Investigating the architecture of the Paganica Fault (2009 M_w 6.1 earthquake, central Italy) by integrating high-resolution multiscale refraction tomography and detailed geological mapping

F. Villani,1 L. Improta,2 S. Pucci,2 R. Civico,2 P.P.G. Bruno3 and D. Pantosti2

1Istituto Nazionale di Geofisica e Vulcanologia, via dell’Arcivescovado 8 – I-67100 L’Aquila, Italy. E-mail: fabio.villani@ingv.it
2Istituto Nazionale di Geofisica e Vulcanologia, via di Vigna Murata, 605 – I-00143 Roma, Italy
3The Petroleum Institute, Petroleum Geoscience Dept., PO Box 2533, Abu Dhabi, UAE

Accepted 2016 October 31. Received 2016 September 29; in original form 2016 June 15

SUMMARY
We present a 2-D subsurface image of the Paganica Fault from a high-resolution refraction tomography and detailed geological investigation carried out across part of the northwestern segment of the 20-km-long Paganica–San Demetrio fault-system, and which was responsible of the 2009 April 6 M_w 6.1 L’Aquila earthquake (central Italy). We acquired two seismic profiles crossing the Paganica basin with a dense-wide aperture configuration. More than 30 000 P wave first-arrival traveltimes were input to a non-linear tomographic inversion. The obtained 250–300 m deep 2-D V_p images illuminate the shallow portion of the Paganica Fault, and depict additional unreported splays defining a complex half-graben structure. We interpret local thickening of low-V_p (<2400 m s$^{-1}$) and intermediate-V_p (2600–3400 m s$^{-1}$) regions as syn-tectonic elastic wedges above a high-V_p (3800–5000 m s$^{-1}$) carbonate basement. These results are condensed in a 4.2-km-long section across the Paganica basin, clearly indicating that the Paganica Fault is a mature normal fault cutting the whole upper ~10 km of the crust. We evaluate a minimum cumulative net displacement of 650 ± 90 m and a total heave of 530 ± 65 m accomplished by the Paganica Fault, respectively. In the conservative hypothesis that the extension started during the Gelasian (1.80–2.59 Ma), we obtain a minimum long-term slip-rate of 0.30 ± 0.07 mm yr$^{-1}$ and an extension-rate of 0.25 ± 0.06 mm yr$^{-1}$, respectively. Considering the regional averaged extensional field of ~1 mm yr$^{-1}$ obtained from geodetic and geological analyses at 104 yr timescale, we infer that the Paganica Fault accounts for ~20 per cent of the NE-extension affecting this zone of the central Apennines axis due to the concurrent activity of other parallel normal fault-systems nearby (e.g. the Liri, Velino-Magnola, L’Aquila-Celano and Gran Sasso fault-systems).

Key words: Palaeoseismology; Seismicity and tectonics; Seismic tomography; Continental neotectonics; Fractures and faults; High strain deformation zones.

1 INTRODUCTION
The central Apennines of Italy are a Neogene fold-and-thrust belt (Malinverno & Ryan 1986; Cosentino et al. 2010; Vezzani et al. 2010) where post-orogenic extension takes place since the Late Pliocene–Early Pleistocene (Lavecchia 2010). This region is characterized by one of the highest seismic releases in the Mediterranean area, mostly due to crustal earthquakes of shallow (~5–15 km deep) magnitudes occasionally up to 6.5–7. The epicentres of $M > 5$ events since ~1300 A.D. (Fig. 1) appear clearly related to many of these structures (Valensise & Pantosti 2001). Therefore, earthquakes caused by active normal faults represent a major threat in central Italy, as testified by widespread destruction, huge economic losses, and ~35 000 casualties occurred in the past 100 yr in this region. This is why the

© The Authors 2016. Published by Oxford University Press on behalf of The Royal Astronomical Society.
Figure 1. Simplified map of the Quaternary faults and the main active fault-systems in the central Apennines represented with different colour codes (modified after: Villani et al. 2015b). In this work, we discuss mainly the Paganica–San Demetrio fault-system (PSDFS), with the Paganica Fault located in the northern part. Green dots indicate $M > 2$ earthquakes in the 1981–2015 period (from the Italian Seismological Instrumental and Parametric Database, ISIDE, http://iside.rm.ingv.it/iside/standard/index.jsp), and the focal mechanism of the 2009 April 6 main shock is shown. Blue squares indicate historical earthquakes (Rovida et al. 2011). The yellow stars indicate sites with estimation of Late Pleistocene-Holocene slip-rates on the basis of palaeoseismology or geochemical dating (Galli et al. 2008; Benedetti et al. 2013; details in the text). Red open arrows show the direction of the current regional extension. The black line B-B' is the trace of the interpretative section shown in Fig. 11. The purple box encloses the study area (Paganica basin) shown in Fig. 2(a). Inset map: outline of the Italian peninsula with focal mechanisms of $M > 4.5$ earthquakes between 1976 and 2005; the blue lines include the zone of active extension affecting the whole Apennines axis (modified after: Chiarabba et al. 2005); the yellow box indicates the area shown in Fig. 1.
The normal faults network dissecting the central Apennines axis consist of 5–10-km-long individual segments, mostly NW-trending and SW-dipping, typically arranged in over-stepping strands and forming systems up to 25–30 km long (Galadini & Galli 2000; Morewood & Roberts 2000; Cowie & Roberts 2001; Roberts et al. 2002, 2004). Some of these normal faults may re-utilize older structures, like Mesozoic normal faults and/or Miocene–Pliocene high-angle thrusts (Tavarnelli 1999). In the area shown in Fig. 1, we have grouped the main known active fault-systems into five sub-parallel arrays with different colours. Several attempts to estimate their slip-rates and contribution to the regional extension have recently been done: the adopted methods (geodesy, seismic moment summation, palaeoseismology and analysis of long-term offset geological markers) explore the faults behaviour at different timescales (10−10^4 yr), and with different spatial resolution (see a discussion in: Faure Walker et al. 2010). In particular, palaeoseismic and geochemical data (spanning 10^5–10^7 yr timescale) revealed that strong earthquakes (6 ≤ M ≤ 7) occurred during the Late Pleistocene–Holocene along the following fault-systems: Liri (Roberts 2006); Velino–Magnola and Fucino (Michetti et al. 1996; Galadini & Galli 1999; Benedetti et al. 2013 and references therein); L’Aquila–Celano (Giraudi 1995; Pantosti et al. 1996; Salvi et al. 2003); Paganica–San Demetrio (PSDFS; see Section 2) and adjacent faults (Mor et al. 2002, 2013; Cinti et al. 2011; Blumentti et al. 2015); Laga Ms and Gran Sasso (Galli et al. 2002; Galadini & Galli 2003; Sulmona and adjacent faults (Falcucci et al. 2011; Gori et al. 2011; Galli et al. 2015). For these faults, individual Late Pleistocene–Holocene slip-rates are estimated in the 0.2–1.3 mm yr−1 range, and in most cases they are <0.5 mm yr−1. Furthermore, Faure Walker et al. (2010) refined and expanded previous regional analyses of normal fault slip to 10^4 yr timescales (Roberts 2006) by integrating geodetic, palaeoseismic and geomorphic data: their resulting estimate of the averaged extension-rates across the axial zone of the central Apennines in the last 1.2–1.8 × 10^4 yr is 1.0 ± 0.1 mm yr−1.

