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Abstract 

The first part of this paper reviews methods using effective solar indices to update a background ionospheric 

model focusing on those employing the Kriging method to perform the spatial interpolation. Then it proposes 

a method to update the IRI (International Reference Ionosphere) model through assimilation of data collected 

by a European ionosonde network. The method, called IRI UP (International Reference Ionosphere UPdate), 

that can potentially operate in real time, is mathematically described and validated for the period 9-25 March 

2015 (a time window including the well-known St. Patrick storm occurred on 17 March), using IRI and IRTAM 

(IRI Real Time Assimilative Model) models as the reference. It relies on foF2 and M(3000)F2 ionospheric 

characteristics, recorded routinely by a network of 12 European ionosonde stations, which are used to calculate 

for each station effective values of IRI indices 𝐼𝐺12 and 𝑅12 (identified as 𝐼𝐺12eff and 𝑅12eff); then, starting 

from this discrete dataset of values, two-dimensional (2D) maps of 𝐼𝐺12eff and 𝑅12eff are generated through 

the universal Kriging method. Five variogram models are proposed and tested statistically to select the best 

performer for each effective index. Then computed maps of 𝐼𝐺12eff and 𝑅12eff are used in the IRI model to 

synthesize updated values of foF2 and hmF2. To evaluate the ability of the proposed method to reproduce rapid 

local changes that are common under disturbed conditions, quality metrics are calculated for two test stations 

whose measurements were not assimilated in IRI UP, Fairford (51.7 N, 1.5 W) and San Vito (40.6 N, 17.8 E), 

for the storm-time option IRI, IRI UP, and IRTAM models. The proposed method turns out to be very effective 

under highly disturbed conditions, with significant improvements of foF2 representation and noticeable 

improvements of hmF2. Important improvements have been verified also for quiet and moderately disturbed 

conditions. A visual analysis of foF2 and hmF2 maps highlights the ability of the IRI UP method to catch 

small-scale changes occurring under disturbed conditions which are not seen by IRI. 

1 Introduction 

Prediction of solar and geomagnetic activity is essential for forecasting conditions in the near-Earth space 

environment in general and for ionospheric modelling and propagation processes in particular. This is an 

important subject of research in solar-terrestrial studies and significantly depends on types of solar events and 

their effects on the magnetosphere-ionosphere-atmosphere complex system (Zolesi and Cander  2014). It is a 

matter of fact that critical frequencies of ionospheric layers depend on measurable quantities related to solar 

radiation and to the neutral atmosphere composition and structure (Chapman 1930); at the same time, however, 

mailto:alessio.pignalberi2@unibo.it)


2 
 

the structure and dynamics of the ionosphere are profoundly dependent on measurable quantities related to 

geomagnetic activity (Buonsanto 1999).  

Ionospheric empirical climatological models, like the International Reference Ionosphere (IRI) model (Bilitza 

et al. 2014), are not able to predict all the ionospheric variability, specifically under disturbed magnetic 

conditions (Mirò Amarante et al. 2007). IRI includes a storm option (Fuller-Rowell et al. 1998; Araujo-Pradere 

et al. 2002) which simulates the ionospheric plasma behavior under magnetically disturbed periods. 

However, despite all the efforts made to improve the behavior of the IRI model under magnetically disturbed 

conditions, the response of the ionosphere under severe geomagnetic storms is still a challenge, as it was 

recently demonstrated by Pignalberi et al. (2016), who made a comparison between electron density values in 

the topside part of the ionosphere measured by Swarm satellites and calculated by IRI. 

 

The aforementioned considerations lead to the conclusion that we need a model able to properly represent the 

ionospheric plasma variability caused by solar activity, geomagnetic activity and neutral atmosphere changes. 

To do this, according to the recent trend shown by the ionospheric community, it is necessary to complement 

climatological models with real-time space-sparse ionospheric measurements through a data assimilation 

scheme, as recently recognized by the IRI community (Bilitza et al. 2011, 2014).  

Assuming there are several spatially-sparse ionospheric measurements, data assimilation is a process of 

merging measurements with a model to improve the estimate of the ionospheric conditions over the area 

covered by the model, also where direct measurements are not available. Thus, by means of data assimilation, 

it is possible to spatially expand the effectiveness of limited measurements using the model and, at the same 

time, to increase the accuracy of model estimates.  

Several of the assimilating procedures used to update the IRI model are listed in Bilitza et al. (2011, 2014). In 

this work we review some of these methods, focusing on those using effective solar indices to update a 

climatological background and on Kriging methods. 

This paper proposes a new assimilation method to update the IRI model in the European region. Specifically, 

foF2 and the propagation factor M(3000)F2 measurements are assimilated to calculate effective values of 

indices 𝐼𝐺12 and 𝑅12 (called respectively 𝐼𝐺12eff and 𝑅12eff) by taking into account that IRI uses the index 

𝐼𝐺12 to output foF2 values and the  𝑅12 index to output M(3000)F2 values. From these scattered values of 

𝐼𝐺12eff and 𝑅12eff, corresponding maps are generated by means of geostatistical interpolation called universal 

Kriging method; these maps  are then used as input to the IRI model, thus obtaining updated values of foF2 

and M(3000)F2, hence of hmF2. The method was tested on a period of time including the well-known and 

studied St. Patrick storm occurred on March 17 2015 (Astafyeva et al. 2015; Carter et al. 2016; De Michelis 

et al. 2016; Dmitriev et al. 2017; Nava et al. 2016; Nayak et al. 2016; Pignalberi et al. 2016; Spogli et al. 2016; 

Tulasi et al. 2016; Zhong et al. 2016). Its potentiality was statistically evaluated by comparing its output with 

that given by both the IRI model, with the storm option on, and the IRTAM (IRI Real Time Assimilative 

Model; Galkin et al. 2012) model. 

Section 2 reviews methods using effective indices to update a background model and focuses on those 

employing the Kriging method to perform the spatial interpolation. Section 3 describes the data considered in 

this work and the method proposed to update IRI. Results and corresponding discussions are the subject of 

Sections 4, while conclusions are drawn in Section 5. 

2 Effective solar indices and ionospheric empirical models updating methods: an historical and 

critical review 

Empirical ionospheric models of the standard vertical incidence ionospheric characteristics are based on 

analytical spatial and temporal functions that oversimplify a number of processes that are instead important 

for radio communications applications. In these models ionospheric characteristics (such as foF2 and 
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M(3000)F2), the vertical electron density profile, and other ionospheric parameters as TEC (Total Electron 

Content), are represented as monthly median values varying as a function of geographic location, local time 

and solar activity. Models of this kind are then climatological since they are not designed to predict the day-

to-day variability characterizing the ionospheric plasma. The major exponents of this category are global 

models as the IRI  (Bilitza et al. 2014) and the NeQuick model (Nava et al. 2008), and regional models, for 

example the European SIRM (Zolesi et al. 1993) or the Chinese CRI model (Liu et al. 1994). Some models, 

like IRI, are provided with some options describing the behavior of some ionospheric characteristics under 

magnetically disturbed periods (Araujo-Pradere et al. 2002); nevertheless, these options are not able to catch 

very large deviations from climatology occurring under typical storms (Bradley et al. 2009). 

2.1 Effective solar and ionospheric activity indices for modeling the ionosphere 

To catch the ionospheric variability induced by solar activity, different solar and ionospheric activity indices 

have been used over the years. Solar activity indices are based on solar observations of phenomena occurring 

at the solar surface or atmosphere regardless of the effects that these phenomena can have on the ionospheric 

characteristics, and they are used simply as proxies. The most popular solar index is based on the long-term 

sunspot number measures that were used to define the daily Zurich sunspot number R and the twelve-months 

Zurich sunspot number running mean 𝑅12, which is used in CCIR and URSI models encapsulated in the IRI 

model to model M(3000)F2. Other solar indices used in some ionospheric models are the F10.7 radio solar 

flux and the EUV solar emission flux. 

