. (1991); the static SGS K-equation model [oneEqEddy]
(see Chacón Rebollo and Lewandowski, 2013; Fureby, 1996; Yoshizawa, 1993;35

Chai and Mahesh, 2012). This allows us to assess the influence of SGS Reynolds
stresses on simulation results. Finally, we also performed simulations without
SGS model [noM].

3.3. Numerical solver

The Eulerian model described in Sect. 3 and detailed in Appendix B is40

solved numerically to obtain a time-dependent description of all independent
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flow fields in a 3D domain with prescribed initial and boundary conditions.
Spatial discretization is achieved by means of a Finite Volumes approach on
an unstructured mesh. In the present application, the spatial gradients are dis-
cretized by adopting an unlimited centered linear scheme (which is second-order
accurate and has low numerical diffusion – Ferziger and Perić, 1996; Cerminara5

et al., 2016). Analogously, implicit advective fluxes at the control volume in-
terfaces are reconstructed by using a centered linear interpolation scheme (also
second order accurate). The only exception is for pressure fluxes in the pressure
correction equation, for which we adopt a TVD (Total Variation Diminishing)
limited linear scheme (in the subsonic regimes) to enforce stability and non-10

oscillatory behavior of the solution.
The temporal discretization is based on the second-order Crank-Nicolson

scheme (Ferziger and Perić, 1996), with a blending factor of 0.5 (0 meaning a
first-order Euler scheme, 1 a second-order, bounded implicit scheme) and an
adaptive time step based on the maximum Courant number (Co < 0.2). All15

advection terms of the model are treated implicitly to enforce stability. Dif-
fusion terms are also discretized implicit in time, with the exception of those
representing subgrid turbulence. The pressure and gravity terms in the momen-
tum equations and the continuity equations are solved explicitly, as well as the
enthalpy equation.20

The system of the Eulerian transport equations is solved by adopting a
segregated approach and adopting the PISO algorithm (Pressure Implicit with
Splitting of Operators, Issa (1986)). The PISO algorithm consists of one predic-
tor step, where an intermediate velocity field is solved using pressure from the
previous time-step, and of a number of PISO corrector steps, where intermedi-25

ate and final velocity and pressure fields are obtained iteratively. By means of
PISO, the pressure and the kinematic non-equilibrium terms are made implicit,
thus enforcing the stability of the solution. The segregated system is iteratively
solved to make implicit also the enthalpy and the subgrid terms.

The numerical code ASHEE is based on the C++ libraries OpenFOAM R© for30

solving the compressible balance equations of mass, momentum and enthalpy
of the mixture. For a complete description of the numerical algorithm and the
structure of the numerical solver, please refer to Cerminara et al. (2016) and
references therein.

3.4. Time and space averages35

A 1D integral model describing the evolution with height (i.e., along the ẑ
direction) of the fluxes of mass (πQ), momentum (πM) and enthalpy (πF ) in
volcanic plumes is presented in Appendix C. Its results are discussed, in the
framework of the plume model intercomparison study, by Costa et al. (2016)
(this issue). In this section, we describe the procedure to coherently compare40

integral and 3D model results by integrating the latter in time and space.
Given Ω × T , the space-time domain, we first average over T a generic 3D

variable f(x, t):

f̄ =

∫
T
f(x, t) dt . (14)

For every plane Ωz orthogonal to ẑ at height z, we define a plume subset
O(z) ⊂ Ωz, defined by the points where the mixture velocity has positive verti-45

cal component and the mass fraction of a tracer ȳtracer is larger than a threshold
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ymin:

O = {(x1, x2) ∈ Ωz | ūm · ẑ ≥ 0 and ȳtracer ≥ ymin} . (15)

We refer to the integral over this domain as:

F(z) = 〈̄f(x)〉O ≡
∫
O

dx1dx2 f̄(x1, x2, z) . (16)

In particular, we define the integral mass flux, the kth generic species mass flux,
the momentum flux and the enthalpy flux (a modified version of the buoyancy
flux taking into account the presence of the different gas and solid species) as5

follows:

πQ = 〈ρ̄m ūm · ẑ〉O ≡ πβUb
2 (17a)

πQk = 〈ρ̄mȳk ūm · ẑ〉O ≡ πβYkUb
2 (17b)

πM =
〈
ρ̄m(ūm · ẑ)2

〉
O ≡ πβU

2b2 (17c)

πF =

〈(
1 +

∑
k(χk − 1)ȳk

1 +
∑
k(ψk − 1)ȳk

ρ̄α − ρ̄m

)
(ūm · ẑ)

〉
O
≡

≡ π
(

1 + Yχ
1 + Yψ

α− β
)
Ub2 , (17d)

where ψk = Rk/Rα (ψk = 0 for the solid species) is the gas constant relative to
the atmosphere, χk = Ck/Cα is the specific heat at constant pressure relative to
the atmosphere, Yψ =

∑
k(ψk−1)Yk , Yχ =

∑
k(χk−1)Yk, and α(z) = 〈ρ̄α(x)〉O.

This method allows to compute the time and space averages consistently with10

the integral description of 1D models and independently from any assumption
about the horizontal plume profile (e.g., Gaussian or flat). A similar approach
has been adopted by Kaminski et al. (2005) in the Boussinesq approximation,
i.e., for small density contrasts.

By defining Qψ = YψQ and Qχ = YχQ, we can compute the integral equiv-15

alent plume variables by using the inversion formulas of Eqs. 17:

b(z) =

√
Q(F +Q)(Q+Qψ)

αM(Q+Qχ)
(18a)

β(z) = α
Q(Q+Qχ)

(F +Q)(Q+Qψ)
(18b)

Yk(z) =
Qk
Q

(18c)

Tβ(z) = Tα
F +Q

Q+Qχ
(18d)

U(z) =
M

Q
, (18e)

where b(z) is the radius, β(z) the density, Yk(z) the mass fraction of a gas or
solid species, Tβ(z) the temperature, U(z) the vertical velocity of the plume as
a function of the height above the inlet and Tα = p/Rαα is the atmospheric
temperature profile. Finally, the entrainment coefficient can be calculated, from20

its definition, as:

κ(z) =
Q′

2αUb
, (19)
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Vent parameter WP SP Units

D 54 1406 m
U0 135 275 m/s
Tα,0 270.92 294.66 K
Tβ,0 1273 1053 K
α0 1.11 1.01 kg/m3

β0 4.87 3.51 kg/m3

Rα 287 287 m2/(s2 K)
Cα 1004 1004 m2/(s2 K)
Cs 1100 1100 m2/(s2 K)
g 9.80665 9.80665 m/s2

dcoarse 1 0.5 mm
dfine 0.0625 0.016 mm
ρ̂coarse 2200 2500 kg/m3

ρ̂fine 2700 2700 kg/m3

ycoarse 0.485 0.475 -
yfine 0.485 0.475 -
yH2O 0.03 0.05 -

vent elevation 1500 1500 m
lower atmospheric layer 1500÷ 14317.2 1500÷ 14889.1 m
upper atmospheric layer 14317.2÷ 20000 14889.1÷ 50000 m
lower thermal gradient −0.00461 −0.00661 K/m
upper thermal gradient 0.00001 0.00252 K/m

Table 1: Volcanic plume parameters used in this paper.

where (·)′ is the derivative along the plume axis. This expression implicitly
includes all the mixing processes eventually occurring into the plume, and in
particular partial collapse, fallout and re-entrainment.

It is worth noting that the methodology described in this section allows us to
coherently compare results obtained from integral models with those obtained5

from 3D simulations. Moreover, the entrainment coefficient κ – the key em-
pirical parameter for integral models – can be easily obtained for 3D fields. In
Sects. 4 and 5 (as well as in Costa et al., 2016; Suzuki et al., 2016), we use this
averaging procedure for post-processing 3D plume simulations.

4. Weak plume10

The set of input data for the weak plume simulation is discussed in the
companion paper by Costa et al. (2016). In this work we have limited our anal-
ysis to the windless scenario. In Tab. 1, we report the boundary and initial
conditions for the weak (WP) and strong plume (SP) simulations. In partic-
ular, the WP case represents a sub-Plinian scenario with mass eruption rate15

πQ0 = 1.5 ∗ 106 kg/s. Two particle classes have been used for the simulations,
whose features are also reported in Tab. 1. For such particles, the Stokes number
can be calculated by taking, as a reference time scale, the typical eddy turnover
time at the vent. In analogy with laboratory plumes, this is τD ∼ Str DU0

≈ 0.12 s,
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where D and U0 are the plume diameter and velocity at the vent, respectively,
and Str is the Strouhal number, of the order Str = 0.3 (Zhou et al., 2001). Based
on this time scale, and computing the particle relaxation time from Eq. B.13,
the Stokes number for the two adopted particle classes in the WP case is about
Stcoarse ≈ 5 and Stfine ≈ 0.2. Thus, we expect to see non-equilibrium phenomena5

for both particles classes, with more evident effects on the coarsest phase. How-
ever, the Stokes number, as an average value in the whole plume, is not as high
as above. Indeed, by using the spatial-averaged Taylor microscale as reference
time for the turbulent dynamics, we obtain Stcoarse ≈ 0.1 and Stfine ≈ 0.005.
This result has been obtained a posteriori, for the finer mesh resolution, having10

ξ ≈ 40m, K ≈ 218m2/s2 and λT ≈ 231m, when the plume reaches its maximum
height.