Although a conspicuous amount of data concerning the short-term slip-history of a significant number of these normal faults is now available, many of them still lack a complete characterization in terms of shallow structure, geometry, and long- to middle-term slip-rates, which are basic ingredients for a thorough seismic hazard assessment. This lack of information is mainly due to the limited number of high-resolution multidisciplinary studies of the widespread Quaternary hangingwall basins created by long-term normal faulting (Cavinato & De Celles 1999; Ghisetti & Vezzani 1999; Bosi et al. 2003). Indeed, the knowledge of the intermediate depth (some tenths to a few hundred metres) basin setting provides key elements for understanding the geometry and slip-rates of the bounding active faults (e.g. amount of Quaternary cumulative displacement; hierarchy of splays, partitioning of deformation and kinematic changes through time within complex fault-systems; see discussion in: Villani et al. 2015a,b). Consequently, the scarcity of such studies in the central Apennines hampers a comprehensive imaging of seismogenic faults and a systematic compilation of slip-rates at long timescales (>10^4–10^5 yr).

As a case-study, here we report the example of the fault responsible for the 2009 April 6 Mw 6.1 earthquake, which struck L’Aquila town and surrounding villages causing 309 deaths and widespread destruction (Fig. 1; D’Amico et al. 2010; Scognamiglio et al. 2010; Herrmann et al. 2011). Seismologic data defined the geometry, dimensions and kinematics of the main shock fault, which has been subsequently identified as the Paganica Fault (among others: Chiarabba et al. 2009; Chiaraluce 2012; Cirella et al. 2012; details in Section 2), and geodetic studies (Atzori et al. 2009) indicate that coseismic slip induced maximum subsidence of 0.25 m in its hangingwall. Active fault geometry and structure at depth in the epicentral area is derived by high-precision relocation of ~64 000 aftershocks of the 2009 earthquake sequence (Chiaraluce et al. 2011; Valoroso et al. 2013), highlighting a 2 to ~12-km-deep picture of SW-dipping crustal faults and related antithetic splays. To characterize the geometry and structure of the seismically active fault, very shallow geophysical investigations were performed near L’Aquila targeting the intermediate-depth subsurface (Balasco et al. 2011; Giocoli et al. 2011; Improta et al. 2012; Pucci et al. 2016), and these pointed out two small tectonic basins (Fig. 2a): the Paganica basin, in the hangingwall of the Paganica Fault, and the Bazzano basin, located to the south of Mt Bazzano (Fig. 2a). Improta et al. (2012) propose a simplified geological section across the Bazzano basin and the southernmost part of the Paganica basin using high-resolution (HR) seismic tomography; they also present a first rough estimate of the Paganica Fault total throw (>250 m).

Notwithstanding the massive post-earthquake studies, many questions on the relations between the uppermost and the deep crustal structural settings are still open. The establishment of this connection is even more difficult due to the lack of commercial reflection profiles for the L’Aquila region, which exist only for areas several km to the north and to the south (Cavinato et al. 2002; Patacca et al. 2008; Bigi et al. 2011).

In order to improve our understanding of these relations, we applied HR refraction tomography with two dense, wide-aperture profiles acquired across the Paganica Fault. We follow an approach based on the integration of seismic imaging with detailed geological and fault mapping in order to get a reliable 2-D subsurface model of a very complex fault-bounded setting. Our primary targets are: (1) HR shallow imaging of the Paganica Fault and detection possible buried splays; (2) reconstruction of the hangingwall basin geometry; (3) estimation of the long-term displacement accrued by the investigated fault-system and (4) connection between the surface structural features and the deep seismogenic source.

By combining the tomographic images from the two seismic profiles, and complementing them with detailed geological data, we propose a shallow (~2 km deep) semi-quantitative structural model of the Paganica basin. This represents a thoroughly updated subsurface image with respect to some previously published simplified cross-sections (see for instance: Balasco et al. 2011; Improta et al. 2012; Lavecchia et al. 2012). We use this model to assess the long-term slip history of the Paganica Fault and to explore the possible link between the surface and the earthquake fault at depth by taking advantage of the available huge amount of the 2009 relocated aftershocks. The integration of these different types of data belonging to very shallow, intermediate-depth and deep structural levels in the upper crust represents a quite unique opportunity in the whole Mediterranean area to investigate the anatomy and long-term evolution of a major seismogenic fault.

2 GEOLOGICAL BACKGROUND

2.1 The Paganica Fault: summary of existing geological data

The Paganica Fault is the northwestern portion of the Paganica–San Demetrio fault-system (hereinafter referred as PSDFS; Galli et al. 2010; Civico et al. 2015), which is a ~19–20-km-long system of...
Figure 2. (a) Geological sketch of the Paganica and Bazzano basins (modified after: Centamore et al. 2006; Pucci et al. 2015): FLU: fluvial deposits (Holocene); ELU, SDE: colluvium and slope debris (Late Pleistocene–Holocene); AFH-AFP: alluvial gravels and sands (Late Pleistocene–Holocene); SMF: fluvial gravels and sands (San Mauro Fm., Middle Pleistocene); VIC: fluvial and alluvial conglomerates (Valle Inferno Fm., Early Pleistocene); SNL-PIA: lacustrine silts (San Nicandro and Pianola Fms., Early Pleistocene); MBR, VVB, VVC: breccia and conglomerates (Megrabrecce and Valle Valiano Fms., Early Pleistocene); AMP: flysch (Late Miocene); CRR: Cerrogna Fm. (Middle-Late Miocene); BIS: Bisciaro Fm. (Early Miocene); SCC: Scaglia Cinerea Fm. (Eocene–Early Miocene); SCZ: Scaglia Detritica Fm. (Cretaceous-Eocene); J–K: undifferentiated Late Jurassic–Early Cretaceous formations (Calcari a Fucoidi Fm., CFF; Maiolica Detritica Fm., MAD; Calcaria Diasprigni Detritici Fm., CDI; Verde Ammonitico Fm., VAP; Corniola Fm., COI). The red lines indicate the main traces of the PSDFS (dashed where blind and/or inferred). The thin blue lines are normal faults. SGF, F1, F2, BzF, PgF1 and PgF2 are faults discussed in Sections 2, 5 and 6. The orange and green stars are sites of coseismic surface breaks observed, respectively by Emergeo Working Group (2010) and Boncio et al. (2010). The open circles with cross represent shallow boreholes reaching (pink) and not reaching (blue) the pre-Quaternary basement, respectively (numbers indicate basement depth in metres). The bold dark blue lines are the seismic profiles P1 and P2. The black line A–A’ indicates the geological cross-section shown in Fig. 10. Location of structural sites in panels (e) and (f) is shown with white circles. (b) Rose diagram indicating the trend of 187 fault segments included in the area reported in panel (a) (total length: 100.6 km; the modal direction class is N135°–140°). (c) Equal area projection of 144 selected fault planes affecting basement rocks in the study area. (d) Contour plot of poles to planes of 58 fault affecting Quaternary deposits in the study area (contour interval: 1 per cent). (e) Panoramic view to the WSW from the main splay of fault PgF1: fault attitude (dip-direction/dip-angle notation) 206°/50°, pitch 70° SW; inset stereoplot with kinematics; site location in panel (a). (f) Close-up view of the northern portion of fault BzF: fault attitude: 45°/65°, pitch 80° NE; inset stereoplot with kinematics; site location in panel (a).
normal faults bounding to the east the wide Quaternary continental basin of the Middle Aterno Valley (Figs 1 and 2a; Bosi et al. 2003). As reported by different authors (Bagnaia et al. 1992; Bertini & Bosi 1993), and according to recent geological mapping (Pucci et al. 2015), the Middle Aterno Valley area is affected by a limited amount of shortening, which is mostly confined to the north (Gran Sasso sector; Ghisetti & Vezzani 1991; D’Agostino et al. 1998) and to the south (Mt Ocre sector: Vezzani & Ghisetti 1998; Centamore et al. 2006). A few studies focusing on the geological and geomorphological setting of the Middle Aterno Valley (Galli et al. 2010; Giaccio et al. 2012; Blumetti et al. 2013, 2015; Civico et al. 2015; Pucci et al. 2015; Villani et al. 2015b) support the evidence that the PSDFS is an active structure composed of several and mostly SW-dipping splays that displace Mezo–Cenozoic marine carbonate rocks and the overlying Quaternary continental sequence with hundreds of metres of morphologic throw, thus originating a basin-and-range landscape.