The first ionospheric activity index, obtained by directly comparing a solar index with ionospheric measures, 

was the 𝐼𝐹2index (Minnis 1955). It was obtained using monthly mean values of the Zurich sunspot number and 

monthly mean noon foF2 values recorded at three different ionospheric stations. Minnis (1955) assumed that 

the monthly mean of the Zurich sunspot number contains a principal component which has a one-to-one 

correlation with monthly mean noon foF2 values in an undisturbed ionosphere, and a residual component 

related to magnetic disturbances. He defined the 𝐼𝐹2  index in order to incorporate this principal component by 

means of a linear regression analysis between the two datasets of monthly mean values, considering magnetic 

disturbances as an error to be minimized.  

The 𝑇 index (Caruana 1990), developed by the Australian Ionospheric Prediction Service (IPS), is a 

development of the 𝐴 index which was derived iteratively minimizing the linear regression’s residuals between 

the 𝑅12 index and the average of the 24 hour monthly median values of foF2 as recorded at 16 stations. These 

monthly 𝐴 indices obtained for every station were then used to calculate a global average 𝐴 index. The 

definition of the 𝑇 index extends this method by using all available ionospheric stations, which are grouped 

into many geographical sectors, to reduce the weight given to the data in regions rich of stations. Thus, the 

monthly 𝑇 index for a region of the world is the weighted average of hourly 𝑇 indices of the stations in that 

region. 

Another directly calculated ionospheric activity index is the 𝑀𝐹2index (Mikhailov and Mikhailov 1995). The 

ratio between foF2 and the magnetic factor 𝑀 (𝑀 = (cos𝜒MC cos 𝜒L⁄ )
1

4, where 𝜒MC is the solar zenith angle 

at the magnetically conjugate point of the F2 region and 𝜒𝐿 the local time one) is considered as a function of 

the cosine of the local solar zenith angle 𝜒L. The 𝑀𝐹2  index is defined as the average of 𝑓𝑜F2 𝑀⁄  values for 

which cos 𝜒 minimizes the standard deviation of the foF2 versus 𝑀𝐹2 regression for each ionosonde station. 

The use of this index, instead of 𝑅12, was demonstrated to improve the foF2 versus solar activity level 

regression by 30% for mid-latitudes and 10% for high-latitudes. 

One of the most used ionospheric activity index is the 𝐼𝐺 index (Liu et al. 1983) and its twelve-months running 

mean 𝐼𝐺12. It is calculated from linear regression equations based on CCIR modeled monthly median foF2 
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values, at that time, dependent on 𝑅12,  and monthly medians foF2 values recorded at noon at 13 locations. The 

resulting index is the median of 𝐼𝐺 index values calculated in those selected locations, and the corresponding 

𝐼𝐺12 is used in CCIR and URSI to model foF2. Indices like 𝐼𝐺, despite being calculated by means of a solar 

activity proxy, include also the variability caused by other phenomena affecting the ionosphere, like the 

geomagnetic activity, the neutral composition change or dynamical disturbances, because foF2 values, both 

measured and modeled, have these footprints. Thus, an index calculated merging available information 

deduced from measured and modelled ionospheric characteristics can tell us much more on ionospheric 

conditions than a direct solar activity index. This is the idea behind the development of effective indices made 

by several authors. 

Secan and Wilkinson (1997) developed an effective sunspot number 𝑆𝑆𝑁e by fitting a model of foF2 to 

observed foF2 values. Hence, 𝑆𝑆𝑁e shares with 𝐼𝐺 index the concept of fitting a global model for foF2 to 

observations. The 𝑆𝑆𝑁e index, deduced from a set of foF2 observations globally spread, is defined as the value 

that, when given as input to the URSI foF2 model, produces a weighted zero-mean difference between the 

observed and modeled foF2 values. In this formulation, every measured foF2 value is weighted according to 

the absolute value of the geomagnetic latitude and the local solar time. 𝑆𝑆𝑁e values were demonstrated to 

catch more ionospheric variability compared to long-term solar activity indices, like 𝑅12 or 𝐼𝐺12, both for quiet 

and disturbed geomagnetic conditions. Thus, continuously updated indices have the potential to represent fast-

time ionospheric variations, even though the global character of these indices does not allow to represent small-

scale ionospheric variations. 

A regionally-limited effective sunspot number was developed also by Zolesi et al. (2004) to real-time update 

the ionospheric European regional model SIRM (Simplified Ionospheric Regional Model) by means of vertical 

incidence measures collected by a network of digisondes. In this regard, real-time foF2 values measured at 

European stations are used to estimate an effective sunspot number, called 𝑅eff, by comparing  them with those 

predicted by SIRM, at the digisonde locations, by varying the 𝑅12 index (used as solar activity index in the 

SIRM model), and minimizing the corresponding mean square error. Hence, 𝑅eff is the value that gives the 

minimum mean square error between modeled and measured foF2 values. This method turned out to make 

consistent improvements for both quiet and disturbed periods but only one value of 𝑅eff is employed to predict 

the ionospheric variability over a large region (Belehaki et al. 2005). Using the SIRM model and measured 

M(3000)F2 values, Tsagouri et al. (2005) obtained new 𝑅eff values but, in this case, with very poor results 

compared to those obtained using foF2 values. 

It has been demonstrated (Mirò Amarante et al. 2007) that the ionosphere shows small-scale variations that 

global or regional empirical model describe hardly, especially for very disturbed periods. Therefore, 

ionospheric activity indices perform to their full potential if they are able to represent fast-time and small-scale 

ionospheric variations (assuming that slow-time and large-scale variations are sufficiently described by a 

global or regional model). In order to accomplish this task, such ionospheric indices should be quickly updated 

in time (one hour or less) and have a fine spatial structure. For this purpose, some attempts were made by 

several authors using different first-guess models (the most important of which are IRI and NeQuick models), 

ionospheric assimilated data (vertical ionospheric soundings made by ionosondes or GPS derived TEC values), 

and spatial interpolation methods (Kriging, spline, inverse weighted functions, natural neighbor). 

A first approach to update the IRI model through updated indices was made by Komjathy and Langley (1996), 

who used hourly TEC maps with a 1°x1° spatial resolution. They were able to improve IRI-95 TEC outputs 

with an error reduction of about 32.5%. A similar approach was pursued by Hernandez-Pajares et al. (2002), 

who used 2-hourly TEC global maps, with a resolution of 5°x2.5° in longitude and latitude. They performed a 

local fit, over each IGS (International GPS Service) station (about 500 at that time), between IRI values and 

those of the TEC map by tuning the Sun Spot Number (SSN). 
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In order to improve the IRI predictions, Bilitza et al. (1997) used foF2 measurements from more than 70 

ionosondes worldwide, for the period 1986-1989, to calculate 𝐼𝐺12 updated values. Index updates were 

calculated matching measured foF2 values with those calculated by URSI model (Rush et al. 1989), for each 

station, and then were globally or zonally averaged. They found that zonally averaged updated indices bring 

to better results than globally ones, thus highlighting the importance of their spatial characterization. 

Another approach, based on an IRI model updating using TEC values, was pursued by Barabashov et al. 

(2006). They used 𝜏 values (𝜏 = 𝑇𝐸𝐶 𝑁𝑚F2⁄  is the equivalent slab thickness of the ionosphere) calculated by 

IRI and obtained by measured values of TEC and foF2, to derive a 𝐾 = 𝜏(obs) 𝜏(IRI)⁄  coefficient to be used 

to obtain an updated value of foF2. They also modeled 𝐾 coefficients taking into account that the largest 

contribution to differences between modeled and measured TEC can be ascribed to the topside part of TEC. 