4.1. Large Eddy Simulation results

The computational domain is extended 483b0 × 765b0 in the radial and ver-
tical directions (b0 being the vent radius). The numerical grid is non-uniform15

and non-orthogonal. For the highest resolution run (high-res), the cell size in-
creases from a minimum grid size δ = D/32 with no radial grading factor in the
region where the plume is expected to develop, whose initial radius is equal to
2.5b0 and increases linearly with an angle θ such that tan θ = 0.147. Outside
this region, a radial grading factor of 1.0446 is applied. Along z, 2048 cells20

are utilized. The minimum vertical cell size is δ = D/32, and a grading factor
of 1.00187 is imposed. The azimuthal resolution is constant and equal to 1

32π
(5.625 degrees). The resulting total number of cells is 10, 747, 904. We per-
formed also simulations with the same mesh topology but at lower resolution:
mid-res (δ = D/16) and low-res (δ = D/8).25

Numerical simulation of 720 s of eruption required: 34 h for the low-res case
(on one Intel-I7 quad-core processor at 2.8GHz); 10 days for the mid-res case (on
4 AMD 16-core processors at 2.3GHz ); 25 days for the high-res case (on 1024
cores of the CINECA IBM BG/Q machine).

Large scale dynamics. Fig. 1 shows the development of the volcanic plume at30

t = 400 s. Because of the atmospheric stratification, the plume reaches a neutral
buoyancy condition at about z = Hnbl = 10 km above the vent (i.e., 11.5 km
above the sea level, still within the troposphere). Due to its inertia, the plume
reaches its maximum plume height Htop ' 12 km, before spreading radially to
form the so-called volcanic umbrella. The two orthogonal sections highlight35

the different spatial distribution of the volumetric fraction of fine (right) and
coarse (left) ash particles, due to the different coupling regime with the gas
phase. Coarse particles have indeed a larger settling velocity ws = τsg which
causes a more intense proximal fallout from the plume margins and a reduced
transport by the umbrella. This is highlighted by the plot of the streamlines of40

the mixture velocity along a vertical section (Fig. 2), showing that the plume
updraft is surrounded by a shell of settling coarse particles, which also inhibits
air entrainment while promoting particle re-entrainment into the plume.

Kinematic non-equilibrium effects. Besides settling, the large inertia of the
coarse ash is responsible for the kinematic decoupling, leading to preferential45

concentration and clustering of particles at the margins of turbulent eddies.
To illustrate this phenomenon, in a non-homogeneous flow, the instantaneous

12



Figure 1: 3D numerical simulation of the WP case, 400 s after the beginning of the eruption
(initial conditions as in Tab. 1). The two isosurfaces in 3D rendering correspond to the
threshold εs = 10−7 of the fine (light white) and coarse (light sand) ash volume fractions. The
maximum height of the fine class isosurface is approximatively 12.1 km. The two-dimensional
plots represent the distribution of the volume concentration of coarse (left) and fine (right)
particles across vertical orthogonal slices crossing the plume axis. See color palette for volume
concentration values.

Figure 2: Vertical section of the instantaneous value of the mixture velocity modulus (in
logarithmic scale) at t = 400 s and velocity streamlines.
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preferential concentration is computed as the (normalized) ratio between the
jth particle concentration and the concentration of a tracer (in our case, water
vapor), i.e.,

Cj =
yj
yj,0
· ytracer,0

ytracer
, (20)

where the 0 subscript corresponds to the value at the vent.
Fig. 3a shows the distribution of Cj for the coarsest particles at t = 400 s.5

The color scale is logarithmic and symmetric with respect to 1, which corre-
sponds to the nil preferential concentration. For Cj < 1, the mixture is relatively
depleted of particles (green to blue scale); for Cj > 1, particles are clustered
(green to red scale). The mass fraction of the coarsest particles is up to 5 times
larger (red zones) and 20 times smaller (blue zones) than the value it would have10

in absence of preferential concentration (green zones). This behavior affects the
mixing and entrainment process, as it will be shown in the following sections,
where the mean plume properties are evaluated with and without gas–particle
kinematic decoupling (see Figs. 4f, 4g, 4h and associated comments). It is also
worth remarking that the more uniform red area beyond the plume margins15

corresponds to the region of settling particles below the incipient umbrella re-
gion, that starts to develop on the left hand-side of the domain in Fig. 3a. On
the other hand, the top of the plume is relatively depleted of coarse particles.
The corresponding Fig. 3b for fine particles confirms that these are tightly cou-
pled to the gas phase and almost behave as tracers (value of Cfine is everywhere20

around 1). These conclusions are coherent with the a-priori estimate of Stj we
gave at the beginning of this section, based on the Taylor microscale time.

The instantaneous properties that we have just discussed in the plume region
are similar for all the subsequent temporal evolution of the plume, provided that
the source conditions are kept stationary. As the plume evolves, the umbrella25

cloud develops horizontally while the particles settle down reaching the ground
as ruled by their terminal velocity in the atmosphere.

4.2. Mean properties

We here present the results obtained by averaging the 3D results over time.
We averaged over the time-window [300 − 720] s, using all the time steps of30

the simulation to maximize the statistical set. The initial averaging time has
been selected some tens of seconds after the plume reached the top. Then, we
used the spatial averaging procedure described in Sect. 3.4, in order to allow
comparison with integral models and discuss the effect of numerical resolution,
LES model and kinematic gas–particle non-equilibrium.35

The analysis of the influence of the averaging time-window (see, e.g. Esposti
Ongaro and Cerminara, 2016, current issue) has shown that the averaging win-
dow size is much more important than the initial averaging time t0, because
long period fluctuations must be smoothed out. Therefore, we have taken the
time window as large as possible, even though a time-window [600 – 660] s40

was recommended and used in the inter-comparison study. On the other hand,
t0 = 300 s is enough for the WP to reach its maximum height. The updraft is
stationary beyond this time, even though the umbrella is not fully developed.
However, this aspect of the analysis deserves more attention for the future.
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(a) Coarse particles: preferential concentration Ccoarse

(b) Fine particles: preferential concentration Cfine

Figure 3: Distribution of Ccoarse (a), and Cfine (b), for the coarser and finer particles across a
vertical section at t = 400 s (cf. Eq. 20).

15



Effects of numerical grid resolution. In Figs. 4, we show a detailed comparison
of plume mean properties at different grid resolution, by reporting the evolution
along the plume axis. In particular we present: (a) the mass flow rate πQ(z),
(b) the momentum flow rate πM(z), (c) the enthalpy flow rate πF (z), (d) the
solid phase mass fraction (Ycoarse +Yfine)(z), (e) the ratio of coarse on fine mass5

fractions (Ycoarse/Yfine)(z), (f) the entrainment coefficient κ(z), (g) the plume
vertical velocity U(z), (h) the plume radius b(z), (i) the plume–atmosphere den-
sity difference (β−α)(z), and (j) the plume–atmosphere temperature difference
(Tβ − Tα)(z).

In these panels we first show the development of the fluxes driving the av-10

eraged plume properties (mass, momentum, enthalpy). Then, on the basis of
these profiles, we use the inversion Eqs. (18) and (19) to recover the mean physi-
cal parameters (ash mass fractions, entrainment, velocity, plume radius, density
and temperature). The figures show the variability of each mean variable due
to the resolution (the high-res, mid-res and low-res simulations are presented)15

and to the kinematic decoupling model (the [eqEu] model against the [dusty]
model). All simulations adopt the [dynWale] SGS model.

Results demonstrate that the numerical model is quite robust and accurate
so that even low-resolution simulations are able to capture the main features
of the volcanic plume development. However, Htop systematically decreases20

from 12.1 km (a), to 11.3 km (b) to 11.0 km (c) when we decrease the resolution.
Analogously, the Neutral Buoyancy Level (NBL) decreases from 7.8 km (a) to
7.2 km (b) to 7.1 km (c). Although the lowest resolution run underestimates the
maximum plume height and radius by about 10%, the transition to a super-
buoyancy region at about 2000m above the vent (Woods, 2010) is consistent in25

the three runs.
In Fig. 4a-c we notice that the effect of mesh resolution has a significant

influence on the development of cross-sectional profile of the flux of mass, mo-
mentum and enthalpy. Systematically, the more the resolution increases, the
more the fluxes increase. However, these differences are mitigated when looking30

at the physical variables (see Figs. 4d-j). Indeed changing the resolution, the
profiles for the variables reported in Figs. 4d-j remain very similar in the plume
region, below the umbrella development.

The computed entrainment coefficient is shown in Fig. 4f. Looking at the
profiles globally, we notice that it is relatively independent of the grid resolution.35

For all the runs, a mean value of about κ ' 0.1 is obtained in the buoyant plume
region between 2 and 6 km above the vent. The entrainment coefficient assumes
smaller values in the jet region κ ' 0.05 ÷ 0.07, coherently with experimental
results (Zhou et al., 2001). Interestingly, we find that in 3D simulations the
entrainment decreases near the NBL and it becomes negative above that level.40

This happens because the mass exits from the plume region moving to the
umbrella cloud. In this way, the mass flow q of the plume decreases above the
NBL and a stationary solution can be achieved. This is not the case in integral
plume models with positive entrainment coefficient, where the maximum plume
height is reached as a singularity point with divergent mass flow and plume45

radius (see Figs. C.17a and C.17c in Appendix C).
We conclude that – with the mesh geometry used – mean physical parameters

are captured by all the resolutions used, within a 10% error.
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Figure 4: (first part) Profiles of the integral variables of WP. Here we compare them by
changing the resolution from δ = D/32 (high-res) to δ = D/16 (mid-res) and δ = D/8 (low-
res). In the low-res case, we present also the results obtained with the [dusty] model. All runs
adopt the [dynWale] SGS model.
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Figure 4: (second part).