Before the 2009 L’Aquila earthquake, the Paganica Fault was not fully mapped (Bagnaia et al. 1992; Vezzani & Ghisetti 1998; Centamore et al. 2006) and its seismogenic potential was assessed only by a few authors (Boncio et al. 2004; Pace et al. 2006; Akinci et al. 2009). During the 6 April main shock, this fault created a coseismic surface displacement clearly observed for a total length >3 km (Fig. 2a), and consisting of a complex set of small scarps (up to 0.10–0.15 m high) and open cracks (Falucci et al. 2009; Emergeo Working Group 2010; Vittori et al. 2011). After the earthquake, a wealth of geological investigations were carried out to understand the possible link of the surface ruptures with the seismogenic structures (Boncio et al. 2010; Galli et al. 2010; Roberts et al. 2010; Lavecchia et al. 2012), and the pre-historic behaviour of the fault through palaeoseismic trenching (Cinti et al. 2011; Galli et al. 2011; Moro et al. 2013). These new studies revealed that the Paganica Fault is responsible for episodic large earthquakes (M ~ 6 or greater), as highlighted by palaeoseismic data and by the historical record of seismicity in the area (Tertulliani et al. 2009; Rovida et al. 2011). According to Cinti et al. (2011), this fault accommodates 0.25–0.33 mm yr⁻¹ post-30 ka throw-rate, accounting for dip-slip rates of ~0.3–0.4 mm yr⁻¹. Galli et al. (2010), by studying offset of Middle and Late Pleistocene fluvial terraces and deposits, suggest a slip-rate of ~0.5 mm yr⁻¹ in the last 0.5 Myr. Civico et al. (2015), based on the cumulative offset of several geomorphic markers accrued during the Quaternary, report ~250–300 m of total morphologic throw for the Paganica Fault along a cross-section parallel to the seismic profiles discussed in this paper.

Basically, the aforementioned works interpret the small 2009 primary ruptures and the palaeoseismic record of past surface faulting events as due to the upward propagation of coseismic slip at depth: therefore, the Paganica Fault is considered as a crustal normal fault, even though aftershocks alignment illuminate this structure only (Boncio et al. 2010; Giaccio et al. 2012; Blumetti et al. 2013, 2015; Civico et al. 2015; Pucci et al. 2015; Villani et al. 2015b) hence it is inferred that the 2009 seismogenic fault is confined between ~3 and 10 km depth, and that slip observed at the surface after the earthquake represents pseudo-primary breaks caused by crustal bending and sympathetic slip on shallow secondary faults.

2.2 The Paganica basin: revised and new geological data

To increase the amount of information useful to constrain the geological interpretation of our seismic profiles, we collected additional structural and stratigraphic data regarding both Quaternary continental formations and marine Mesozoic–Cenozoic rocks (that we call for simplicity basement), outcropping in the Paganica basin. In particular, we have concentrated our attention on the characteristics and age of the stratigraphic units we were potentially imaging at depth in the seismic sections, and on the geometry and kinematics of the tectonic structures (faults) that could dissect the basin filling sediments. Recently published data (Boncio et al. 2010; Giaccio et al. 2012; Lavecchia et al. 2012; Pucci et al. 2015) were used as main reference. The most significant results of our structural analysis are summarized in Figs 2(b)–(d). We checked thickness of formations in the field and collected >440 bedding plane attitude measurements. We also checked for a limited number of shallow boreholes reaching the basement (Fig. 2a), providing only a few constraints on the subsurface geometry of the Paganica basin.

As regards the stratigraphic setting, basement rocks consist of a Cretaceous–Miocene marly-carbonatic marine sequence: Scaglia Detritica Fm. (SCZ, ~200 m thick); Scaglia Cinerea Fm (SCC, ~250–350 m thick); Bisciaro Fm. (BIS, ~150 m thick), covered by Late Miocene calcareous–arenaceous flysch (AMP, ~90–100 m thick in the central part, >200 m thick in the eastern part of the basin). At the northern edge of the area, and along the upper reaches of the Raiale River gorge, Early Jurassic–Cretaceous marly limestones and cherts crop out (unit J–K in Fig. 2a; further details in Fig. 10). The Quaternary sequence overlies unconformably the basement and is composed of loose to well-cemented alluvial fan, fluvial and lacustrine sediments with widespread deposition hiatuses. These sediments exhibit variable thickness (between 20 and >100 m) and complex heteropic relationships (Pucci et al. 2015). From the bottom to the top, the main formations are (Fig. 2a): chaotic breccia and alluvial fan conglomerates (units MBR, VVC and VVB); lacustrine silts and sands (units PLA and SNL); alluvial conglomerates (unit VIC); fluvial and alluvial conglomerates and sands (units SMF, AFP and AFH).

We carried out field surveys to assess the local structural setting and accurately map the strands of the PSDFS with evidence of Quaternary activity (marked in red in Fig. 2a). Along the NE border of the Paganica basin, basically two main sets of active faults are recognized, displaying a right-stepping relationship, a separation of ~1 km and an overlap >1.5 km: (1) the first one, near Paganica, consists of four main closely spaced and SW-dipping splays (PgF1, PgF2, F1 and F2 in Fig. 2a) with an overall length of ~3–12 km depth range, and they propose an evolutionary model where the Paganica Fault re-activates during the Quaternary an early Mesozoic normal fault previously responsible for the dolomites thickening, and which was inverted during Miocene–Pliocene compression as a high-angle thrust.
Table 1. Main characteristics of the seismic profiles.

<table>
<thead>
<tr>
<th>Profile name</th>
<th>Length (m)</th>
<th>Receiver spacing (m)</th>
<th>Average shot spacing (m)</th>
<th>Picked CSG</th>
<th>Maximum offset (m)</th>
<th>Picked traces</th>
<th>Rms picking uncertainty (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>1075</td>
<td>5</td>
<td>10</td>
<td>107</td>
<td>437.5</td>
<td>9695</td>
<td>2.2</td>
</tr>
<tr>
<td>P2</td>
<td>2095</td>
<td>5</td>
<td>10</td>
<td>164</td>
<td>775</td>
<td>23 950</td>
<td>2.6</td>
</tr>
</tbody>
</table>

the occurrence of several other minor splays, with lengths of a few hundred metres, and some small intrabasin basement horsts (e.g. Mt Caticchio, S. Vittorino in Fig. 2a). The primary coseismic surface breaks were observed mostly along faults F1 and F2 (orange stars in Fig. 2a).

We performed a directional analysis of the mapped faults using a GIS tool that simplifies fault traces, and then calculates the average strike of each segment. The obtained values are weighted according to segment length, and the resulting rose diagram is shown in Fig. 2(b). This plot indicates that the overall fault pattern is dominated by NW-trending segments, up to 3 km long (modal class N135°–140°, followed by N120°–125°). This analysis further shows that subordinate structures trending N165°–170° and N110°–115° are also present.

We collected >460 measurements of fault plane attitude on both Quaternary and basement rocks. Fig. 2(c) shows a selection of kinematics of the NW-trending faults (pitch values generally some sites we were able to document a nearly pure dip-slip normal affecting basement rocks hampers a thorough analysis. However, in the PSDFS.

planes affecting Early to Late Pleistocene deposits, still indicating that subordinate structures trending N165°–170° and N110°–115° are also present.