Based on the results presented by the authors, their method turns out to be a good IRI updating method, 

specifically under disturbed periods, but is somewhat lacking on the spatial characterization. 

Nava et al. (2005) applied a method similar to that proposed by Komjathy and Langley (1996) to the NeQuick 

model (Radicella and Leitinger 2001). Using hourly global TEC maps with a 2.5°x5° resolution (in latitude 

and longitude), they updated the NeQuick effective ionization parameter 𝐴𝑧 (normally calculated from the 

F10.7 solar activity index) by minimizing the difference between the experimental and the modeled vertical 

TEC. The authors obtained the best results at mid latitudes, specifically in the northern hemisphere, thus 

highlighting a general hemispherical asymmetry, and found a latitudinal dependence of the error magnitude. 

This would indicate a lower effectiveness of their method at low-latitudes (where the ionosphere shows a 

highly variable and complex dynamics), which could be ascribed to a lower data coverage and experimental 

data quality at these latitudes. Nevertheless, compared to the climatological F10.7 driven NeQuick model, the 

TEC updated NeQuick model improves TEC calculation by about 50%. NeQuick TEC-based updating was 

further developed by Nava et al. (2006) who updated 𝐴𝑧 values through a direct ingestion of GPS-derived slant 

TEC data in two different ways: using data from a single GPS receiver and using data from multiple ground 

stations. In the first method, one ground station tracks 𝑛 GPS satellites calculating their respective slant TEC 

values, and an updated 𝐴𝑧 value is obtained after minimizing the root-mean square of the 𝑛 measures. In the 

second method, an 𝐴𝑧 value is calculated for every station and then these scattered 𝐴𝑧 values are interpolated 

to obtain a regularly spaced grid by using an Inverse Weighting Function method in which the weight is the 

inverse of the square of the distance between the point and nodes. The two updating methods were shown to 

give clear improvements for both TEC and foF2 values. Nava et al. (2011) introduced also a method to update 

hmF2 values given as output by the NeQuick model, by using hmF2 values extracted from Radio Occultation 

(RO) profiles. Using the Dudeney’s formula that relates foF2, M(3000)F2 and hmF2 (Dudeney 1983), 

implemented in NeQuick 2, they calculated the 𝐴𝑧_ℎ𝑚𝐹2  parameter minimizing the difference between RO-

derived hmF2 values and NeQuick 2-derived hmF2 values.  

A similar method was proposed by Migora-Orué et al. (2015), who assimilated global GPS-TEC maps into the 

IRI 2012 model, obtaining however small improvements during a high solar activity period for quiet days, and 

no improvement during a low solar activity period for quiet days.  

The Nava et al. (2006) method has been recently employed by Olwendo and Cesaroni (2016) by assisting the 

NeQuick 2 model with vertical TEC (VTEC) measurements from a single GNSS station located in Kenya. 

These measurements are used to calculate the effective ionization level parameter (𝑅12 in this case) which 

enables the difference between the measured and modeled VTEC over the station to be less or equal to 0.5 

TECU. The method was evaluated comparing adjusted VTEC values with those measured in two nearby 

stations under years of low (2009) and moderate (2012) solar activity, proving to be very effective in either 

conditions. They also attempted to evaluate the effectiveness of the method by considering a more extended 

region of the central Africa (spanning from about 25°E÷50°E in longitude and 15°S÷20°N in latitude). In this 
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case some large model errors arose above all when points located far away by the assimilated station were 

considered, due to the very complex and highly variable behavior of the ionosphere at low latitudes. 

An attempt to update the IRI model by means of measured GNSS TEC data collected in the African region has 

been recently pursued by Habarulema and Ssessanga (2016). They implemented an iterative procedure to 

minimize the difference between measured and modeled (by IRI 2012 model) TEC values modifying 

iteratively 𝑅12 and 𝐼𝐺12 solar activity indices used by IRI to model the vertical electron density profile. This 

procedure is repeated for every GNSS station assimilated and then adjusted solar activity indices are averaged 

to obtain two single 𝑅12 and 𝐼𝐺12 values which are used to update the IRI model. They evaluated their method 

for a disturbed (March 9 2012) and a quiet (March 25 2012) day comparing the corresponding output with 

both the ionosonde and radio occultation COSMIC derived data. By averaging results over the whole African 

region, the modified IRI 2012 gave an improvement of about 18% in estimating TEC during the stormy day, 

and about 28% during the quiet day. Anyway, the authors highlighted that the use of single averaged solar 

activity indices strongly smooth the spatial information embedded in them, above all considering a large and 

spatially variable region as is Africa. 

TEC-based methods used to update IRI or NeQuick models suffer the limitation related to the calculation of 

TEC maps and measurements and to the intrinsic limit in height of these models. TEC maps and measurements 

have not yet reached an appropriate accuracy owing to noise, multipath propagation, phase jumps and 

subjectivity of the ionospheric model choice (being the calculation of vertical TEC values, derived from slant 

ones, dependent on the choice of the height of the ionospheric shell). Furthermore, models like IRI do not 

consider the plasmaspheric contribution, being the TEC calculation limited in height (2000 km), whilst GPS-

based TEC measurements contain it (Klimenko et al. (2014) suggested that the plasmaspheric contribution to 

TEC values can potentially be up to 20% during the day and up to 50% at night), thus causing a mismatch 

which can degrade the accuracy of results regardless the employed updating method. These problems have 

been highlighted by Maltseva et al. (2010), who show that, in many cases, the direct ingestion of TEC values 

by IRI model leads to worse results compared to the assimilation of modeled 𝜏 (slab thickness) values (an 

argument raised also by Houminer et Soicher (1996) and Migora-Orué et al. (2015)). One of the main reasons 

of these discrepancies can be found in the fact that, in these models, TEC values are calculated a posteriori 

from the vertical electron density profile, while other characteristics as foF2 and M(3000)F2 are directly 

parametrized by the IRI model. Thus, an erroneous shape of the electron density profile (above all in the topside 

part, as recently demonstrated by Pignalberi et al. (2016)), can lead to an incorrect TEC estimate, even though 

the modeled foF2 value is improved through an updating procedure.  

Ovodenko et al. (2015) have studied the possibility to update the IRI-2007 model calculating 𝑅12 updated 

values, for a single ionospheric station located in Kaliningrad (Russia), using two approaches: the first based 

on real-time slant TEC measurements by GNSS (as done by Nava et al. (2006)); the second based on foF2 

measurements by ionosonde (as done by Bilitza et al. (1997)). In both approaches updated 𝑅12 indices are 

calculated in order to minimize the difference between IRI modeled values and measured ones, while the 𝐼𝐺12 

index is forced to be equal to 𝑅12 (which is a very limiting factor being these indices used by IRI to model 

different F2 layer characteristics, as it will be well described in section 3.2). For the analyzed cases, Ovodenko 

et al. (2015) found an important reduction of the error (about 70-80 %) using both approaches, compared to 

the climatological IRI-2007 model. They also found that the updating procedure based on slant TEC 

measurements is more effective for quiet geomagnetic conditions than for disturbed ones, and that the sunset 

is the most difficult period to represent, using both updated and non-updated IRI models. 
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2.2 Ionospheric modeling based on Kriging technique and assimilated data  

The methods reported in the previous section focused principally on the choice of the best ionospheric 

parameters to constrain an activity index (solar or ionospheric), but considering the spatial description of lesser 

importance. Some of these effective indices, like 𝑆𝑆𝑁e in Secan et al. (1997) and 𝑅eff in Zolesi et al. (2004), 

are characterized by a single value which is considered valid for the whole area under study; others are 

estimated in all grid points of the assimilated ionospheric parameter map, like in Komjathy and Langley (1996) 

and Nava et al. (2005). In both cases, the spatial behavior of indices is overshadowed; the spatial description 

is delegated to the underlying climatological empirical model used or to the method used to obtain the 

assimilated map. In the case of a single index valid for the whole region, errors can arise due to an insufficiently 

accurate spatial description of the ionospheric parameters in the underlying empirical model. However, even 

assuming a perfect spatial description by the underlying model, errors arise because the effective indices 

contain inside them the imprint of several geophysical phenomena affecting the ionospheric parameter used in 

their computation, which are, in most cases, heavily spatially varying. Hence, it is clear the need to take into 

account the spatial behavior of an effective index. In the second case, that is the one of multiples indices 

calculated in each point of the region grid, errors can arise because the assimilated ionospheric parameter grid 

is itself obtained by means of interpolation of spatial scattered measures thus introducing additional errors that 

are difficult to estimate without a thorough a priori knowledge of how the assimilated grid was obtained. 