Effect of kinematic decoupling: ash jet dragging. The plume mean profiles are
influenced by the kinematic gas–particle decoupling in the jet region. Indeed, in
Figs. 4, the [dusty] model shows a significantly different behavior with respect to
[eqEu] (at constant resolution), with a larger plume radius, a higher entrainment
coefficient in the jet region and a less marked jet-plume transition with no5

further acceleration (without a transition to super buoyancy). The plume height
is slightly lower than the non-equilibrium case at the same resolution having
Htop = 9.9 km and Hnbl = 6.1 km, respectively. Numerical simulations thus
suggest that the effects of non-equilibrium gas–particle processes (preferential
concentration and settling) on air entrainment and mixing are non-negligible.10

These effects are certainly overlooked in the volcanological literature and will
be studied more thoroughly in future studies, by applying the present model to
other realistic volcanological case studies. However, in the following we present
some first results obtained from the simulations so far carried out.

In Figs. 4d-j, we notice that differences between profiles are influenced more15

by the decoupling between the gas and particles than by the grid resolution.
By comparing the low resolution simulations executed with model [eqEu] and
model [dusty], we notice that the former tends to shift all plume properties
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upward. In particular at a fixed height z, the mass and enthalpy fluxes are
higher with [eqEu] model, while the momentum flow is slightly lower. These
facts are reflected in a higher velocity, temperature and ash mass fractions at
a fixed height. On the contrary, the plume radius and the plume entrainment
are reduced by the gas–particle decoupling. The motivation for this behavior5

is found in the differences between [eqEu] and [dusty] models, i.e in the role of
particle kinematic decoupling. Particle decoupling acts on the plume dynamics
by two main processes: particle settling and turbulent preferential concentra-
tion. The former effect would induce the mass fraction of the coarsest ash phase
to decrease with height, while the latter induces particles to accumulate in the10

direction opposite to gas acceleration (cf. Eq. (B.1)). Thus in the jet region,
where a strong deceleration is present, decoupling allows the coarse particles to
travel more upwards than expected by the dusty gas model. Two-way coupling
induces all phases, both the fine particles and the gas, to partially follow the
coarse phase. The combined effect of gas–particle kinematic decoupling and the15

two-way coupling can be seen in particular in Figs. 4g, 4h, 4i, 4j, 4d, and 4e.
We refer to this effect as ash jet dragging. In Fig. 4j we can see that also the
temperature increases because of jet dragging and the plume radius is reduced
because the plume is somehow “stretched” by the same effect. It should be
noted, however, that herein we have not considered underexpanded plumes,20

which could generate more complex flow patterns in the jet region (Esposti On-
garo et al., 2008; Carcano et al., 2014). In this case, in fact we could observe
first a gas expansion and acceleration followed by an abrupt deceleration due to
the formation of the Mach disk.

Plume entrainment. In Fig. 5, we show the development of the entrainment25

coefficient below the umbrella region. To discuss the differences between sim-
ulations, keeping the plot clear, we report the entrainment obtained with the
high-res simulation and the key fitting parameters of all the other simulations in
legend (the complete entrainment evolution for all the simulations can be found
in Fig. 4f).30

In the plume region (between about five times the Morton et al. (1956)
length scale and the NBL) the simulated entrainment coefficient remains nearly
constant. Moreover, it is weakly influenced by the mesh resolution and by
the multiphase flow model. In particular, we obtain an entrainment coefficient
equal to κ = 0.103 ± 0.001 in the high resolution case. The middle resolution35

simulation gives an entrainment coefficient which is in the error band of the high-
res simulation: κ = 0.101 ± 0.002. Thus, the middle resolution LES is enough
refined to capture the correct entrainment coefficient and its error bar. On the
other hand the low resolution simulation gives an entrainment coefficient which
is underestimated by about 10%. The comparison of the multiphase models40

[eqEu] and [dusty] does not present significant differences, because the error bars
of the two results are overlapping. Moreover, it is worth noting that the standard
deviation between the constant fit and the simulated data is decreasing as the
resolution increases. This justifies the use of a constant entrainment coefficient
by integral one dimensional models in the plume region, from about five times45

the Morton length scale to the NBL.
In the jet region, the entrainment is not significantly influenced by the res-

olution, while it is strongly influenced by the multiphase model (see the jet
region in Fig. 4f). Thus, the ash jet dragging is influencing the entrainment
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Figure 5: Entrainment coefficient κ of the WP case in the plume region 2 ÷ 6 km above the
inlet. This is a zoom of Fig. 4f. We show the fit graph obtained at high-res, and the fit results
for the other simulations performed.

coefficient, decreasing significantly its mean value and its fluctuations in the jet
region below 2 km: [dusty] κjet = 0.0854115±0.006456, σfit = 0.0413412; [eqEu]
κjet = 0.0557168± 0.004812, σfit = 0.030815.

4.3. Comparison with integral models

Results shown in Figs. 4 can be compared with those in Fig. C.17, obtained5

from integral models presented in Appendix C. There, we introduce the inte-
gral model ASH1D and its analytical approximation ASH0D. Here are a few
differences between the outcomes:

• Plume height. Integral models underestimate the plume height with re-
spect to 3D ones: ASH1D gives Htop ' 9.1 km, while ASH0D gives Htop '10

9.3 km. The 3D simulation with the [dusty] model gives Htop ' 9.9 km.

• Neutral buoyancy level. ASH1D gives Hnbl ' 6.7 km, while ASH0D
Hnbl ' 7.1 km. The 3D simulation gives Hnbl ' 6.1 km. Integral mod-
els overestimate the plume NBL with respect to 3D ones.

• Plume velocity. The plume velocity at the transition to the super-buoyant15

regime is higher in the integral models (' 65m/s) than in 3D ones (45m/s).

• Plume radius. Results from integral models are comparable with those
obtained from 3D simulations below the NBL. Above, the behavior is the
opposite because of the known limitation of 1D models in describing the
umbrella region. While in the former case the plume radius increases, in20

the latter one it decreases going to zero.
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• Plume density, temperature and mass fractions. Integral models predict
a slightly faster dilution with respect to the 3D one, in particular in the
jet region.

The source of discrepancy between the two groups of models appears to be the
entrainment assumption, which works reasonably well in the central plume re-5

gion, while it is less appropriate in the jet region and above the NBL. In the jet
part of the evolution, the Ricou and Spalding (1961) model is overestimating
the quantity of atmospheric air entrained. This is due to the weakness of both
the entrainment model and the self-similarity hypothesis near the vent. Thus,
the integral plume model is diluting faster than in 3D simulations, mixing is10

more efficient, buoyancy is stronger and the plume goes higher, reaching a NBL
10% higher than that provided by 3D simulations. Above the NBL, assuming
a constant entrainment coefficient leads to a wrong behavior, where the plume
radius diverges instead of going to zero. This discrepancy adds another source
of error to the description of the plume profiles since it generates a significant15

underestimation of the column height. In 3D simulations the entrainment be-
comes negative above the NBL, because the plume loses mass, which moves
to the umbrella. The momentum decrease is thus slower than in the integral
model.

Plume conserved quantities. 1D integral plume models predict that there are20

two integral quantities that are approximatively conserved along the plume
height (Cerminara, 2015): URS (C.7) and Um (C.8). There, q, m and f are
defined as the non-dimensional fluxes corresponding to their dimensional coun-
terpart (in capital letter), while the coefficient γc is a non-dimensional parameter
measuring the stability of the volcanic column (see Appendix C.2). These two25

integral of motion can be evaluated using 3D results. The comparison between
the expected constant profile of URS and Um and the profile computed by the 3D
model allows to get more insight into the goodness of 1D model approximations.
URS depends linearly on lc(q) ' q2 (see Eq. (C.9)) and m

5
2 , while Um de-

pends linearly on (f − γc)2 and m2. Where a linear relationship between these30

terms is found, this means that the first integral of motion can be considered
as a constant and the 1D approximation is applicable. In Fig. 6, we show the
behavior of these quantities in the 3D simulations.