We collected >460 measurements of fault plane attitude on both Quaternary and basement rocks. Fig. 2(c) shows a selection of measurements from the faults belonging to the dominant directional classes: this analysis points out a different average dip of the SW-dipping and NE-dipping splays, being ~58° ± 15° and ~70° ± 15°, respectively. Fig. 2(c) shows a contour density plot of poles to fault planes affecting Early to Late Pleistocene deposits, still indicating the persistent Quaternary activity of the NW-striking segments of the PSDFS.

The poor preservation of kinematic indicators on fault planes affecting basement rocks hampers a thorough analysis. However, in some sites we were able to document a nearly pure dip-slip normal kinematics of the NW-striking faults (pitch values generally >70°; Figs 2e and f).

Absolute dating of continental deposits older than ~0.6 Myr is lacking in the study area (unit SMF in Fig. 2a; Galli et al. 2010), and this does not allow an accurate timing of the older tectonic and stratigraphic events. We recognized in the Paganica basin the presence of Early Pleistocene lacustrine deposits (SNL Fm.) and alluvial fan conglomerates (VIC Fm.). Correlations with the adjacent San Demetrio sector, and palaeomagnetic investigations demonstrate that the upper part of the SNL Fm., together with some heteropic continental breccia, are ~1.3 Myr old (Giaccio et al. 2012 and references therein). Mancini et al. (2012) relate to the Gelasian (lower part of Early Pleistocene, 1.80–2.59 Ma) the basal conglomerates of the continental succession to the west of L’Aquila, very close to Paganica. Similarly, new biostratigraphic data from the basal part of the SNL Fm. (Spadi et al. 2015) suggest a Gelasian age for the beginning of the lacustrine sedimentation in the San Demetrio sector. Stratigraphic data from a 150-m-deep borehole in the Bazzano basin (S2 in Fig. 2a; Macri et al. 2016; Porreca et al. 2016) suggest that the fluvial silts and sands layers recovered at a depth >115 m are Early Pleistocene in age.

Furthermore, plenty of evidence from the nearby Fucino basin and other adjacent continental depressions (Cavintro et al. 2002; Bosi et al. 2003; Roberts et al. 2004; Whittaker et al. 2010) support an inception age of the extensional tectonics in this sector of the chain axis between 2 and 3 Ma. For all these reasons, it is highly probable that continental deposition in the Paganica basin took place during the Gelasian, which gives the minimum age of local post-orogenic extensional tectonics.

3 SEISMIC DATA AND NON-LINEAR TOMOGRAPHIC INVERSION

The seismic dataset used in this paper consists of two HR seismic profiles (P1 and P2 in Fig. 2a) acquired in 2010: they run SW-NE for a total length ~3 km across the Paganica basin and intersect the 2009 primary coseismic ruptures. The two profiles are spaced ~100 m apart and overlap for 230 m. Profile P1 and the northern part of profile P2 were acquired in the Paganica village, and thus required great efforts to collect good quality data. Improta et al. (2012) already used a limited subset of data from profile P2. In this paper, we report for the first time results from profile P1 that crosses the Paganica Fault, and we also show new results for profile P2 obtained by a new tomographic inversion of a larger amount of data.

The acquisition layout consisted of a 216 channels and 1075-m-long array deployed with 5 m spacing between the 10-Hz vertical sensors. We adapted the dense wide-aperture acquisition strategy used in hydrocarbon exploration of complex structures (Operto et al. 2004; Ravaut et al. 2004) to shallow targets, aimed at collecting highly redundant P-pulses corresponding to shallow direct waves and deep-penetrating turning waves and critical refractions, suitable for multiscale traveltime tomography (Bruno et al. 2013). The wide aperture of the recording array was ~10 times larger than the presumed bedrock depth near the Paganica Fault (~100 m) and ~3 times larger than the maximum depth to basement within the Paganica basin (~300 m). We acquired profile P1 with a fixed array, whereas for profile P2 the array was moved with a roll-along technique to attain 2095 m length. As seismic source we used a single 6400 kg IVI-MINIVIB® vibroseis truck. For each vibration-point we recorded the stack of three, 15 s long, 5–200 Hz linear upswipes, and source move-up was 5–10 m (Table 1). Seismic data were recorded using nine 24-bit seismographs, and setting a sampling rate of 1.25 × 10⁻⁴ s.

HR refraction tomography has widely been recognized as a powerful tool to image complex media such as fault structures and tectonic basins filled with heterogeneous sediments (Morey & Schuster 1999; Calvert & Fisher 2001; Improta et al. 2003; Shelley et al. 2003; Mattsson 2004; Pelton 2005; Catchings et al. 2008; Bruno et al. 2013; Diaz et al. 2014). In such complex environments, conventional seismic reflection imaging by common-mid-point profiling is usually hampered by near-surface heterogeneities, strong diffractions associated to coarse elastic infill, sharp lateral velocity variations, which are adequately handled by seismic tomography (Improta et al. 2010).

In this work, we used a non-linear multiscale tomography (Improta et al. 2002) that does not require a starting reference model and is able to cope with very heterogeneous media (Improta et al. 2003; Improta & Corciulo 2006; Improta & Bruno 2007; Bruno et al. 2010a,b, 2013; Villani et al. 2015a,b). The input data consist of >30 000 first arrival traveltimes, which we hand-picked on raw or bandpass-filtered traces of 107 (profile P1) and 164 (profile P2) selected common shot gathers (CSG, details in Table 1). The picking strategy is based on the reading of a time window (t1, t2) bracketing the presumed traveltimes. The cost function used in the tomographic inversion is a least-squares L² norm, defined as...
Investigating the architecture of the Paganica Fault

Figure 3. (a) Profile P2, CSG 191 with picking of first breaks (yellow dashed line); (b) back-ray tracing for CSG 191 superimposed on the long-wavelength tomographic model; (c) profile P2, CSG 74 with picking of first breaks (yellow dashed line) and (d) back-ray tracing for CSG 74 superimposed on the long-wavelength tomographic model.

Figure 4. (a) Profile P1, CSG 40 with picking of first breaks (yellow dashed line); (b) back-ray tracing for CSG 40 superimposed on the long-wavelength tomographic model; (c) profile P2, CSG 110 with picking of first breaks (yellow dashed line) and (d) back-ray tracing for CSG 110 superimposed on the long-wavelength tomographic model.

the sum of the weighted squared differences between observed and computed traveltimes, and data weighting is related to the inverse t1–t2 time window. The seismic sections show moveout of first breaks suggesting the presence of severe velocity heterogeneities and deep high-Vp refractors (Figs 3 and 4). Due to the highly variable quality of the dataset, the maximum offset of readable first breaks was ∼430 m for profile P1 and ∼770 m for profile P2. The peak frequency of the first arrival wavelet is generally centred at
50–70 Hz, which implies a first Fresnel zone radius (Williamson & Worthington 1993) <60 m in the near offset (<100 m) considering an average $V_p \sim 2000$ m s$^{-1}$ for the shallow layers (<100 m depth).