Hence, it is clear the need to take the full control on the spatial description of the effective indices through two 

main steps: 1) to obtain them from reliable measures taken in geographically scattered ionospheric stations; 2) 

to spatially interpolate the values obtained in 1) with a fully manageable spatial interpolation method, whose 

benefits and shortcomings can be clearly estimated and that can be adapted to the different geophysical 

conditions that can occur. 

In an attempt to pursue both objectives, several spatial interpolation methods were developed to obtain an 

instantaneous mapping of several ionospheric parameters. Samardjiev et al. (1993) compared three spatial 

interpolation methods for an instantaneous ionospheric mapping of foF2 and M(3000)F2 characteristics over 

the European region, that is: the Inverse-distance power law method, the Minimum-curvature analysis and the 

geostatistical procedure known as Kriging method. This comparison showed that Kriging method gives the 

lowest mean square deviation for both small and large distances from the scattered assimilated measures, for 

both foF2 and M(3000)F2. The Kriging method will be discussed in the next section, being the spatial 

interpolation method used in this work. The description of the other interpolation methods is beyond the scope 

of this work, more information can be found in Davis (1986). 

A Kriging method for an instantaneous mapping of foF2, was used in particular by Stanislawska et al. (1996a). 

They applied the ordinary Kriging method (Matheron 1963; Oliver and Webster 1990; Kitanidis 1997) to 

obtain foF2 maps in the European region after assimilating foF2 values measured by a network of 10 

ionosondes. They described the spatial variation of the sampled data through a linear variogram model for 

which the nugget coefficient (the intercept of the straight line used to fit semivariance values) was zeroed by 

choosing the appropriate Scaling Factor value (𝑆𝐹 = 𝑑𝑙𝑜𝑛 𝑑𝑙𝑎𝑡⁄ , where  𝑑𝑙𝑜𝑛 and 𝑑𝑙𝑎𝑡 are the differences, in 

longitude and latitude respectively, for two different geographical points, describing the spatial anisotropy), 

with the sole slope of the straight line describing the whole spatial variation. They introduced also the concept 

of “ionospheric distance” for which the scaling factor (SF) is used to weight the ionospheric spatial anisotropy. 

This scaling factor was evaluated by Stanislawska et al. (1996a) for mid latitudes, and by Stanislawska et al. 

(1996b) for low and equatorial latitudes; it was found to vary from SF=0.8 at low and equatorial latitudes to 

SF=2 at mid-latitudes. To build the experimental variogram, and in order to have a consistent statistical sample, 

regardless of the hour of the day, they used foF2 values recorded for consecutive days, since semivariance 

values for a definite time moment were very randomly distributed. Anyhow, this way to proceed neglects any 

spatial correlation property linked to the ionospheric daily variability. This method was used also for an 
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instantaneous mapping of TEC by Stanislawska et al. (2002). Unfortunately, these works are not supported by 

any statistical validation and, with the proposed variogram’s construction method, it turns out to be 

inapplicable for real-time applications in which only measures collected in a precise moment are available. 

Furthermore, several variogram models, i.e. several mathematical functions fitting the semivariance values in 

the experimental semivariogram, can be employed, each of them having different small-scale and large-scale 

properties (McBratney and Webster 1986). Limiting the analysis to only the linear variogram model is 

restrictive and may lead to less than optimal choices. 

A Kriging method similar to that of Stanislawska et al. (1996a) is used by Liu et al. (2008) in conjunction with 

the CRI (China Reference Ionosphere) model, for the Chinese region. The authors probe different ionospheric 

values as input for the ordinary Kriging method, with a linear variogram model in which the nugget coefficient 

is zeroed by means of an appropriate choice of SF=2, that is: 1) (𝑓𝑜F2(𝑥, 𝑦) − 𝑓𝑜F2(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 𝑓𝑜F2(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅⁄ , 

where 𝑓𝑜F2(𝑥, 𝑦) are values measured by a chinese network of ionosondes, and 𝑓𝑜F2(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the background 

calculated by the CRI model; 2) 𝑓𝑜F2(𝑥, 𝑦) − 𝑓𝑜F2(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ; 3) 𝑓𝑜F2(𝑥, 𝑦); 4) 𝑅12(𝑥, 𝑦), the effective sunspot 

number inversely derived from 𝑓𝑜F2(𝑥, 𝑦) through the IRI model. The accuracy of the four proposed methods 

is evaluated, with a cross validation analysis that shows that method 1) provides best results because the 

information about physical gradients of electron density are retained using a background model, so that the 

accuracy and stability are increased in the regional reconstruction. Furthermore, they highlight an important 

difference between outer and inner regional stations and between low- and mid-latitude stations: best results 

are obtained for inner stations, as it is expected, and for mid-latitude stations owing to the difficulties of the 

CRI model to describe the northern crest of the equatorial anomaly. 

Wang et al. (2010) investigated an approach similar to the method 1) proposed by Liu et al. (2008) for which 

the first step is to calculate an effective sunspot number 𝑅eff, according to Zolesi et al. (2004), used to calculate 

an updated value of the 𝐼c index (the solar activity index used by the CRI model, which quadratically depends 

on 𝑅12), which is then used to obtain updated foF2 values with the CRI model. They statistically evaluated 

their method by means of a cross validation during two years of high solar activity and two years of minimum 

solar activity, after assimilating foF2 values from a network of nine Chinese ionosondes. They obtained a slight 

improvement with respect to the Liu et al. (2008) updating procedure, with a lower relative error for high solar 

activity than for low solar activity. 

These results, although based on the CRI model, remain valid for any ionospheric model used as background 

in the updating procedure, regardless of the used approach. The goodness of results critically depends on the 

underlying background model and on its capability to catch the ionospheric variability, both spatially and 

temporally.  

A Kriging method was applied by Orus et al. (2005) to improve the Technical University of Catalonia (UPC) 

global ionospheric maps (GIM) computed with GPS data. They used the ordinary Kriging method with an 

exponential variogram model, applied to the residuals between distributed UPC GIM TEC values and raw 

UPC GIM TEC values, in order to fulfill the stationary hypothesis with constant mean and standard deviation 

(Kitanidis 1997). Variograms were calculated considering two hours of data centered at even hours (0 UT, 2 

UT, …, 22 UT) for small regions around each GIM grid point. The obtained variograms were then normalized 

obtaining a single variogram representing the whole map for these intervals of two hours (the need of 

considering several time periods to obtain the variogram is the same discussed by Stanislawska et al. (1996a)). 

They evaluated their method comparing it with previous UPC GIM and with IGS GIM maps for a self-

consistency test, and with TEC data provided by TOPEX/Poseidon and JASON altimeter satellites. The self-

consistency test showed that the root mean square of UPC Kriging GIM maps was about 16% lower than 

original UPC GIM maps, and about 3% lower than IGS GIM maps. Also, the comparison with 
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TOPEX/Poseidon and JASON TEC data showed that UPC Kriging GIM maps had better performance than 

original UPC GIM maps. 