The linear behavior predicted by the 1D model is obtained, provided that
some of the parameters of the integral model are modified. In particular, when35

testing the conservation of first integral URS, the parameter aq (see Appendix
C.2) has to be increased significantly (see Fig. 6). In this way, URS remains
nearly constant from the vent elevation to the NBL (where m reaches its max-
imum). On the other hand, URS is not conserved above the NBL. This is in
agreement with the entrainment profile, which is not constant above the NBL.40

The other conserved quantity Um is instead defined independently from the
entrainment assumption. In the 3D results, in order to have Um approximately
constant along the plume, we increased slightly γc (see Fig. 6). Then, Um can
be considered approximately constant all through the plume height, even dur-
ing the buoyancy transition at the NBL. This result is in agreement with the45

independence of Um from the entrainment assumption. However, in the region
near the vent Um is subject to a sudden change that we identify in Fig. 6 with
∆Um ' −0.373. This behavior cannot be attributed to the non-Boussinesq
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Figure 6: Behavior of conserved quantities of ASH0D as calculated from 3D simulations of the
WP scenario. Here we modified some of the plume parameters to obtain a better behavior of
the conserved quantities (see discussion): aq = 1.65 → aq = 4.62, γc = 0.252 → γc = 0.292.
Moreover, we used the value of vf,0 = 2.66 ∗ 10−4 obtained averaging the atmospheric profile:
N0 ' 1.40 ∗ 10−2 Hz. Each point corresponds to a different height, evolving as indicated by
the arrow: from the vent to the maximum height, through the NBL.

regime near the vent, because ∆Um ' 0 even without this approximation (by
using ASH1D). More likely, this behavior is attributed to the shape of the aver-
aged horizontal profiles of the 3D plume. Indeed, the self-similarity hypothesis
could not be met near the vent (Esposti Ongaro and Cerminara, 2016; Cermi-
nara, 2016). Further studies and numerical simulations are needed to better5

understand the presented behavior.

5. Strong plume

The strong plume (SP) case represents a Plinian scenario with mass eruption
rate πQ0 = 1.5∗109 kg/s. Initial and boundary conditions are reported in Tab. 1.
In this section we discuss the results obtained from 3D numerical simulations10

of the SP. The main physical differences between this plume and the WP are
the following: 1) the plume is supersonic at the vent, since the mixture speed of
sound is 157m/s, while the exit mean velocity is 275m/s; 2) the plume has more
water than WP, this reflects in a smaller density contrast; 3) the Richardson
number vm is four times larger, thus the non-dimensional Morton length scale15

decreases by about a factor of 2; 4) the stratification length scale decreases by
about a factor 23, driving the transition between jet and plume at a height
comparable with the NBL.

We have performed a number of different simulations, modifying both the
resolution and the LES model. In this section, we mainly present the results20

obtained with the [dynWale] model at the finer resolution δ = D/32. Then we
study how the averaged plume properties are influenced by the grid resolution
and the LES model. In particular, alongside the high-res simulation, we used
a mid-res grid (δ = D/16) and a low-res grid (δ = D/8). Then we compared
results obtained with [dynWale] with those obtained with [moin], [oneEqEddy] or25

without subgrid model [noM]. Finally, we measure the effect of kinematic non-
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Figure 7: 3D numerical simulation of the SP case, 1000 s after the beginning of the eruption
(inlet conditions are in Tab. 1). The two isosurfaces in 3D rendering correspond to the
threshold εs = 10−7 of the fine (light white) and coarse (light sand) ash volume fractions.. The
maximum height of the fine class isosurface is approximatively 43 km. The two-dimensional
plots represent the distribution of the volume concentration of coarse (left) and fine (right)
particles across vertical orthogonal slices crossing the plume axis. See color palette for volume
concentration values.

equilibrium, comparing the results obtained with the [eqEu] model with those
obtained using [dusty].

As already done for the WP, we a priori evaluate the Stokes number as-
sociated with this eruption, based on the most energetic turbulent eddy scale
τD ' 1.5 s. We obtain Stcoarse ' 0.27 and Stfine ' 1.2 ∗ 10−3. From the5

a-posteriori analysis based on the Taylor microscale, we find: Stcoarse ' 0.06
and Stfine ' 3 ∗ 10−4, for the finer mesh resolution. Thus, we expect that the
kinematic decoupling is less important in the SP than in the WP case, and that
the [eqEu] model is well justified even for this simulation.

5.1. Large Eddy Simulations results10

The computational grid is extended 66b0 × 71b0 in the radial and vertical
directions, respectively. For the highest resolution run, the cells have a minimum
size δ = D/32. As for the WP simulations, there is no radial grading in the
plume region, while outside that region a radial grading factor of 1.011 is applied.
The mesh opening is tan θ = 0.0846. Along z, 2112 cells are utilized. The15

minimum vertical cell size is δ = D/32, and a grading factor of 1.000657 is
imposed. The azimuthal resolution is again π/32, with a total number of cells
equal to 8, 785, 920.

Numerical simulation of 1000 s of eruption time required: 1.5 h for the low-
res case (on one Intel-I7 quad-core processor at 2.8GHz); 39 h for the mid-res20

case (on 4 AMD 16-core processors at 2.3GHz ); 72 h for the high-res case (on
1024 cores of the CINECA IBM BG/Q machine).

Large scale dynamics. Figs. 7 and 8 show the development of the volcanic plume
at t = 1000 s from the beginning of the simulated event. The plume at the vent
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Figure 8: Vertical section of the instantaneous value of the mixture velocity modulus (in
logarithmic scale, [m/s]) at t = 1000 s from the beginning of the eruption, and corresponding
velocity streamlines.

is denser than the surrounding atmosphere, but the initial inertia allows most
of the mass to mix with the atmosphere, thus reversing the buoyancy from
negative to positive. The transition takes place through the development of a
fountain, and a suspended flow horizontally spreading over the jet at about 5 km
height (Neri and Dobran, 1994; Suzuki and Koyaguchi, 2012). However, in this5

simulation part of the mass collapses to the ground, forming pyroclastic density
currents and a co-ignimbrite plume surrounding the jet core. By inspection of
the simulation results, it is computed that approximatively 17% of the mass
of the column collapses to the ground and is subsequently re-entrained in the
main column through the co-ignimbrite plume. The plume reaches a neutral10

buoyancy condition at about 18.9 km above the vent. Inertia allows the plume
to reach its maximum height at Htop ' 43 km. Then the top of the plume
collapses over the NBL, spreading radially to the umbrella cloud. The updraft
induces a significant atmospheric perturbation driving the development of the
umbrella.15

The more evident structure, peculiar of the SP, is the large toroidal eddy
under the umbrella cloud. Less apparent, but still very important, is another
toroidal eddy developing around the jet, under the suspended flow. These two
features are present in the instantaneous fields as pulsating turbulent structures,
however they are clearly recognizable also in the time-averaged fields (e.g. Do-20

bran et al., 1993; Cerminara, 2016). Fig. 8 shows the streamlines of the velocity
field in a vertical slice of the whole simulated plume. Re-entrainment plays
an important role, causing part of the settled and collapsing particles to be
re-entrained into the plume, to be transported again upwards (Dobran et al.,
1993). Velocity fluctuations are stronger along the plume margins, while the25

velocity appears to be more stable near the plume axis. The jet region exhibits
a complex behavior, being surrounded by a collapsing layer, a re-entrainment
region and an ascending co-ignimbrite (Cerminara, 2016). A quantitative dis-
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(a) Coarse phase preferential concentration

(b) Fine phase preferential concentration

Figure 9: Distribution of Ccoarse (a), and Cfine (b), for the coarser and finer particles across a
vertical section at t = 1000 s (cf. Eq. 20).

25



cussion of the influence of the plume collapse and particle re-entrainment can be
found in the next sections, where we study the time-averaged properties of this
volcanic plume. However, before discussing that, we focus on two additional
aspects of the instantaneous fields: kinematic non-equilibrium and turbulent
infrasound generation.5

Kinematic non-equilibrium effects. To illustrate the preferential concentration,
we use again the quantity C, Eq. (20). In Fig. 9 we show the distribution of
preferential concentration in an axial slice of the plume. We notice that the fine
ash phase is practically coupled with the mixture velocity field, while the coarse
phase is not. As already noticed in the WP case (see Fig. 3a), the top of the10

plume is depleted of coarse particles which tend to settle down. The area of
the plume where particle fallout is stronger is red. Inside the plume, turbulence
makes the coarse particles to preferentially concentrate, creating zones with
higher ash mass fraction (yellow) and zones with lower mass fraction (cyan and
blue). Coarse ash clustering is stronger in the jet-plume transition zone and in15

the zone below the umbrella cloud. Preferential concentration is weaker for this
plume with respect to the WP case, as expected from the analysis of the Stokes
number. For this reason, as we discuss below comparing the models [eqEu] and
[dusty], ash jet dragging is present but weakened in the SP case.

Turbulent infra-sound generation. The plume presented in this section generates20

large eddies, comparable with the size of the vent (' 103 m). Turbulent eddies
generate pressure perturbations because of their centrifugal acceleration (see
e.g. Lesieur et al., 2005). In Fig. 10 we show the shape of these perturbations,
highlighting that the source of infrasound is not only the vent, but also the large
eddies. In this figure, the perturbations are highlighted by showing, in colored25

logarithmic scale, the magnitude of the acceleration field of the gas phase. The
infrasonic signal can be measured from the ground, extracting important infor-
mation about the plume dynamics (cf. Johnson and Ripepe, 2011). In Matoza
et al. (2009) infrasonic spectra from volcanic eruptions have been compared with
large-scale and fine-scale similarity spectra as measured by Tam et al. (1996).30

In Fig. 11, we show the simulated pressure fluctuation at ground level, 15
km far from the vent center, in the time window t ∈ [0, 13]min. As usually
done by real infrasound microphones (Matoza et al., 2009), the pressure signal
is convoluted with a kernel window cutting the frequencies smaller than 0.03Hz,
to study only pressure fluctuations and not absolute variations. The resulting35

spectrum is compared with the similarity spectrum generated by large-scale
turbulence measured by Tam et al. (1996). The fit is in satisfactory agreement
and comparable with results obtained from direct volcanic observation (see Ma-
toza et al., 2009). We obtained a peak in Ep(StrD), for StrD = 0.32 ± 0.01,
a value comparable with that expected from experimental results (see Lesieur40

et al., 2005; Cerminara et al., 2016). We show also the slope Str−11/4 measured
by Tam et al. (1996) for supersonic jets for Str > 2.5 StrD. It is worth noting
that our result could be influenced by the reflective boundary conditions we are
using. In future studies we plan to modify the atmospheric boundary conditions
in order to make them non-reflective.45
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Figure 10: Infrasonic signal generated by the turbulent eddies of the SP. Here the infrasonic
perturbation is visualized by using the magnitude of the acceleration field ag, in logarithmic
color scale [m/s2], 120 s after the eruption started.