In this tomographic inversion procedure, first-arrival traveltimes are computed by a finite-difference Eikonal solver accounting for transmitted, diffracted and head waves (Podvin & Lecomte 1991). Based on the acquisition geometry and receiver spacing, we set a fixed and dense 2.5-m finite-difference mesh that allows computing very accurate traveltimes. P-wave velocity values at each node of the finite-difference mesh are assigned by a b-cubic spline interpolation between velocity nodes of a coarse grid. These latter are the parameters of the tomographic inversion. The multiscale strategy consists in a succession of inversion runs performed by gradually reducing the spacing of the velocity nodes (i.e. progressively increasing the number of model parameters). At each inversion run, a non-linear algorithm combining global random search (Monte Carlo) with local search (Simplex) finds the best-fitting model. The best-fit model is then used as reference in a subsequent inversion run that is performed with a larger number of parameters. The models obtained at the early inversion runs (long-wavelength models or macro-models) define the large-scale structure of the medium, while the models with a higher number of parameters obtained at the subsequent inversion runs (short-wavelength models) illuminate the near-surface with an increased spatial resolution (Lutter & Nowack 1990). However, the increase in the spatial resolution implicit in multiscale inversion strategy is achieved at the cost of a progressive decrease in resolution depth. A posteriori checkerboard tests (Hearn & Ni 1994) are used to estimate the model resolution and the ability of the non-linear tomographic inversion to resolve subsurface structural details. For each best-fit velocity model, we performed checkerboard tests by applying to the 2.5 m finite-difference mesh a smooth 2-D Gaussian perturbation pattern (velocity range ±50 or ±100 m s$^{-1}$) with maxima centred on the bi-cubic spline grid nodes and tapering to zero at half distance between adjacent nodes. The average resolution length is estimated to be approximately equal to half of the recovered checker dimension (Lebedev & Nolet 2003; see a review in: An 2012). Checkerboard tests indicate that in our short-wavelength models bodies whose radius is ~15 m are resolved. The multiscale inversion procedure is halted based on results of the resolution tests and on the analysis of rms of traveltime residuals run after run.

For each seismic profile, we describe a representative long-wavelength model (grid nodes spacing along X direction ~120 m) that defines the large-scale structure of the Paganica basin. For profile P1, we also show a short-wavelength model with a higher spatial resolution (grid nodes spacing along x-direction ~35 m), which targets the subsurface of the 2009 primary coseismic ruptures. Below each model, we show the results of a checkerboard test. As additional information, we also include ray-density plots in order to roughly visualize the sampled regions of the tomograms. However, it is worthy to note that the non-linear inversion adopted is not based on ray tracing: ray paths are calculated a posteriori with a back-ray tracing procedure (full details in: Podvin & Lecomte 1991), and they are not meant to be used for resolution assessment.

As expected, near-vertical reflections exhibit an overall low quality due to unfavourable local geological conditions and to the presence of severe lateral velocity heterogeneities along the investigated sections. As discussed in Section 5.1, we cross-checked the consistency of tomographic results and the interpretation of the top-basement surface by analysing small-offset deep reflections recognized on several common-mid-point (CMP) gathers. Notwithstanding the 1-D limitation implicit in such kind of analysis, we indeed were able to test whether the top-basement inferred from refraction tomography also corresponds to an important reflecting interface.

4 Results: Refraction Tomography Across the Paganica Fault

Fig. 5(a) shows a representative long-wavelength model of profile P2 with a low number of nodes, and resolved down to ~250–300 m depth.

Fig. 6(a) shows a long-wavelength model obtained at a later stage of the multiscale inversion with a higher number of nodes, and characterized by a resolution depth of ~200 m below the surface. We then integrate the deeper information provided by model in Fig. 5(a) with the higher-resolution surface details of model in Fig. 6(a) for the final structural interpretation (Section 5).

With the exception of a ~50-m-thick shallower layer with $V_p < 2000$ m s$^{-1}$, the lower part of the tomogram in Fig. 6(a) shows evident lateral velocity variations approximately at $x = 300, 600, 950, 1200, 1400$ and 1700 m. Here, regions with low vertical gradient and relatively low velocity ($V_p \sim 2400–3000$ m s$^{-1}$) overlay a deeper high-velocity region ($V_p > 3800–4000$ m s$^{-1}$) characterized by complex geometry with considerable depth variations (locally >150 m).

Fig. 7(a) shows a representative long-wavelength model of profile P1 characterized by a resolution depth of ~150–180 m below the surface.

Strong lateral V_p changes are indicative of high-angle discontinuities located approximately at $x = 450, 550$ and 800–850 m, whereas low-V_p regions (400–2400 m s$^{-1}$) thicken above their down-dipping side. The short-wavelength tomogram of profile P1 (Fig. 8a) was obtained at a later stage of the multiscale inversion by cutting the model shown in Fig. 7(a), and using a node spacing of 35 m along the x-direction and 25 m along the z-direction.

Checkerboard test indicates that the model is well resolved down to ~100–120 m depth: the average radius of the recovered checker in this case is ~15 m, which enables depicting confidently the very shallow subsurface setting with a fine spatial resolution. The same discontinuities inferred by the long-wavelength model (Fig. 7a) are further detailed in this new model at $x = 50$–150 m and at $x = 450$–500 m, and they can be traced up to a few metres depth from the ground surface. Notably, a thickening (>20 m) of the near-surface very low-V_p layer (<1000 m s$^{-1}$) is evident at $x = 300$–450 m.

5 Interpretation of the V_p Tomograms

5.1 The pre-Quaternary basement beneath the continental cover

The geo-structural interpretation of the tomograms is reported in Fig. 9, whereas in Fig. 10 we show the geological section across the Paganica basin resulting from the merge of V_p images of seismic profiles P1 and P2 integrated with geological data.

A key element in this interpretation is the boundary between the continental basin infill and the pre-Quaternary basement (white dashed line in Fig. 9). We interpret this boundary to be located in a high-gradient (~20 m thick) zone of the tomograms, where V_p rapidly increases from 3600 to >4000 m s$^{-1}$, and ray-density plots (Figs 7c and 8c) suggest a main seismic interface. Fig. S1 shows head-waves generated by this interface as low-amplitude...
first arrivals with an apparent velocity $>4000 \text{ m s}^{-1}$. Also the inspection of several CMP gathers seems to confirm the nature and location of this interface. In fact, despite the overall low quality and the 1-D limitations of the CMP analysis, these gathers show some large-amplitude reflections from the top-basement with a subtle hyperbolic character, and which can be followed from the large to the small offset range (Figs S2 and S3 in the auxiliary material). Moreover, their high amplitude at large offsets indicates they are wide-angle hypercritical reflections generated by a deep interface with a strong, positive impedance contrast. In order to qualitatively test the consistence between tomographic results and the location of this reflecting interface, we depth-converted ‘zero offset’ reflected arrivals (t_0) using the average tomographic V_p in correspondence of each selected CMP gather: the resulting reflection points fall within the 3600–4000 m s$^{-1}$ high-gradient zone of the tomograms (Fig. 9), confirming that it is the smeared tomographic image of the top-basement.

Additional constraints are given by new field data (Section 2.2), by mapped outcrops (Pucci et al. 2015) and by available boreholes (MS-AQ Working Group 2010; Giocoli et al. 2011; Fig. 2a). The resolved SW part of the seismic section is tied to outcrops of thick-beded limestones of the Cretaceous-Eocene SCZ Fm., and the NE part to marly limestones of the Miocene BIS Fm. (Fig. 10). Borehole S1 (Fig. 2a), located 320 m to the SE of profile P1, encounters at 78 m depth fractured limestones: we relate these limestones to the top of the BIS Fm., because borehole S1 is in the hangingwall of the Paganica Fault, exposing SW-dipping beds of the BIS Fm. in the footwall. Limestones retrieved in this borehole are shallower than the top-basement as imaged on profile P1, indicating a local NW-dip of the basin bottom: this is also suggested by the NW-sloping SCC Fm. outcropping to the SE (S. Vittorino, Fig. 2a).