Regional ionosphere TEC mapping using the Kriging method was also investigated by Grynyshyna-Poliuga et 

al. (2014), who used IGS TEC values recorded by 15 stations located in the European region to reconstruct 

TEC maps by means of the ordinary Kriging method. They probed the opportunity to use different stationary 

variogram models, in particular spherical, exponential and gaussian. They considered 15-minutes TEC values 

during three days including a geomagnetic storm, obtaining maps in a region located between 30°N-60°N in 

latitude and 40°W-45°E in longitude on a 2.5°x2.5° grid. These maps could properly represent significant 

features of the ionosphere response, as latitudinal variations of the ionospheric trough for disturbed conditions, 

but the authors did not make any statistical validation of both the method and the stationary variogram that 

performed better. 

The aforementioned considerations about the application of the ordinary Kriging method to generate 

ionospheric parameters maps led us to conclude that it might be a good spatial interpolation method. However, 

it is characterized by several user arbitrary choices (the variogram to be used, which and how many values to 

be used to build it, use of all values or only a spatial selection of it, …) that make its use “dangerous”, in the 

sense that certain  choices provide  worse results than other, more user-friendly, interpolation methods. In the 

following section, the universal Kriging method will be described, since the authors consider it more suitable 

than the ordinary one for ionospheric issues. Several stationary and non-stationary variogram models will be 

investigated, in order to make the most of the potentiality of the Kriging method.  

2.3 Five steps to make a good ionospheric model update based on solar indices 

The critical review of previous sections highlights five points to be followed in the development of a method 

to generate reliable ionospheric maps: 

1. An empirical climatological ionospheric model  is adopted with improved  temporal and spatial 

description of the ionosphere, and whose ionospheric characteristics depend on some solar/ionospheric 

activity indices that can be chosen by the user; 

2. The most reliable ionospheric characteristics must be assimilated, in order to have the highest 

confidence. Specifically, those characteristics that are directly parametrized by the underlying model, 

preferably those depending on only one solar/ionospheric activity index, should be considered; 

3. The assimilated ionospheric characteristic is used to update the solar/ionospheric activity index by 

which it depends, for several points on a chosen region; 

4. A spatial interpolation method is used to obtain maps of updated solar/ionospheric activity 

index/indices on a region whose extension depends on the geographical position of stations from which 

data are assimilated; 

5. The underlying model is fed with the updated solar/ionospheric activity index/indices to obtain 

updated values of the selected ionospheric characteristics. 

The choices we have made to build our model, strictly linked to the aforementioned five points, are also guided 

by the considerations made in the previous section about potentialities and shortcomings of each developed 

method. Details will be provided in the following section. 

3 Data and method 

3.1 Data 

The considered period is the one between the 9 March 2015 at 00 UT (Universal Time) and the 25 March 2015 

at 23 UT, a time period including the so-called St. Patrick geomagnetic storm, the most intense geomagnetic 
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storm observed during solar cycle 24, classified as severe and for which the Kp index reached the maximum 

value of 8. The sudden storm commencement was observed from ground observatories on 17 March 2015 at 

around 04:45 UT with the arrival at the Earth of a Coronal Mass Ejection. The storm reached its maximum 

intensity on 17 March at around 23:00 UT and it was characterized by a minimum value of the Dst index of 

−223 nT. The considered time period was characterized initially by a magnetically quiet period, as it is shown 

by the Dst and AE values close to zero (see the bottom panel of Fig. 4), lasting until the sudden storm 

commencement occurred on 17 March 2015 at about 05 UT. Then, a strongly magnetically disturbed period 

characterizes the main phase of the storm, from the sudden storm commencement until the end of 18 March 

2015, for which the Dst index becomes deeply negative and the AE index increase significantly its value. 

Hence, a long recovery phase characterizes the days until the end of the studied period, for which the Dst index 

slowly increases to zero, while the AE index is still characterized by several perturbations due to sub-storms. 

Hourly values of foF2, M(3000)F2, hmF2 and foE (the critical frequency of the E region) are used in this work. 

These data were downloaded from the DIDBASE (Digital Ionogram DataBASE) (Reinisch and Galkin 2011) 

by means of the SAO Explorer software, developed by the University of Massachusetts, Lowell. Fourteen 

ionospheric stations in the European sector, from 15°E to 45°W in longitude and from 30°N to 60°N in latitude, 

are considered (see Table 1). Two of these stations, specifically Fairford and San Vito, have been used only as 

test sites to verify the model performance. The two test stations are well spaced in latitude, to test the different 

effects of the geomagnetic storm at different latitudes. Furthermore, the Fairford station is located near Chilton 

station, while San Vito station is relatively isolated and surrounded by Rome, Gibilmanna and Athens stations, 

therefore they experiment different boundary conditions. The quality of the downloaded ionograms have been 

verified by selecting only those with a C-score > 75 (for more information on C-score see 

http://www.ursi.org/files/CommissionWebsites/INAG/web-73/confidence_score.pdf), for the stations 

equipped with the ARTIST software (Galkin et al. 2008), while those recorded by stations equipped with 

Autoscala software (Pezzopane and Scotto 2005) have been visually verified. 

Table 1 Ionospheric stations from which data are assimilated with corresponding geographical coordinates, 

type of ionosonde and autoscaling software. Station names in bold are used only as test stations, and data are 

not assimilated. 

Ionospheric 

stations Lon (degrees) Lat  (degrees) 

Ionosonde  

type 

Autoscaling 

software 

State 

 

Athens 23.5 E 38.0 N Digisonde  DPS-4D Artist 5 assimilated 

Chilton 0.6 W 51.5 N Digisonde DPS-1 Artist 4 assimilated 

Dourbes 4.6 E 50.1 N Digisonde  DPS-4D Artist 5 assimilated 

El Arenosillo 6.7 W 37.1 N Digisonde  DPS-4D Artist 5 assimilated 

Fairford 1.5 W 51.7 N Digisonde  DPS-4D Artist 5 Used as test data 

Gibilmanna 14.0 E 37.9 N AIS-INGV Autoscala 4.1 assimilated 

Juliusruh 13.4 E 54.6 N Digisonde  DPS-4D Artist 5 assimilated 

Moscow 37.3 E 55.5 N Digisonde  DPS-4 Artist 5 assimilated 

Nicosia 33.2 E 35.0 N Digisonde  DPS-4D Artist 5 assimilated 

Pruhonice 14.6 E 50.0 N Digisonde  DPS-4D Artist 5 assimilated 

Rome 12.5 E 41.8 N AIS-INGV Autoscala 4.1 assimilated 

Roquetes 0.5 E 40.8 N Digisonde  DPS-4D Artist 5 assimilated 

San Vito 17.8 E 40.6 N Digisonde  DPS-4D Artist 5 Used as test data 

Warsaw 21.1 E 52.2 N VISRC2 Autoscala 4.1 assimilated 

 

 

http://www.ursi.org/files/CommissionWebsites/INAG/web-73/confidence_score.pdf
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3.2 Effective index calculation  

In the method we are describing, the model used as background is the IRI model, because it has all the features 

highlighted at point 1. of section 2.3. 

IRI is an empirical climatological standard model of the ionosphere. It is an international project sponsored by 

the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI). The 

major data sources are the worldwide network of ionosondes, the powerful incoherent scatter radars, some 

topside sounders, and in situ instruments flown on many satellites and rockets. The IRI model, for a given 

location, time and date, provides monthly averages of several ionospheric hourly quantities, on the base of 

solar, magnetic and ionospheric indices.  