5.2. Plume mean properties

Similarly to what we have done for WP, we here analyze the profiles of the
main averaged plume variables along the vertical extension of the plume. The
averaging technique is described in Sect. 3.4. Here we have used an averaging
time window T = [1000, 2000] s.5

Effect of grid size, LES model and non-equilibrium. While in the first part of
this section we have commented results from the high-res [dynWale] simulation,
in this sub-section, we present three groups of figures to study quantitatively
the effect of the mesh resolution (Fig. 12); the effect of the subgrid scale model
(Fig. 13); the effect of the kinematic decoupling model (Fig. 14). Moreover,10

in Fig. 15 we compare the entrainment coefficient as obtained from all the SP
simulations presented.

The effect of the resolution can be investigated by comparing the simulations
high, mid, and low resolution performed with [dynWale] (see Fig. 12). The plume
heights based on the 1wt.% of a tracer are respectively: Htop = 43, 41, 43 km;15

the plume NBLs are, respectively, Hnbl = 18.8, 18.4, 17.7 km. The relative error
due to resolution is less than 6%. Similarly to what we have found for WP, even
in the SP case results are quite robust and accurate and even the low resolution
simulation is able to capture the main features of the averaged volcanic plume.
However, the resolution has a stronger effect on this eruption than on WP.20

In Figs. 12g and 12j, we notice that the velocity is underestimated and the
temperature is slightly overestimated by the low-res simulation. These are the
most evident differences due to grid resolution, caused by an underestimation of
the momentum and enthalpy fluxes (see Fig 12). We conclude that a simulation
with a finer resolution is desirable to stabilize the plume averaged results.25

Moving to the effect of the subgrid scale model, we have two groups of
simulations to be compared in Fig. 13. The first group analyzes [dynWale] and
[noM], both at high resolution. In this way we can estimate the net effect of the
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Figure 11: Infrasonic spectrum of the pressure fluctuations as measured from a probe placed at
the ground level 15 km from the vent center, in the time window t ∈ [0, 13]min. The frequency
is expressed both in its dimensional (f) and non-dimensional (Str = f D/U0) formulation.
Pressure fluctuations Ep are represented both in logarithmic scale and in dB scale relative

to 20µPa. The slope Str−11/4 is shown in bold dashed line. The experimental large-scale
similarity spectrum is presented in bold solid line (see Tam et al., 1996). The inset shows the
pressure fluctuation signal in kPa until t ' 13min.

LES model. The height of the plume is, respectively, equal to Htop ' 43 and
40 km; while the NBL isHnbl ' 18.8 and 18.2 km, respectively. Thus, the subgrid
model tends to increase the plume height and the plume NBL with a relative
discrepancy of the order of 7% and 3%, respectively. The entrainment coefficient
without subgrid model ([noM]) does not significantly change in average although5

its fluctuations increase (σfit ' 0.20 vs 0.14 in the legend of Fig. 15). The main
differences in the plume profiles are caused by the underestimation of the mass
and enthalpy fluxes by [noM] above the jet-plume transition, inducing the slight
underestimation of the plume radius, density, temperature, and solid phase mass
fractions. Using a subgrid model improves the quality of the averaged results:10

the mid-res simulations with subgrid model are closer to the high-res simulation
than the high-res with [noM].

The second group of profiles presented in Fig. 13 compares [dynWale], [moin],
and [dynOneEqEddy] at middle resolution. As pointed out above, the entrain-
ment coefficient agrees among all the simulations and, this time, also fluctua-15

tions are comparable. In particular, κ is underestimated by [dynWale], com-
parable with the high-res simulation for [moin] model, and is overestimated by
[dynOneEqEddy]. These small differences are reflected in the averaged plume
profiles, making the mid-res simulation performed with [moin] the most accu-
rate one. However, we can conclude that the effect of the subgrid model used is20
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weaker than the effect of the resolution, in the range of variation investigated.
The last group of profiles is shown in Fig. 14. In this figure we illustrate the

effects of the kinematic decoupling between the ash particles and the gas phase.
In this case, the decoupling is much weaker than in the WP one. Indeed, as
pointed out above, the Stokes number of these particles can be estimated, on5

average, as Stcoarse ' 0.06, against Stcoarse ' 0.1 we have found for the 1mm
particles in WP. This apparent slight difference induces a significant effect on
the averaged plume properties. The ash jet dragging effect is now much weaker
and can be seen clearly only on the enthalpy flux profile Fig. 14c and more
weakly in the mass flux profile Fig. 14a. This is reflected with more evidence10

in the plume radius, velocity and mass fraction ratio profiles (Figs. 14h, 14g
and 14e). As in the WP case, the plume radius is initially reduced by the jet
dragging inducing a larger plume radius above the NBL. The velocity increases
under the NBL due to kinematic decoupling, while above that level, velocity is
larger in the dusty-gas simulation. The plume height and NBL increase because15

of kinematic decoupling: they move from Htop ' 39 km and Hnbl ' 18.2 km
with the [dusty] model to Htop ' 41 km and Hnbl ' 18.5 km with the [eqEu]
model.

Entrainment coefficient. In Fig. 15, we report the entrainment coefficient ob-
tained for all the simulations presented in this Section. We fit the entrainment20

coefficient computed by using Eq. (19) with a constant value from the vent to
approximately the NBL: Hnbl = 16 km. Surprisingly, we obtained quite stable
results, even at different resolution, subgrid model and kinematic decoupling
model: κ = 0.24 ± 0.02. However, we notice that the fluctuations of the en-
trainment coefficient σfit are significantly larger than in the WP case. Even25

if the entrainment coefficient oscillates around a constant value, the standard
deviation in this plume is significantly higher: σfit ' 0.14 for the reference high
resolution simulation.

It is worth noting that the entrainment coefficient shown in Figs. 15 and 5
has been evaluated by using Eq. (19), thus without adding in Eq. (C.1a) either a30

sink term due to particle fallout, a source term due to particle re-entrainment, or
a correction keeping into account partial plume collapse. Consequently, the re-
sulting entrainment coefficient contains all these effects, because they are present
in our 3D simulations. This could be an explanation of the larger value of the
σfit of the entrainment coefficient computed for the SP with respect to the WP35

case. A larger value of the σfit is due to the strong oscillations of the entrain-
ment κ around the fitted value, which makes the self-similarity assumption not
valid for this case. Indeed, as it can be noticed from Figs. 7, 8 and 9, the en-
trainment around the plume edges is not as well organized as for the WP case.
In this case, the plume edge is bounded by complex structures which seem to be40

quite important from qualitative analysis of the figures mentioned above. Other
sources of variation appear to be the large eddies underneath the umbrella cloud,
which certainly influence the rate of entrainment of the plume below the NBL.
Moreover, the plume partially collapses in the jet region, causing the entrain-
ment coefficient to decrease and eventually to go below zero. This fact can be45

seen in Fig. 15, above the jet-plume transition at z ' 5 km. Above that height
the entrainment coefficient presents two minima, corresponding to the heights
where SP loses more mass.

Despite this variability, the results of the fit from the high-res and the mid-res
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Figure 12: (First part) Influence of the mesh resolution on the profiles of the integral variables
of SP. Here we compare them by changing the resolution from δ = D/32 (high-res) to δ = D/16
(mid-res) and δ = D/8 (low-res). All runs adopt the [dynWale] model.
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Figure 12: (Second part).

simulations are in agreement, with their respective error bars overlapping. The
low resolution simulation is overestimating the entrainment coefficient, modify-
ing the plume properties as commented above. However, all the other simula-
tions at high- and mid-resolution give an entrainment coefficient in agreement
with the reference simulation. The kinematic decoupling induces a negligible5

increase of the entrainment coefficient below the NBL: from κ = 0.23± 0.01 in
the [dusty] case, to κ = 0.24± 0.01 in the [eqEu] one.

5.3. Comparison with the dusty-gas model

As we have done for the WP eruption, in this section we compare results ob-
tained from 3D simulations of the SP eruption with those presented in Sect. Ap-10

pendix C. Here are a few differences between the outcomes showed in Fig. C.18:

• Plume height. Integral models described in Sect. Appendix C capture
the plume height. The ASH1D model (C.1) gives Htop ' 39 km, as the
3D simulations with the [dusty] model. The ASH0D (see Sect. Appendix
C.2) overestimates it, with Htop ' 43.5 km.15
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Figure 13: (First part) Influence of the subgrid LES model on the profiles of the integral
variables of SP. Here we compare them by using high and middle resolutions. In the high
resolution case, we present the results obtained without subgrid model [noM], while in the
middle resolution case [moin] and [oneEqEddy] are shown.
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Figure 13: (Second part).