5.2 The continental basin infill

Tomographic data allow us to partition the continental infill in two parts, Q1 and Q2 in Fig. 10, also based on previous seismic investigations in the same area (Improta et al. 2012). We interpret low-V_p ($<2400 \text{ m s}^{-1}$) regions (unit Q2) as shallow fluvial and alluvial fan gravels with sand layers (comprising the AFH, AFP, and SMA Fms. in Fig. 2a), by correlating them to quarry outcrops to the east of Mt Bazzano and some boreholes between the Paganica and Bazzano villages (Fig. 2a). We then interpret intermediate-V_p (2600–3400 m s$^{-1}$) regions (unit Q1) as cemented breccia and coarse conglomerates (comprising the MBR, VVB, VVC, and VIC Fms. in Fig. 2a). As one can see, the infilling deposits show dramatic changes in thickness (from <20 to >270 m), which we interpret as related to the interactions between faulting and depositional processes.

5.3 Subsurface fault zones

Fault recognition on the tomograms of Fig. 9 is based on two main criteria: (1) the bumpy morphology of the inferred top-basement surface (V_p 3600–4000 m s$^{-1}$) and (2) the presence of evident

Figure 5. (a) Long-wavelength (78 parameters) V_p tomogram of profile P2; the dashed yellow line indicates resolution depth obtained by outlining the lowermost resolved checkers within the grid of velocity nodes; (b) result of checkerboard test and (c) ray-density plot (normalized inside 5 m × 5 m cells).
lateral velocity contrasts, together with the thickening of low-V_p regions. This information is further cross-checked with evidence from known surface structures that we projected onto the tomograms.

We thus infer the occurrence of nine subsurface normal fault zones (labelled F1–F9) dipping both to the SW and to the NE (Fig. 10). This complex arrangement has already been recognized as a persistent structural feature of the Middle Aterno Valley at the surface and at different scales (Fig. 2c; Civico et al. 2015; Pucci et al. 2015, 2016; Villani et al. 2015b). Since an exact evaluation of fault dip from the inspection of the smooth tomographic images is difficult, in our interpretation we indicate fault zones with double dashed lines, assuming that average dip angles of ∼60° (SW-dipping) and ∼70° (NE-dipping) measured along outcrops (Section 2.2) are the same for the SW-dipping and NE-dipping buried fault zones, respectively. In the following, we describe these fault zones referring both to their tomographic image (Fig. 9) and to their final interpretation (Fig. 10).

The short-wavelength tomogram of profile P1 (Figs 8a and 9c) clearly images a >50-m-wide fault zone (labelled as F1) whose surface projection matches pretty good the master fault bounding the Quaternary basin to the NE (Fig. 2a; red arrows at 870 m in Fig. 9b and at 470 m in Fig. 9c). In the tomograms (Figs 9b and c), the presence of a SW-dipping normal fault is documented by the abrupt SW-deepening of the high-velocity basement and concurrent SW-thickening of the near-surface very-low velocity region (V_p < 1000 m s\(^{-1}\)). The short-wavelength tomogram also details the upper part of the fault zone, which can be confidently traced up to the surface based on the thickening of the V_p < 1000 m s\(^{-1}\) wedge: this feature clearly indicates syn-tectonic deposition of loose material in the hangingwall of fault F1 possibly enhanced by Late Pleistocene—Holocene tectonic subsidence, as also highlighted by the palaeoseismological trenches opened across it by Cinti et al. (2011). Worthy to note, the primary coseismic ruptures observed in this part of the Paganica village (Boncio et al. 2010; Emergeo Working Group 2010; Fig. 2a) are organized in two parallel sets spaced ∼30 m apart (double black arrows at 830 m in Fig. 9b and at 430 m in Fig. 9c), and they occur ∼40 m to the SW of the projected trace of the master fault. This highlights the complexity of the coseismic rupture process and the considerable width of the active fault zone. For fault F1 we evaluate ∼110 m throw.

The retrieved fault zone F2 (Figs 9b and c) is related to an evident step in the top-basement and a thickening of the low-V_p region (<2000 m s\(^{-1}\)) in the 50–100 m depth range. Notwithstanding some uncertainty, the subsurface location of fault zone F2 is consistent with the projection of an active splay (red arrow at 140 m in Fig. 9c) recognized after the earthquake (Galli et al. 2010; Cinti et al. 2011; Pucci et al. 2015; Fig. 2a), and subsequently investigated through trenching by Moro et al. (2013). For this fault we evaluate ∼80 m throw.

The fault zone F4 imaged in our tomograms (Fig. 9a) is a good candidate to represent the NW prolongation of the San Gregorio Fault (SGF in Fig. 2a) as previously mapped by Boncio et al. (2010) and Pucci et al. (2015). For this fault we evaluate ∼90 m throw.

The existence of a shallow blind fault in correspondence of fault zone F6 coincides with that hypothesized by Boncio et al. (2010) in the hangingwall of the SGF based on the occurrence of tensile

Figure 6. (a) Long-wavelength (171 parameters) V_p tomogram of profile P2: the dashed yellow line indicates resolution depth; (b) result of checkerboard test and (c) ray-density plot (normalized inside 5 m × 5 m cells).
coseismic surface cracks (green stars in Figs 2a and 10). Hence, our subsurface fault image confirms previous speculations. For fault F6 we evaluate \(\sim 75 \) m throw.

The remaining fault zones F3, F5, F7, F8 and F9 are detected for the first time in this study. The small fault zone F3, antithetic to F2, is located in a poorly resolved region of the tomograms (Figs 7a, 9b and 9c), however reflection data (cdp 183, labelled e in Figs 9 and S3) indicate the top-basement is located within the \(V_p 3800-4000 \) m s\(^{-1}\) zone between the two splays, thus defining a small graben.

Fault zones F7 and F8 bound the buried horst outcropping to the north as Mt Caticchio: the remarkable deepening of the basement suggests that the horst has a prominent plunge to the SE, or is probably down-faulted by a transversal structure. According to our interpretations, fault zone F7 has \(\sim 90 \) m throw and fault zone F8 \(\sim 120 \) m throw, so that Mt Caticchio separates two important depocentres in the Paganica basin, which are \(\sim 280 \) and \(\sim 250 \) m deep, respectively. This horst can be considered the more external portion of the Mt Bazzano structure, antithetic to the Paganica Fault.

Figure 7. (a) Long-wavelength (104 parameters) \(V_p \) tomogram of profile P1: the dashed grey rectangle indicates the extent of the short-wavelength model shown in Fig. 8(a); the dashed yellow line indicates resolution depth; (b) result of checkerboard test and (c) ray-density plot (normalized inside \(5 \text{ m} \times 5 \text{ m} \) cells).
In the following, we name Paganica fault-system this kinematically coherent array of 12 synthetic and antithetic splays (BzF, F1–F9, PgF1 and PgF2) bounding and dissecting the Paganica basin.

6 DISCUSSION AND GEOLOGICAL IMPLICATIONS

The integrated cross-section A–A’ shown in Fig. 10 (trace reported in Fig. 2a) covers the entire width of the Paganica basin and
intersects most of the NW-trending splays affecting Quaternary deposits. It is 4.2 km long and is slightly shifted to the SE with respect to the seismic profiles, in order to be tied to the bedrock outcrops and the main bounding faults of the Paganica basin (BzF to the SW; PgF1 and PgF2 to the NE; Fig. 2a). For elementary geometric relations, in the hangingwall of fault F1 the basement cannot be older than the BIS Fm. (Section 5.1). Conversely, the basement in the hangingwall of fault BzF is less constrained, therefore we propose
Figure 10. Geological cross-section A–A’ (trace shown in Fig. 2a) from the interpretation of the merged seismic profiles P1 and P2 (their extent is indicated by double blue arrows). Q1: alluvial fan deposits and breccia (MBR, VVC, VVB and VIC Fms.). Q2: fluvial and alluvial fan deposits (AFH, AFP and SMA Fms.). For the other acronyms refer to the caption of Fig. 2(a). The red star close to fault F1 indicates location of primary coseismic surface breaks at Paganica village, while the green star above fault F6 indicates secondary surface breaks (see details in the text). The thin black dashed line indicates the approximate investigation depth of the long-wavelength tomograms (Figs 9a and b). The yellow stars are the two piercing points used for the evaluation of extension (see Section 6). Faults BzF, PgF1 and PgF2 (see Fig. 2a), although not investigated by seismic profiles, are included in the section because they bound the overall half-graben.