IRI includes a storm-model option (Fuller-Rowell et al. 1998; Araujo-Pradere et al. 2002), which simulates the 

ionospheric plasma behavior under magnetically disturbed periods, operating on foF2, hmF2 and foE and on 

the topside part of the vertical electron density profile. The storm-model option for foF2 is based on a large 

number of storms (in the time period 1980-l990) and the ratio between disturbed and quiet foF2 values was 

modelled by means of a proxy calculated as the integral of the magnetic index 𝑎p over the previous 33 hours, 

with a weighting function deduced from a regression analysis based on a physically based modeling. The 

storm-model is able to capture the main feature of the ionospheric storm response, which is the deep ion 

depletion (“negative phase”) that typically develops in the summer hemisphere during the driven phase of a 

storm and persists well into the recovery phase (Bilitza 2003). 

Araujo-Pradere et al. (2003) evaluated the IRI storm option by considering all storms occurred in 2000 and 

2001 (14 in total) and by analyzing the response seen at over 30 ionosonde stations. They found that during 

storm periods the IRI storm-option gives a 30% improvement with respect to the IRI model, and it is able to 

capture more than 50% of the variability due to the storm, but results are greatly dependent on the season, 

being good in summer and equinoctial months, but of lesser quality in winter. 

 

IRI modeling of F2 layer characteristics, foF2 and M(3000)F2, relies on CCIR and URSI long-term global 

maps; users can choose between these two options, or give their own values of foF2 or M(3000)F2. CCIR maps 

are based on a procedure of numerical mapping pioneered by Jones and Gallet (1962) and Jones et al. (1969). 

URSI maps make use of the same CCIR mapping procedure, including a number of synthesized data points 

based on the thermospheric wind theory, as explained by Rush et al. (1989). URSI maps try to overcome the 

limitations of CCIR maps due to the geographical coverage of assimilated measurements, mainly located in 

the Northern hemisphere and without coverage of ocean areas. 

In either mapping procedures diurnal/spherical harmonic expansions are used to represent the diurnal cycle of 

foF2 and M(3000)F2, and the corresponding diurnal variation is based on a Fourier analysis of the monthly 

median diurnal variation as observed by a worldwide network of ionosondes used as database (for solar 

minimum years 1954, 1955 and 1964, and solar maximum years 1956-1958). The general form of the 

numerical map function Ω(𝜆, 𝜃, 𝑇) (Ω is either foF2 or M(3000)F2, 𝜆 ∈ [−90,90] is the geographic latitude, 

𝜃 ∈ [0,360) is the East geographic longitude, and 𝑇 ∈ [−180,180) is the Universal Time (UT) expressed as 

an angle) is (ITU-R 2009): 

 

Ω(𝜆, 𝜃, 𝑇) = 𝑎0(𝜆, 𝜃) +∑[𝑎𝑗(𝜆, 𝜃) cos 𝑗𝑇 + 𝑏𝑗(𝜆, 𝜃) sin 𝑗𝑇]

𝐻

𝑗=1

, 

 

 

(1) 

where 𝐻 is the maximum number of harmonics used to represent the diurnal variation (𝐻 = 6 for foF2; 𝐻 =

4 for M(3000)F2). 

The diurnal expansion Fourier coefficients 𝑎0, 𝑎𝑗 , 𝑏𝑗 vary with geographic coordinates and this variation is 

captured in the spatial spherical expansion over the geographic latitude and longitude:  
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𝑎0(𝜆, 𝜃) = ∑𝑈0,𝑘𝐺𝑘(𝜆, 𝜃),

𝐾

𝑘=0

          

𝑎𝑗(𝜆, 𝜃) = ∑𝑈2𝑗,𝑘𝐺𝑘(𝜆, 𝜃)

𝐾

𝑘=0

         𝑗 = 1,2, … ,𝐻, 

𝑏𝑗(𝜆, 𝜃) = ∑𝑈2𝑗−1,𝑘𝐺𝑘(𝜆, 𝜃)

𝐾

𝑘=0

         𝑗 = 1,2,… ,𝐻, 

 

 

(2a) 

 

 

(2b) 

 

 

(2c) 

where 𝐾 is the highest harmonic order used in the spherical expansion that determines the number of 

coefficients used in longitude (𝐾 = 9 for both foF2 and M(3000)F2). 

The 𝐺𝑘(𝜆, 𝜃) terms contain the 2-D “geographical” expansion basis functions, optimized for representation of 

foF2 by using power sine functions of modip, power cosine of latitude, and longitudinal harmonics (for more 

details see ITU-R (2009)). The maximum order K=76 is selected to resolve the smallest spatial scale size of 

the ionospheric climate variability, which detail will be at times insufficient for representing the real-time 

ionosphere. Increasing the order K for nowcasting applications as to provide a finer detail of the spatial 

resolution, however, is limited by several practical considerations, including instrument data noise. As Bradley 

et al. (2009) argued, no advantage would have been gained by considering a higher order leading to a smaller 

scale size, because the order of the expansion is strictly linked to the spatial instrument coverage. CCIR maps 

are recommended for mainly land regions, whilst URSI maps when the mapping area includes large ocean 

areas. In our study CCIR maps are considered. 

Thus IRI needs 13 diurnal × 76 spherical = 988 coefficients to globally represent the foF2 (9 diurnal × 49 

spherical = 441 coefficients for M(3000)F2) diurnal variation of a definite month. These arguments are 

repeated for every month and for two selected levels of solar activity (𝐼𝐺12 = 0 and 𝐼𝐺12 = 100 for foF2, 

𝑅12 = 0 and 𝑅12 = 100 for M(3000)F2); thus, the total number of stored coefficients that are used by the IRI 

model to obtain foF2 for any given time and location is 988×12 months × 2 levels of solar activity =  23,712 

coefficients (441×12 months × 2 levels of solar activity = 10,584 coefficients for M(3000)F2). 

The IRI model assumes that these coefficients are linearly correlated with solar activity proxies (direct 

proportionality between 𝐼𝐺12 and foF2, reverse proportionality between 𝑅12 and M(3000)F2), until a threshold 

value set to 150 (for both indices) beyond which both foF2 and M(3000)F2 are kept constants, to  account for 

the well-known ionospheric saturation effect. Thus, these coefficients can be described by formulas (Komjathy 

and Bradley 1996): 

 

 
𝑈2𝑗,𝑘 = [𝑈2𝑗,𝑘

low (1 −
𝐼𝐺12
100

) + 𝑈2𝑗,𝑘
high 𝐼𝐺12

100
], 

 

𝑈2𝑗−1,𝑘 = [𝑈2𝑗−1,𝑘
low (1 −

𝐼𝐺12
100

) + 𝑈2𝑗−1,𝑘
high 𝐼𝐺12

100
], 

 

 

 

(3a) 

 

(3b) 

for foF2, and 

 

 
𝑈2𝑗,𝑘 = [𝑈2𝑗,𝑘

low (1 −
𝑅12
100

) + 𝑈2𝑗,𝑘
high 𝑅12

100
], 

 

𝑈2𝑗−1,𝑘 = [𝑈2𝑗−1,𝑘
low (1 −

𝑅12
100

) + 𝑈2𝑗−1,𝑘
high 𝑅12

100
], 

 

 

 

(4a) 

 

(4b) 
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for M(3000)F2, with the specification that 𝑈2𝑗,𝑘(𝐼𝐺12 or 𝑅12 > 150) = 𝑈2𝑗,𝑘(𝐼𝐺12 or 𝑅12 = 150) and 

𝑈2𝑗−1,𝑘(𝐼𝐺12 or 𝑅12 > 150) = 𝑈2𝑗−1,𝑘(𝐼𝐺12 or 𝑅12 = 150). 