• Neutral buoyancy level. ASH1D gives Hnbl ' 24.9 km, while ASH0D
Hnbl ' 32.5 km. 3D simulation gives Hnbl ' 18.2 km. Integral models
overestimate the plume NBL.

• Plume velocity. The plume velocity provided by the integral models is
significantly higher than that provided by the 3D simulation. While in5

the former case the velocity in the jet-plume transition height is around
160m/s, in the 3D simulation it is about 50m/s.

• Plume radius. The plume radius is strongly underestimated by integral
models. The radius in the jet-plume transition is ' 3 km against ' 5.5 km
in 3D simulations, while close to the NBL (z ' 20 km) it is ' 10 km10

against ' 17.5 km in the 3D simulation. Above that height the behavior
is the opposite. While in the former case the plume radius and mass
flux increase, in the latter one they decrease down to zero (excluding
fluctuations induced by the fact that also momentum goes to zero).

• Plume density, temperature and mass fractions. Integral models predict a15
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Figure 14: (First part) Influence of the kinematic decoupling model on the profiles of the
integral variables of SP. Here we compare results obtained using the [eqEu] model with those
from the [dusty] model. The former is reported in the high and middle resolution case, whereas
the latter in the middle resolution case.
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Figure 14: (Second part).

slower dilution with respect to the 3D simulation, in particular in the jet
region.

• Ejected mixture mass flux. The fluxes Qe, Qs defined in Sect. Appendix
C are not constant in 3D simulations, while they are constant in integral
models.5

In the SP, as in the WP eruption, the main source of discrepancy between
the 3D solution and the integral one appears to be the entrainment model and
the partial collapse dynamics in the jet region. In the 3D simulation we have
found an entrainment coefficient larger than that used in the integral model.
This means that the integral plume model is diluting much slowly than in 3D10

simulations, the temperature remains higher, the velocity is larger and the plume
goes higher, reaching a NBL 36% higher than that provided by 3D simulations.
As in the WP case, above the NBL, assuming a constant entrainment coefficient
leads to a wrong behavior, where the plume radius diverges instead of going to
zero. This discrepancy adds another source of error to the plume description,15

which however goes in an opposite direction, decreasing the plume height.
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Figure 15: Entrainment coefficient κ of SP below the NBL: 0 ÷ 16 km. This is a zoom of
Fig. 12f. We show the fit graph obtained at high resolution with the [dynWale] subgrid model,
and report in the legend the fit result for the other simulations performed.

Plume conserved quantities. In Fig. 16 we show the behavior of the first integrals
of motion in the 3D simulations of the SP. As for the WP eruption, even in the
SP we observe that some of the plume parameters have to be modified to obtain
the behavior predicted by integral models. In particular, the conservation of the
first integral URS requires that the parameter aq is increased significantly (see5

Fig. 16). In this way, the evolution of m approximately follows the prediction
of integral models, from the vent elevation to the NBL (where m reaches its
maximum). However, in the jet region the linear fit is worst than in the WP. As
observed in WP, URS is not conserved above the NBL. By increasing slightly γc,
Um can be considered approximately constant all along the plume height, even10

during the buoyancy transition at the NBL. However, as for the WP eruption,
in the region near the vent Um is subject to a sudden change that we identify
in Fig. 16 with ∆Um ' −0.2. Also in this case, the main motivation can be
found in the complex 3D jet structure of the plume near the vent, where the
self-similarity assumption is not satisfied.15

6. Discussion and Conclusions

6.1. Quality and reliability of Large-Eddy Simulation

The Large Eddy Simulation of volcanic plumes is a challenging task because
it requires that the numerical model not only describes the main physical pro-
cesses occurring in the gas–particle eruptive mixture but also that the most20

relevant dynamic scales of the turbulence are resolved. In addition, since the
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Figure 16: Behavior of conserved quantities of the integral model as calculated from 3D sim-
ulations of the SP scenario. Here we modified some of the non-dimensional plume parameters
introduced in Appendix C.2 to obtain a better behavior of the conserved quantities (see
discussion): aq = 0.473 → aq = 2.7, γc = 0.345 → γc = 0.445. Moreover, we used the value
of vf,0 = 3.0 ∗ 10−2 obtained averaging the atmospheric profile: N0 ' 2.61 ∗ 10−2 Hz. The
arrows indicate the versus of the flow in the plume, from the vent to the NBL.

transport equations are non-linear, the unresolved (subgrid) scales need in gen-
eral to be modeled to properly describe their effect on the large-eddy scales
of motion and avoid either the accumulation of energy in the high-frequency
fluctuations or the excessive numerical diffusion. This is critical in the LES of
volcanic plumes because the large-eddy scales controlling the entrainment rate5

are usually at the threshold between grid-resolved and subgrid scales.
The numerical discretization and solution approach adopted by the ASHEE

model has demonstrated in several benchmarks (Cerminara et al., 2016) the abil-
ity to accurately reproduce the turbulent spectrum in both Direct and Large-
Eddy Simulation. In particular, the model is able to reproduce not only the10

averaged dynamics of a laboratory forced plume but also the statistics of tur-
bulent fluctuations, controlling the mixing rate. Such results are encouraging
and strongly support the reliability of the adopted numerical model for vol-
canic plume simulation. However, it is worth recalling that volcanic plumes are
characterized by a Reynolds number several orders of magnitude larger than15

a laboratory plume and that atmospheric stratification strongly characterizes
volcanic plume dynamics, making an exact scaling of laboratory and DNS ex-
periments extremely difficult. Despite these limitations, we have demonstrated
in this work (Fig. 10 and 11) that high-resolution numerical simulations are
able to reproduce some qualitative and quantitative features of the infrasonic20

spectrum emitted by volcanic plumes, an observable strictly linked to the (com-
pressible) turbulent regime.

On the other hand, we have also shown (Figs. 4 and 12–14) that low- and
mid-resolution LES are able to capture the essential features of high-resolution
simulations, predicting consistent averaged flow fields. In particular, the uncer-25

tainty on the averaged flow fields associated with the adopted grid resolutions
and subgrid models is significantly lower than that related to the the choice of
the entrainment coefficient in integral models (see results of the intercomparison
study presented in Costa et al., 2016, this issue). In particular, the limited effect
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associated with the choice of the SGS model is well shown in Figs. 13g, 13h.
The larger effect is associated to the presence of the SGS model itself (which
improves the accuracy and the stability of the simulation). When SGS models
are used, the differences between dynamic and static models are of second-order
importance. As a consequence, a first-order description of the mean properties5

of volcanic plumes can be achieved without the need of any empirical constant
in the modeling of the turbulence.

For what concerns fluctuation properties, we have indications that the effect
of grid resolution and SGS model is relevant, although we have not carried out
a detailed study on this aspect. This is suggested, for example, by the measure10

of the variations around the mean value of the entrainment coefficient, below
the NBL (Figs. 5 and 15).

6.2. Non-equilibrium gas–particle effects

In this work, we have analyzed the net effect on the mean flow profiles
obtained by switching on and off the kinematic decoupling terms in the trans-15

port equations. Such an effect is larger in the WP than in the SP because
the particle Stokes number of the coarsest particles is larger in the former (0.1,
with respect to 0.06). For the WP case, the effect of the gas–particle decou-
pling is significantly larger than the effect of the considered mesh resolutions
(Figs. 4g, 4h). Consistently with the lower Stokes number, such an effect is less20

evident for the SP case. We have shown that particle non-equilibrium intro-
duces a novel phenomenon, that we have called jet-dragging, clearly observable
in the WP case. Because of the kinematic decoupling, all profiles are shifted
up (by about 20-25% in the present application) in the non-equilibrium case.
In addition, non-equilibrium effects increase the radius in the buoyant plume25

region of about 20%. This reflects systematically in the umbrella region, which
is much depleted of particles in the dusty gas model (around 10% of the total
plume height in the WP case).

We have not carried out a detailed study on the effect the non-equilibrium on
fluctuations. However, this is clearly important, at least for coarse particles, as30

highlighted by the instantaneous particle distribution in the plume (Figs. 3a, 9a).
In the WP, preferential concentration ranges between 0.05 and 5, i.e., density
fluctuates by up to two orders of magnitude due to clustering. In the SP case,
this range reduces to 0.1÷ 2.

6.3. Comparison with integral models35

The comparison of the averaged plume variables from the LES model and
results of integral models allowed us to quantitatively estimate the quality of
the 1D approximation. In the WP case, 3D results are consistent with the
predictions of integral models in the jet and plume regions, with an entrain-
ment coefficient around 0.10 in the plume region below the NBL. In the SP40

case, the 1D approximation results less appropriate and the calculated entrain-
ment coefficient in the plume region is more unstable, with an higher average
value equal to 0.24. In both cases, integral models predictions diverge from the
3D plume behavior in the umbrella region, where the entrainment coefficient
assumes negative values.45

The main discrepancies between 1D and 3D model results derive from the
different entrainment model. In the WP case, three dimensional simulations
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conserve the first integrals of motion predicted by integral models. However,
one of these integrals depends on the entrainment coefficient and needs to be
corrected, suggesting that the entrainment model has to be better calibrated.
On the contrary, in the SP case, it is not possible to calibrate an entrainment co-
efficient to conserve the integral. This suggests that the entrainment in presence5

of a fountain-like or partial column collapse structure should to be expressed by
a more complex functional form.