We validated this structural model by iterative block-restoration (using a tool available with the Midland Valley MOVE© software) and assuming quasi-planar shallow fault geometry, layer thickness preservation, and negligible beds rotation due to faulting. The resulting small inaccuracies (areal gaps or overlaps between the 14 fault blocks after restoration are <1 per cent) are used to assign ~10 and ~5 m error on throw and heave for each fault block, respectively. As described in Section 2.2, the few kinematic data collected on some limited portions of faults BzF and PgF1 (Figs 2e and f) suggest that the Paganica fault-system exhibits an almost pure dip-slip kinematics (see also: Lavecchia et al. 2012), so we infer that the apparent displacement measured along this section is nearly equal to the net displacement. This further implies that our estimates of fault slip represent a minimum.

Since no geological constraint is available on the palaeotopography pre-dating the basin formation, we also assume that the bumpy morphology of the top-bedrock is due to normal faulting: this is consistent with the evidence of a quite small amount of shortening due to thrusting in the study area, and with geological data indicating that extensional tectonic activity likely begun more than 1.8 Ma (Section 2.2). Worthy to note, along the Paganica fault-system we did not find any meso-structural evidence of inversion of older thrust surfaces (Fig. 2), which may support the hypothesis that the Paganica Fault re-activated a high-angle thrust developed on an earlier Mesozoic normal fault (Speranza & Minelli 2014; see Section 2.1).

6.1 Faults displacement

In order to calculate the total displacement of the investigated fault-system, we first measured the separation of footwall and hanging-wall cut-offs of the shallowest pre-Quaternary markers, namely the top of the SCZ, BIS and SCC Fms. in the SW, central, and NE parts of the section, respectively. We then checked the consistency of displacement across each fault splay down to the J–K units, although the setting of the central part of the section at greater depth (>500 m below the sea level, including the CDI, VAP and COI Fms. in Fig. 10) is less constrained. Subsequently, we summed separately the throws of SW-dipping and NE-dipping splays: the cumulative values obtained are ~1220 m (for SW-dipping splays) and ~845 m (for NE-dipping splays), resulting in a net throw of ~375 m. Following the same approach, we summed separately the heave of SW-dipping and NE-dipping splays, obtaining ~765 and ~235 m, respectively. Finally, taking into account the aforementioned

an interpretation where it is represented by the SCZ Fm. (Fig. 10): this choice minimizes slip on faults BzF and F8, and thus the overall extension along the investigated transect.
geometric inaccuracies of the cross-section, the net displacement, throw and heave of the Paganica fault-system are 645 ± 90, 375 ± 60 and 530 ± 65 m, respectively. Since the distance between the piercing points of the section is 3.6 km, this implies ~15 per cent stretching. These values confirm that in this sector of the central Apennines the extension is driven by an overall SW-dipping fault-system.

This geometric solution depicts the partitioning of fault slip within the uppermost ~2 km of the crust with tolerable errors. In fact, if we consider the net displacement affecting the lowermost stratigraphic level in the section (base of COI Fm.), we still obtain ~650 m of slip accrued by fault PgF1 at ~2 km depth: this value is almost equal to the net displacement obtained considering the slip occurring along the 12 conjugate shallowest splays.

We conclude that a reliable minimum estimate of cumulative displacement of the Paganica Fault is 650 ± 90 m: such a value is higher than previous calculations of total offset (e.g. Galli et al. 2010; Improta et al. 2012). Interestingly, the minimum value of net throw of the Paganica Fault (~375 ± 60 m) is roughly comparable with the 250–300 m total morphologic throw obtained by Civico et al. (2015). This implies that a large proportion of fault throw directly caused the offset of the topographic surface with the generation of a basin-and-range landscape. A further important implication is that such a kind of fault architecture (i.e. slip mostly localized on 60°-dipping synthetic splays and subordinately on a few 70°-dipping antithetic splays) requires a relatively low amount of net throw to generate a significant extension. For instance, Villani et al. (2015b) already documented a similar structural setting along the San Demetrio sector of the PSDFS.

6.2 Upper crustal architecture

The cross-section of Fig. 11 shows our interpretation of the possible link between the shallow structure (~300 m) and the deep (>2 km) setting.

A simple extrapolation of planar geometry at depth suggests that faults F2–F9 are very shallow (<1 km), while faults PgF1, PgF2 and F1 intersect the main antithetic fault BzF at ~2 km depth. The aftershocks of the 2009 Mw 6.1 L’Aquila earthquake align on a primary SW-dipping plane, which connects with the extrapolated prolongation at deep of faults PgF1, PgF2 and F1. We remark that the downward continuation of fault F1 inferred by refraction tomography (Fig. 8) also matches the seismogenic fault unravelled by aftershocks distribution. Therefore, our results indicate that the 2009 coseismic surface faulting occurred along a normal fault splay that displaces the pre-Quaternary basement (Figs 9b and c); (2) the uppermost portion of the Paganica Fault is almost perfectly aligned with the 2009 aftershocks in the 2–10 km depth range (Fig. 11); (3) the Paganica fault-system, together with the SGF, forms an >8-km-long individual structure at the surface (Fig. 2a). Notably, our minimum estimate of net displacement of the Paganica Fault is in accordance with fault length/displacement scaling relationships (e.g. Kim & Sanderson 2005, and reference therein) from field data collected on many other normal faults worldwide. Moreover, the interpretation of a normal fault cutting the uppermost ~10 km of the crust is consistent with the evidence that most inter-plate dip-slip seismogenic faults have an aspect ratio of ~1 (Leonard 2010).

6.3 Short-term versus long-term slip-rates of the Paganica fault-system

We use the mutual relations between faults and continental infill in Fig. 10 to infer long-term (>105 yr timescale) slip-rates of the Paganica fault-system. The continental deposition in the Paganica basin likely took place during the Gelasian (1.8–2.59 Ma; Section 2). Taking into account the uncertainty in the onset of extension and the aforementioned inaccuracies affecting slip calculation, the minimum long-term slip-rate is 0.30 ± 0.07 mm yr⁻¹. Such value falls within the reported 0.2–1.3 mm yr⁻¹ range of slip-rates for active normal faults in the central Apennines (Section 1), which consider shorter timescales (typically 10⁴ yr), and are close to the dip-slip rates of 0.3–0.4 mm yr⁻¹ recovered from palaeoseismic surveys across splays F1 and F2 (Cinti et al. 2011; Galli et al. 2011; Moro et al. 2013). As regards total extension, we evaluate a 0.25 ± 0.06 mm yr⁻¹ minimum long-term extension-rate accomplished by the whole Paganica fault-system at the surface.

Based on the relationships between faults and infilling deposits Q1 and Q2 in the Paganica basin (Fig. 10), we hypothesize that post-Early Pleistocene activity of the Paganica fault-system is basically accomplished by faults F1 (master), F2, and subordinately by faults BzF, F4 and F6, whereas all the other splays appear sealed since the beginning of the Middle Pleistocene. Therefore, within the Paganica fault-system a spatio-temporal migration of activity likely occurred, causing higher concentration of slip in recent times over a few splays and contemporaneous deactivation of the other splays. This
Figure 11. Cross-section B–B’ (trace shown in Fig. 1) with the projection of the 2009 April 6 main shock focal mechanism and 1343 high-precision relocated aftershocks (small blue crosses; 1 km width perpendicular to the section; dataset after Valoroso et al. 2013). In the upper part, the geological section of Fig. 10 is shown. Simple extrapolation downwards of planar fault surfaces implies that the Paganica half-graben structure is quite shallow, with conjugate splays merging at ~2 km depth.

time-dependent scenario, which has occurred at upper structural levels (0–2 km deep), is consequently the surface expression of the displacement occurring at seismogenic depth along a single SW-dipping master fault (Paganica Fault).