In formulas (3)-(4) 𝑈2𝑗,𝑘
low and 𝑈2𝑗,𝑘

high
 (similarly for 2j-1 terms) are the coefficient values calculated for 𝐼𝐺12 or 

𝑅12 equal to 0 (low solar activity) and  equal to 100 (high solar activity), respectively.  

 

IRI calculates hmF2 through the empirical formula (Bilitza et al. 1979): 

 

 
ℎ𝑚F2(km) =

1490

(𝑀(3000)𝐹2 + 𝐷𝑀) − 176
, 

 

 

(5a) 

where the correction factor DM is 

 

    𝐷𝑀 =
𝑓1𝑓2

(
𝑓𝑜F2

𝑓𝑜E
−𝑓3)+𝑓4

,       (5b) 

 

and the solar activity functions are 

 

 𝑓1 = 0.00232𝑅12 + 0.222, 
 

𝑓2 = 1 −
𝑅12

150𝑒
−(
𝜓
40
)
2 , 

 

(5c) 

 

 

(5d) 

 
𝑓3 = 1.2 − 0.0116𝑒

𝑅12
41.84, 

 

 

 

(5e) 

 
𝑓4 = 0.096

𝑅12 − 25

150
, 

 

 

(5f) 

where 𝜓 is the magnetic dip latitude. 

hmF2 is then explicitly dependent on 𝑅12, through 𝑓1, 𝑓2, 𝑓3 and 𝑓4, but, at the same time, is also implicitly 

dependent on 𝑅12 through M(3000)F2 (as mentioned earlier) and foE (as it will be shown). The presence of 

foF2 in the 𝐷𝑀 factor makes hmF2 implicitly dependent also on 𝐼𝐺12. 

 

In the CCIR model used by IRI, foE is given by (Bilitza 1990): 

 

 𝑓𝑜E4 = 𝐴 ⋅ 𝐵 ⋅ 𝐶 ⋅ 𝐷. 
 

(6) 

The four factors 𝐴, 𝐵, 𝐶, 𝐷 in Eq. (6) depend on the 12-months running mean (𝐶𝑂𝑉12 ) of the F10.7 solar flux. 

IRI estimates 𝐶𝑂𝑉12 from 𝑅12 values through the formula: 

 

 𝐶𝑂𝑉12 = 63.75 + 𝑅12(0.728 + 𝑅12 ⋅ 0.00089). 
 

(7) 

Thus, foE values depend on 𝑅12 values. 

 

IRI gives the user the opportunity to input a value for both 𝑅12 and 𝐼𝐺12. In this way, using real-time updated 

𝐼𝐺12  and 𝑅12 values, improved foF2 and M(3000)F2 values can be obtained. This is because the IRI model 

for the current time uses forecasted values of 𝐼𝐺12  and 𝑅12. Moreover, 𝐼𝐺12  and 𝑅12, being 12-months running 

means, are strongly smoothed proxies that are good to model long-term variations of the ionosphere but cannot 

catch short-term phenomena, like those caused by geomagnetic storms. IRI, of course, is a climatological 
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model, so we do not expect that phenomena occurring at shorter time scale, like for instance those 

characterizing geomagnetic disturbed conditions, are reliably predicted by the model. At the same time, 

however, because the ionospheric characteristics associated to the two anchor points of the IRI vertical electron 

density profile (the E and F2 peaks) are modelled through the use of these two indices, we would expect that 

feeding the model with updated 𝐼𝐺12  and 𝑅12 indices could make the model sensitive also to the short-term 

variability, which is now included in the indices. In addition, 𝐼𝐺12  and 𝑅12 indices are global, thus they do not 

catch geographical variations that are commonly observed in several ionospheric phenomena, leaving the 

description of these to the spherical harmonic analysis or to other functions, as it was previously seen.   

 

In our model, values of foF2 (for 𝐼𝐺12 = 0 and 100) and M(3000)F2 (for 𝑅12 = 0 and 100) are calculated by 

IRI at each of the assimilated ionospheric stations listed in Table 1. The two values are used to linearly 

interpolate foF2 vs 𝐼𝐺12 and M(3000)F2 vs 𝑅12 over a large range of values. An example is shown in the upper 

panel of Fig.1 for the Athens station on March 9 2015 at 17 UT, for 𝐼𝐺12. 

 
Fig. 1 Linear fit between foF2 and 𝐼𝐺12 values (upper panel). Two red points represent the IRI simulated foF2 

values for 𝐼𝐺12 = 0 and 𝐼𝐺12 = 100. Plot of the square difference between observed and modeled values of 

foF2 vs 𝐼𝐺12 (lower panel). Red point is the calculated minimum which corresponds to the effective values of 

𝐼𝐺12. 
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The square difference between observed and modeled values of foF2 and M(3000)F2 is calculated, for every 

station, according to following formulas: 

 

 Δ𝐼𝐺12 = (𝑓𝑜F2obs − 𝑓𝑜F2IRI(𝐼𝐺12))
2, 

 

Δ𝑅12 = (𝑀(3000)F2obs −𝑀(3000)F2IRI(𝑅12))
2
; 

 

(8a) 

 

(8b) 

𝑓𝑜F2obs and 𝑀(3000)F2obs are the observed values, and 𝑓𝑜F2IRI(𝐼𝐺12) and 𝑀(3000)F2IRI(𝑅12) are the 

corresponding modeled values, represented by the linear fits shown in the upper panel of Fig.1. An example is 

shown in the lower panel of Fig.1. The square difference functions expressed by (8) are parabolas for which it 

is simple to find the minimum corresponding to the effective values of 𝐼𝐺12 and 𝑅12. 

Since values of 𝐼𝐺12eff and 𝑅12eff are calculated for each assimilated station, an interpolation of these through 

the chosen grid is needed. To accomplish this task, the universal Kriging method is considered to obtain maps 

of 𝐼𝐺12eff and 𝑅12eff (point 4. of Section 2.3). 

3.3 Kriging interpolation method 

The Kriging method is an advanced geostatistical procedure that, used as an interpolator, generates an 

estimated surface from a scattered set of punctual geophysical measurements (Matheron 1963; Oliver and 

Webster 1990; Kitanidis 1997).  

It belongs to statistical BLUE (Best Linear Unbiasedness Estimation) methods, for which the first two 

statistical moments of the random field, which are the mean function (first moment) and the covariance 

function (second moment), are used to select the best estimation method. Thus, the model of the spatial 

structure consists of mathematical expressions chosen to describe the mean function and the covariance 

function. 

Given 𝑛 measurements of the variable 𝑧 at locations with spatial coordinates 𝒙1,  𝒙2,  .  .  .  , 𝒙𝑛, Kriging 

estimates the value of 𝑧 at point 𝒙0, making a linear combination of measurements (Oliver and Webster 1990): 

 
�̂�0 =∑𝜆𝑖𝑧(𝒙𝑖)

𝑛

𝑖=1

. 
 

(9) 

   

Thus, the problem is reduced to select a set of coefficients 𝜆1 ,  .  .  .  ,  𝜆𝑛  that match the conditions of 

unbiasedness (𝐸[�̂�0 – 𝑧(𝒙0)] = 0, the expected value of the difference between the Kriging estimate �̂�0 and 

the actual value 𝑧(𝒙0), i.e. the estimation error, must be zero) and of minimum variance (the mean squared 

estimation error 𝐸[(�̂�0 – 𝑧(𝒙0))
2 ] must be minimum). 

Eq. (9) highlights how Kriging is a global interpolation method. Global interpolation methods use a weighted 

sum of all data to compute output values, thus the information contained in each measured point is shared with 

all other points, regardless the distance between two points, taking into account that the spatial correlation 

between points is embedded in the measured data itself.  