On the other hand, the second integral of motion does not depend on the
entrainment assumption. This allowed us to test the consistency of the 1D
approximation beyond the entrainment hypothesis. Such integral is almost per-10

fectly conserved above the gas thrust region in both test cases. This suggests
that an important source of discrepancy between 1D and 3D models is the
self-similarity approximation of the horizontal profiles in the lower region.

Finally, we comment about the resulting plume height and NBL. Predictions
of the LES model differ from those of integral models. In the WP case, both15

levels are underestimated by about 10% mainly because of the entrainment as-
sumption in the jet region. In the SP case, the NBL is strongly overestimated
by integral models, indicating that the assumptions behind integral models are
weaker both in the jet and plume region. For both cases, integral models de-
scription of the umbrella region is not appropriate: for the integral models the20

entrainment remains constant and positive, while in 3D simulations it varies
largely and becomes negative. In the SP, this effect counterbalances the higher
NBL making the total plume height quite consistent with 3D results. Our
ASH0D approximation works satisfactorily well (with respect ASH1D), captur-
ing both mean profiles and plume heights (Figs. C.17 and C.18).25

6.4. Future directions

Present results confirm that, when the grid resolution of the LES is fine
enough (roughly, at least ten cells in the vent diameter, as firstly suggested by
Suzuki et al., 2005), any strong influence of grid resolution and subgrid model
can be excluded. However, a much detailed analysis on the use of non-diffusive30

shock–capturing schemes (as recently proposed for example by Vuorinen et al.,
2013) is necessary to further reduce the influence of numerical error in supersonic
regimes.

From the present study, we have shown that non-equilibrium gas–particle
effects should have a second-order influence on the dynamics of the analyzed35

regimes. As a further development, the coarsest portion of the grain size distri-
bution (above about 1 mm) will be included in the model by means of Lagrangian
techniques.

The present study demonstrates that Large Eddy Simulation can reliably
describe the dynamics of volcanic plumes and are an irreplaceable tool to iden-40

tify the critical hypotheses and to calibrate empirical parameters at the base
of integral models used in operational studies. In addition, they allow to study
unexplored regimes where integral model assumptions are flawed and provide
the unprecedented capability to reproduce observables quantities (such as infra-
sound signals) which can be useful to constrain eruption dynamics in real cases.45

Future works shall be expressly devoted to improving the comparison between
observational/laboratory data and numerical results (Cerminara et al., 2015).

Finally, to consider more realistic volcanological scenarios, more complex
atmospheric conditions including wind and the volcano topography will be
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added by exploiting the capability of ASHEE of using non-structured hexa-
hedral meshes. This will also allow to derive an effective entrainment coefficient
in case of wind (including the cross-wise coefficient Bursik, 2001) and to study
the gravity current above the NBL, exploiting the 3D simulations to calibrate
simple 1D gravity current models (e.g. Suzuki and Koyaguchi, 2009; Costa et al.,5

2013).

Appendix A. Table of symbols

a acceleration vector field
b plume radius
C specific heat at constant pressure
Cv specific heat at constant volume
Cj jth particle concentration relative to that of a tracer
d particle diameter
D vent diameter
f generic field
f non-dimensional enthalpy flux
F enthalpy (buoyancy) flux divided by π
g gravity acceleration
h enthalpy
H plume height
i index running over all the gas phases
I number of gas phases
I set of all indexes i
j index running over all the solid phases
J number of solid phases (particle classes)
J set of all indexes j
K kinetic energy
L integral length scale of the domain Ω
m non-dimensional momentum flux
M momentum flux divided by π
N0 mean Brunt-Väisälä frequency
p pressure

Pr Prandtl number
q non-dimensional mass flux
q heat flux
Q mass flux divided by π
R gas constant
Re Reynolds number
S source term
St Stokes number
Str Strouhal number
t time
T temperature
T temporal domain
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T stress tensor
Tr kinematic decoupling tensor
u velocity vector
U plume axial velocity
U quantity conserved along the plume axis by integral models
v relative velocity field
V volume
w settling velocity
x spatial coordinate
y mass fraction
Y horizontally averaged mass fraction
z vertical coordinate
ẑ vertical versor

α atmospheric density
β plume density
γc column stability
δ minimum grid size
ε volume concentration
η Kolmogorov length scale
κ entrainment coefficient
λT Taylor microscale
µ dynamic viscosity
ν kinematic viscosity
ξ LES resolved spatial scale
ρ bulk density
ρ̂ density
τ typical time scale
τη Kolmogorov time scale
υ molar fraction
χ non-dimensional specific heat
ψ non-dimensional gas constant
Ω spatial domain

(·)0 at the vent level
(·)g of the gas phase
(·)i of the ith gas component
(·)j of the jth solid phase
(·)k of the kth generic phase or component
(·)m of the mixture
(·)nbl at the plume neutral buoyancy level
(·)s of the solid phase

(·)top at the plume top
(·)α of the atmosphere
(·)β of the plume

Appendix B. The ASHEE model equations

Balance equations. The balance equations of mass, momentum, and enthalpy
of a multiphase mixture of I gas components and J solid particulate phases in
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“mixture” formulation are (see Cerminara et al., 2016):

∂tρm +∇ · (ρmum) =
∑
j

Sj (B.1a)

∂t(ρmyi) +∇ · (ρmugyi) = 0 , i ∈ I (B.1b)

∂t(ρmyj) +∇ · [ρm(ug + vj)yj ] = Sj , j ∈ J (B.1c)

∂t(ρmum) +∇ · (ρmum ⊗ um + ρmTr) +∇p =

= ∇ · T + ρmg +
∑
j

Sjuj (B.1d)

∂t(ρmhm) +∇ · [ρmhm(um + vh)] =

= ∂tp− ∂t(ρmKm)−∇ · [ρmKm(um + vK)] +

+∇ · (T · ug − q) + ρm(g · um) +
∑
j

Sj(hj +Kj) (B.1e)

where ρm, um, and hm are the mixture density, velocity, and enthalpy, re-
spectively. The velocity fields of the gas and of the solid phases are ug and
uj ≡ ug +vj , so that vj is the relative velocity field between the jth solid phase
and the gas phase. The mass fractions of the gas and solid phases are denoted5

by yi and yj , respectively. Eq. (B.1a) is redundant, since it is just the sum of
Eqs. (B.1b) and (B.1c) (recall

∑
I yi+

∑
J yj = 1). The terms which are present

also in the single phase formulation of the compressible Navier-Stokes equations
depend on: the pressure field of the gas phase p; the stress tensor field of the
gas phase T; the gravity acceleration g; the kinetic energy per unity of mass of10

the mixture Km =
∑
I yiKi +

∑
J yjKj , K ≡ 1

2 |u|
2; the heat flux in the gas

mixture q. The term Sj is the source (sink) term relative to the jth solid phase.
The terms Tr, vh, and vK are those keeping into account the effect of kinematic
decoupling between the phases in the mixture. The effect of a possible thermal
disequilibrium is kept in the field hm =

∑
I yihi +

∑
J yjhj .15

The system of equations (B.1) is not closed. The following constitutive
equations are needed: p = p(ρm, Tg), T = T(um, Tg), hi = hi(Tg), hj = hj(Tj),
q = q(Tg); where Tg and Tj are the temperature fields of the gas phase and of
the jth solid phase, respectively. Moreover, additional information are needed
for the determination of the kinematic and thermal decoupling terms vj and20

Tj − Tg. All these information for the ASHEE model are summarized in the
next section.

Constitutive equations. The ASHEE model uses the ideal gas hypothesis in the
volume occupied by the gas phase. The corresponding constitutive equation can
be written starting from p =

∑
I ρ̂iRiTg:25

1

ρm
=
∑
j

yj
ρ̂j

+
∑
i

yiRiTg

p
, (B.2)

Ri being the gas constant of the ith component.
The stress tensor is related by a classical relationship to the rate-of-shear Sg

and the strain-rate Dg = Sym(∇ug) tensors:

T = 2µSg (B.3)

Sg = Dg −
1

3
Tr(Dg) I . (B.4)
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Here µ is the dynamic viscosity of the gas phase, defined knowing the viscosity
of each gas component µi and its molar fraction υi:

µ =
∑
i

υiµi . (B.5)

In ASHEE, the dynamic viscosity of the gaseous component can be considered
constant or depending on the temperature by the Sutherland law:

µi = µi(Tg) =
µSth T

3
2

g

Tg + TSth
, (B.6)

where µSth and TSth are two constants depending on the fluid. Using data5

from the NIST Chemistry WebBook, we got results presented in Tab. B.2. In

fluid temperature interval µSth TSth

air 100÷ 1500K (1.5697± 0.0009) ∗ 10−6 Pa s (144± 1)K
steam 375÷ 1275K (2.528± 0.003) ∗ 10−6 Pa s (1130± 2)K

Table B.2: Sutherland law constants obtained by fitting data from NIST Chemistry Web-
Book http://webbook.nist.gov/chemistry/fluid/.

the simulations presented here we used a constant value for the viscosity, as
requested in the IAVCEI intercomparison study.