Several works (Nicol et al. 1997, 2006; Cowie 1998; Bull et al. 2006; Mouslopoulou et al. 2009) have documented that, given steady-state boundary conditions, kinematically coherent normal fault-systems accrue displacement at nearly constant rate and approach stability over a time-interval \(> 10^3 \) yr. Similarly, from the aggregate contribution of all the splays composing the fault-system investigated in this work, we infer that displacement of the Paganica Fault accrued in a stable manner in the long-term perspective.
As a final remark, we put forward the hypothesis that the Paganica fault-system behaves as a first-order crustal structure, similar to a few other active normal fault-systems depicted in Fig. 1, in particular those faults that are nearly parallel to the PSDFS along the direction of regional extension (e.g. the Liri, Velino-Magnola, L’Aquila-Celano and Gran Sasso fault-systems). Considering that in the last 1.2−1.8 × 10^4 yr the averaged regional extension-rate accomplished by all of these faults in the axial zone of the central Apennines is ~1 mm yr^{-1} (Faure Walker et al., 2010), we argue that at comparable timescales (10^3−10^5 yr) the Paganica fault-system may account for ~20 per cent of the total extension affecting this part of the chain.

7 CONCLUSIONS

The integration of HR V_p tomographic images and detailed geological mapping allowed the reconstruction of the architecture of the shallow portion of the Paganica Fault, which is the source of the 2009 M_w 6.1 L’Aquila earthquake (Figs 10 and 11). V_p images pinpoint the shallow geometry of this previously poorly known normal fault (that was also responsible of heavy damage caused by co-seismic surface breakage), moreover several buried fault splays were recognized for the first time by using this new set of data. This fact highlights that HR seismic profiling integrated with detailed geological mapping should be considered as a primary tool to use for subsurface basin imaging and assessing surface faulting hazard in complex tectonic scenarios.

The Paganica fault-system is composed of 12 main conjugate splays dipping to the SW and to the NE, which accrued a minimal total displacement of 650 ± 90 m, accounting for a long-term (post-Gelasian) slip-rate of 0.30 ± 0.07 mm yr^{-1}. Similarly, the overall extension is 530 ± 65 m, accounting for a long-term extension-rate of 0.25 ± 0.06 mm yr^{-1}. The total net throw of 365 ± 60 m is comparable to previous estimates of total morphologic throw (Civico et al. 2015), suggesting that this fault played a primary role in generating a basin-and-range landscape.

Extension promoted the formation of a ~3-km-wide half-graben (Paganica basin). The infill thickness is extremely variable, ranging between <20 m and a maximum value of ~280 m. V_p images suggest in the hangingwall of each fault the presence of thick syntectonic clastic wedges (unit Q1), which developed during early extensional stages promoting the basin formation.

We infer that normal fault activity during the Early Pleistocene involved all of the fault splays, whereas the post-Early Pleistocene displacement was accrued by three main splays (the master fault F1, and faults F2 and BzF) and to a much lesser extent by two other minor splays (F4 and F6).

We hypothesize that at 10^4−10^5 yr timescales the Paganica fault-system, together with a few other parallel active normal fault-systems in the axial zone of the central Apennines (e.g. the Liri, Velino-Magnola, L’Aquila-Celano and Gran Sasso fault-systems), behaves as a first-order structure cutting the whole upper ~10 km of the crust, and which accounts for ~20 per cent of the total extension affecting this part of the chain.

The integrated subsurface investigation of the Paganica Fault presented in this work improves the knowledge of the Late Quaternary structural evolution of this highly seismic sector of the central Apennines, and it represents a pinpoint for the thorough characterization of an active fault-system at different timescales and structural levels in the crust.

ACKNOWLEDGEMENTS

Two anonymous reviewers provided thoughtful comments that greatly improved the early version of this manuscript. We also thank the editor J. Virieux for his positive remarks on this paper, and M. Carafa, D. Di Naccio and A. Herrero for fruitful discussions.

Seismic data have been processed using the Seismic Unix Package (Stockwell 1999). Tomographic models have been plotted with the Generic Mapping Tool software (Wessel & Smith 1991). The geological cross-section was created using the Midland Valley Software MOVE© (http://www.mve.com/software; academic licence 2016 for INGV, Rome). L. Valoroso provided the aftershocks locations and D. Cheloni the focal mechanism shown in Fig. 11.

This work has been funded by the Project INGV-DPC S5 07−09 ‘Test sites per il monitoraggio multidisciplinare di dettaglio’ W.P. 4.5, (team 0371.050, UR5, P1.: L. Improta,) and by the Project FIRB Abruzzo ‘High-resolution analyses for assessing the seismic hazard and risk of the areas affected by the 6 April 2009 earthquake’ (http://progettoabruzzo.rm.ingv.it/en; UR5, P1.: D. Pantosti; funding code: RBAP10ZC8K_005).

REFERENCES

depth −180 m (V_{tomo} 1680 m s$^{-1}$); (m) cdp 656 ($x = 488$ m): t_0 0.24 s; (n) NMO correction (2400 m s$^{-1}$): top-basement depth −288 m (V_{tomo} 2270 m s$^{-1}$); (o) cdp 348 ($x = 1218$ m): t_0 0.19 s; (p) NMO correction (2600 m s$^{-1}$): top-basement depth −247 m (V_{tomo} 2600 m s$^{-1}$).

Figure S3. Selected CMP gathers of profile P1 showing deep basement reflections outlined by thin dashed green lines. The position of the reflection point corresponding to the ‘zero offset’ reflection (t_0) for each CMP gather is reported in the tomograms in Fig. 9 with a yellow star. Traveltimes t_0 were depth-converted using average V_p values defined by refraction tomography (V_{tomo}). (a) cdp 73 ($x = 172$ m): t_0 0.125 s; (b) NMO correction (2400 m s$^{-1}$): top-basement depth −135 m (V_{tomo} 2175 m s$^{-1}$); (c) cdp 123 ($x = 312$ m): t_0 0.13 s; (d) NMO correction (1800 m s$^{-1}$): top-basement depth −143 m (V_{tomo} 2200 m s$^{-1}$); (e) cdp 183 ($x = 452$ m): t_0 0.18 s; (f) NMO correction (2200 m s$^{-1}$): top-basement depth −198 m (V_{tomo} 2290 m s$^{-1}$); (g) cdp 265 ($x = 662$ m): t_0 0.10 s; (h) NMO correction (1800 m s$^{-1}$): top-basement depth −116 m (V_{tomo} 2320 m s$^{-1}$); (i) cdp 327 ($x = 812$ m): t_0 0.115 s; (j) NMO correction (2100 m s$^{-1}$): top-basement depth −140 m (V_{tomo} 2430 m s$^{-1}$); (k) cdp 373 ($x = 937$ m (V_{tomo} 2320 m s$^{-1}$); (l) cdp 327 ($x = 812$ m); t_0 0.115 s; (j) NMO correction (2100 m s$^{-1}$): top-basement depth −140 m (V_{tomo} 2430 m s$^{-1}$); (k) t_0 0.07 s; (l) NMO correction (1800 m s$^{-1}$): top-basement depth −140 m (V_{tomo} 2430 m s$^{-1}$).

Please note: Oxford University Press is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the paper.