As usually done, the heat flux q is defined through the Fourier law

q = −kg∇Tg , (B.7)

while the particle-particle heat flux has been disregarded because negligible in10

dispersed multiphase turbulence (εs . 10−3). We define the gas phase Prandtl
number:

Prg =
µCg

kg
. (B.8)

Throughout this work, we will use for atmospheric air the assumption Prg = 0.71,
as a good approximation of the temperature dependence of the thermal conduc-
tivity on temperature (Garnier et al., 2009). Here Cg is the specific heat at15

constant pressure and kg is the thermal conductivity of the gas phase.
Finally, defining Cv,i and Cv,j the specific heats at constant volume of the ith

gas component and of the jth phase, the enthalpy is related to the temperature
through the following relations:

hi = Cv,iTg + p/ρg (B.9)

hj = Cv,jTj (B.10)

so that
∑
I yihi = yghg, hg =

∑
i ρiCv,iTg/ρg + p/ρg, and20

hm =
∑
i

yiCv,iTg +
∑
j

yjCv,jTj +
p

ρm
. (B.11)
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Decoupling: the Equilibrium–Eulerian approach. Kinematic decoupling is re-
solved in ASHEE by using the Equilibrium–Eulerian model (see Ferry and Bal-
achandar, 2001; Ferry et al., 2003; Balachandar and Eaton, 2010; Cerminara
et al., 2016). The full momentum balance equations of the jth solid phase can
be explicitly solved if Stj < 0.2. The asymptotic solution is5

vj = uj − ug = wj − τj(ag + vj · ∇ug) +O(τ2
j ) , (B.12)

where wj = τjg is the settling velocity and

τj =
ρ̂j d

2
j

18µφc
(B.13)

φc = 1 + 0.15 Re0.687
j . (B.14)

The function φc(Rej) corrects the Stokes time τj in the regime 1 < Rej < 1000
for spherical particles. The introduction of alternative empirical corrections is
straightforward. In Cerminara (2016) we showed that the relative Reynolds
number between the jth solid phase and the gas phase10

Rej =
ρ̂gdj |vj |

µ
, (B.15)

can be evaluated directly with

Rej =
Re∗j

1 + 0.315 (Re∗j )
0.4072

, where Re∗j ≡
ρ̂gρ̂jd

3
j |g − ag|

18µ2
. (B.16)

Thermal decoupling is disregarded in ASHEE, because Ferry and Balachan-
dar (2005) and Cerminara et al. (2016) demonstrated that the error made by
assuming thermal equilibrium is at least one order of magnitude smaller than
kinematic one. Thus Tj = Tg = T and15

hm = Cv,mT +
p

ρm
(B.17)

Cv,m =
∑
i

yiCv,i +
∑
j

yjCv,j . (B.18)

LES formulation and Sub-grid scale modeling. The model equations described
above should be filtered in order to obtain the LES formulation, leading to ad-
ditional terms accounting for eddy diffusivity terms and for the sub-grid scale
Reynolds stress. The procedure is detailed by Cerminara et al. (2016); Cermi-
nara (2016).20

Appendix C. Integral plume models

Appendix C.1. The ASH1D model

We here describe the ASH1D model of volcanic plumes adopted for this
study, whose results are presented in Figs. C.17 and C.18, and also discussed in
the intercomparison paper by Costa et al. (2016). The model rewrites the Woods25

(1988) model in a compact form, as a closed system of ordinary differential
equations (including the thermodynamics of the gas–particle mixture). The

44



model is written for a gas–particle volcanic plume composed, at the vent, by
two phases: the solid particles (·)s and the ejected gas phase (·)e. They can
be derived directly from the dusty-gas model in 3D by assuming a number of
additional hypothesis. The full derivation can be found in Cerminara (2015). In
the dilute approximation, ASH1D is equivalent to Woods (1988), i.e. it predicts5

the evolution of Q, M and F (defined by Eqs. (17)) along the plume axis.

Q′ = 2Uε(α,Q,M,F )

√
αQ(F +Q)(Q+Qψ)

M [Q+Qχ]
(C.1a)

M ′ =
gFQ

M

[
1− (F +Q)(Qχ −Qψ)

F [Q+Qχ]

]
(C.1b)

F ′ = −(F +Q)
(CαTα)′

CαTα
+

M2Q′

2CαTαQ2
− g(F +Q)(Q+Qψ)

CαTα(Q+Qχ)
. (C.1c)

To obtain the result, Eqs. (18) are needed, with the definition of Qχ, Qψ, F
and the entrainment velocity Uε. The two mass fluxes take into account the
multiphase nature of the fluid:

Qψ = −Qs + (ψe − 1)Qe , (C.2)

Qχ = (χs − 1)Qs + (χe − 1)Qe , (C.3)

and are constant in the whole plume height (Q′ψ = 0, Q′χ = 0). Coherently10

with that reported in Eqs. (18) and (17), the mass fractions Yψ = Qψ/Q and
Yχ = Qχ/Q, as well as the enthalpy flux

F =

[
(α− β) + α

Qχ −Qψ
Q+Qψ

]
Ub2 , (C.4)

can be derived from the thermodynamics of the plume mixture (see Cerminara,
2015). In ASH1D, we model the entrainment velocity as done by Woods (1988):
we use the Ricou and Spalding (1961) model15

Uε/U = κ
√
β/α (C.5)

below the jet-plume transition level, and the Morton et al. (1956) model (Uε/U = κ)
above.

Appendix C.2. The ASH0D model

In Cerminara (2015, 2016), an approximated analytical solution of the ASH1D
model (C.1) is presented. In Cerminara et al. (2015) this solution is applied to20

a real volcanic eruption. In this paper we refer to this analytical approximation
as ASH0D.

To obtain the ASH0D solution, three main steps were carried out:

• System (C.1) has been written in non-dimensional form, with respect to
the value at the vent of the fluxes q = Q/Q0, m = M/M0 and f = F/F0.25

The non-dimensional level ζ = z/`0 is defined on the basis of these fluxes:
`0 = Q0/

√
α0M0. The importance of the density contrast at the vent

is measured by φ = F0/Q0, while the fountain stability is measured by
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γc = (Qχ −Qψ)/F0. The multiphase nature of the plume is measured by
qχ = Qχ/Q0 and qψ = Qψ/Q0.

The parameters measuring the degree of variation of q, m, and f are re-
spectively vq, vm and vf,0. The first is nothing but twice κ, the second
is the Richardson number vm = gF0Q0`0/M

2
0 , and the third is the non-5

dimensional ambient stratification vf,0 = Q0`0N 2
0 /gF0. N0 is the mean

Brunt-Väisälä frequency. We set it to N0 = 1.13 ∗ 10−2 Hz.

• A generalization to the multiphase case of the asymptotic solution written
by Morton et al. (1956) has been found:

q(ζ) =

(
3vq

5a
1/5
q

ζ + 1

) 5
3

, aq =
4vq

5vm(1− γc)
. (C.6)

• Two first-integral of motion have been found: URS and Um. The functional10

form of the first does depend on the entrainment model used (namely,
Ricou and Spalding, 1961), while the second does not. In particular, they
are:

URS = l(q)− 4vq
5vm

m5/2 = l(1)− 4vq
5vm

(C.7)

Um = (1− γc)2 +
vf,0
vm

= (f − γc)2 +
vf,0
vm

m2 , (C.8)

where

l(q) = q2(1− γc)− 2γc(φ− qχ) [q − qχ ln(|q + qχ|)] ≈ q2 (C.9)

takes into account the density contrast and the composition of the plume.15

By assembling all the elements here described, the profiles Q(z), M(z) and
F (z) can be constructed. By using Eqs. (18), all the dependent variables can
be obtained from the initial conditions.

Finally, Um can be used to evaluate Htop and Hnbl. Indeed, at z = Hnbl the
momentum flux reaches its maximum (thus fnbl = γc), while at z = Htop it falls20

to zero (thus ftop = γc −
√
Um).

Weak and Strong plume solutions. The behavior of the ASH0D approximation
with respect to ASH1D and ASHEE (executed in [dusty] regime, for coherence
with integral models) is showed in Figs. C.17, C.18, for the WP and SP cases,
respectively. We notice that the approximated solution works surprisingly well25

for both the presented plumes. In particular, the temperature and density
profiles are well captured for both cases. The best behavior is observed for the
WP case.

Comments on the comparison between integral and 3D models are in Sects. 4.3
(WP) and 5.3 (SP). On the other hand, by comparing ASH0D with ASH1D, we30

notice that the asymptotic solution behaves worse for the plume radius and the
plume axial velocity in the upper part, where the stratification plays the most
important role. Anyway, the plume maximum height is captured with less than
12% of error for both the plumes. The NBL of the SP has a larger error because
of the jet region, where the enthalpy flux increases. Systematically, the asymp-35

totic mass flux is overestimated with respect to ASH1D. This error occurs with
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more evidence in the SP case, and directly reflects in the underestimation of
the mass fractions along the plume axis. However for all the presented profiles,
the distance between ASH0D and ASH1D is smaller or of the same order of the
distance between ASH1D and ASHEE.
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Figure C.18: SP: (a) vertical evolution of the non-dimensional fluxes q, m, f (log-linear scale)
and of the dimensional physical parameters (b) U , (c) b, (d) β−α, (e) Tβ−Tα, and (f) Y∗/Y∗,0.
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