3.3.1 The experimental variogram 

The building of the experimental variogram (or semivariogram) is the core of the Kriging method, because it 

allows to investigate the spatial correlation between measurements, and is the first step of the structural analysis 

(McBratney and Webster 1986, Kitanidis 1997). Consider we have n measurements 𝑧(𝒙1), 𝑧(𝒙2),..., 𝑧(𝒙𝑛), 
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and plot the squared difference  
1

2
[𝑧(𝒙𝑖) − 𝑧(𝒙𝑖

′)]2 (which is the semivariance 𝛾(ℎ𝑖 ), where index i refers to 

each pair of measurements 𝑧(𝒙𝑖) and 𝑧(𝒙𝑖
′)) against the distance ℎ𝑖 = |𝒙𝑖 − 𝒙𝑖

′|  for all measurement pairs 

(where | | means the length of a vector). Hence, for n measurements there are 
𝑛(𝑛−1)

2
 pairs that form a scatter 

plot which is the experimental variogram.  

Hence, considering the summation over the index i, the semivariance is defined as (Oliver and Webster 1990):  

                                                        𝛾(ℎ ) =
1

2𝑛
∑ [𝑧(𝒙𝑖) − 𝑧(𝒙𝑖

′)]2𝑛
𝑖=1 .                                                (10)                                               

  

It can be demonstrated that the semivariance is equal to minus the covariance function plus a constant, where 

the constant is the variance (Kitanidis 1997): 

 𝛾(ℎ) = −𝑅(ℎ) + 𝑅(0) = −𝑅(ℎ) + 𝜎2. (11) 

The experimental variogram contains information about the scale of fluctuations of the variable: the behavior 

of the experimental variogram near the origin indicates variability at small scale while the behavior of the 

experimental variogram at large distances is indicative of the large-scale behavior. 

3.3.2 Variogram models  

The second step of the structural analysis is to fit a mathematical expression, called variogram model, to the 

points of the experimental variogram. Variogram models are linear combinations of simple mathematical 

functions with the restriction that these should be positive definite.  

Considering their large-scale behavior, variogram models can be grouped in two distinct families: stationary 

and non-stationary models. Stationary models manifest small-scale fluctuations, compared to the size of the 

domain, around some well-defined mean value; the corresponding experimental variogram should stabilize 

around a value, called sill, and the length scale at which the sill is obtained, called range or correlation length, 

describes the scale at which two measurements of the variable become practically uncorrelated. Variograms 

of non-stationary models increase even at distances comparable to the maximum separation of interest. 

The behavior of the variogram for short distances determines whether the spatial function appears continuous 

and smooth. Three different small-scale behaviors are identifiable: discontinous, parabolic, and linear. A 

variogram is discontinuous if the average sampling interval (i.e., the distance between measurement locations) 

is several times larger than the scale of fluctuations of the variable; in this case, two adjacent values are about 

as different as two distant values. At the scale of the sampling interval, the variable 𝑧 is discontinuous because 

it changes abruptly from one sampling point to the next. In this case, the experimental variogram is 

approximately a straight horizontal line, and since it doesn’t converge to zero as the separation decreases, there 

is a discontinuity of the experimental variogram at the origin, or a nugget effect (a condition called 

microvariability). Instead, if all the variability is at a scale much larger than that of the sampling interval, 

changes of values are so gradual that both z and its slope vary continuously. In this case, the experimental 

variogram has a parabolic behavior near the origin, that is, it is proportional to ℎ2 for small values of ℎ. An 

intermediate case is when the variable presents most of its variability at a scale larger than the average sampling 

interval, but also some variability at a scale comparable to that of the measurement spacing; in this case, 

changes of 𝑧 between adjacent sampling points are gradual so that 𝑧 is practically continuous at the scale of 

measurements, and the experimental variogram has approximately a linear behavior near the origin, that is, the 

variogram is proportional to h for small values of h. 

Five different variogram models are used in this work (Kitanidis 1997): gaussian, spherical and exponential, 

that are stationary models; power and linear, that are non-stationary models. 
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 Gaussian: 

 
𝛾(ℎ) = 𝑐0 + (𝜎

2 − 𝑐0) (1 − 𝑒
−(
7ℎ
4𝛼
)
2

), 

 

 

(12) 

where 𝑐0is a constant, called nugget value, 𝜎2 is the sill and 𝛼 is the range. The gaussian model has a 

parabolic behavior at the origin. 

 Spherical: 

 

𝛾(ℎ) = {
𝑐0 + (𝜎

2 − 𝑐0) (
3

2

ℎ

𝛼
+
1

2
(
ℎ

𝛼
)
3

)         𝑓𝑜𝑟   0 ≤ ℎ ≤ 𝛼,

𝜎2                                                        𝑓𝑜𝑟   ℎ > 𝛼.

 

 

 

(13) 

 

The spherical model exhibits a linear behavior at the origin. 

 Exponential: 

 
𝛾(ℎ) = 𝑐0 + (𝜎

2 − 𝑐0) (1 − 𝑒
−(
3ℎ
𝛼
)
). 

 

 

(14) 

The exponential model exhibits a linear behavior at the origin. 

 Power: 

 𝛾(ℎ) = 𝑐0 + 𝜃ℎ
𝑠, 

 

(15) 

where 𝜃 >  0 is the scale and 0 <  𝑠 <  2 is the exponent. 

 Linear: 

 𝛾(ℎ) = 𝑐0 + 𝜃ℎ, (16) 

 

where 𝜃 >  0 is the slope. 

Examples of variogram models defined by formulas (12)-(16) are shown in Fig. 2. All variograms of Fig. 2 

have the same nugget value (this is testified by the same intercept of all curves), and stationary models are 

considered with the same sill and range values. Figure 2 shows clearly the different large-scale behavior 

between non-stationary and stationary models. It is worth noting that stationary models present a different 

small-scale behavior, also considering same values of both range and sill. In particular, the gaussian model is 

the smoothest one and reaches the sill value well beyond the range value; instead, exponential and spherical 

models are steeper near the origin and reach the sill value near the range value.  
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Fig. 2 Examples of variogram models: Gaussian (blue), Exponential (green), Spherical (red), Linear (cyan) 

and Power (magenta). Used parameters are shown at the top of the figure. The horizontal axis represents the 

independent variable ℎ and the vertical axis the γ value used in formulas (12)-(16). 

3.3.3 The Universal Kriging 

The geostatistics method known as universal Kriging (or Kriging with a drift) (Olea 1974; Kitanidis 1997) is 

based on the assumption that the measured geophysical field displays a large-scale spatial variability that can 

be represented as a deterministic function, and a small-scale spatial variability, the stochastic part, involving 

spatial correlations inferable from the variogram. Then: 

 𝑧(𝒙) = 𝑚(𝒙) + 𝜖(𝒙), 

 

(17) 

where 𝑚(𝒙), called the drift, represents the deterministic part of  𝑧(𝒙), while the function 𝜖(𝒙) represents the 

stochastic part of 𝑧(𝒙) with zero mean (𝐸[𝜖(𝒙)] = 0) and a definite correlation structure described by its 

covariance R (linked to the semivariance by Eq. (11)). The ordinary Kriging method is based on assumption 

that 𝑚 is a constant without any spatial characterization, and the spatial description is left only to the stochastic 

part 𝜖(𝒙). The universal Kriging method, however, requires an a priori knowledge of the geophysical quantity 

to be described, which is used in the characterization of the deterministic part. For example, foF2, on average, 

is characterized by spatial gradients that are bigger at mid-low latitudes than at mid-high latitudes, and the 

same spatial gradient features will be embedded in the 𝐼𝐺12 activity index. Using the universal Kriging method, 

this large-scale deterministic behavior can be included in the drift part, which allows to characterize also 

regions distant from assimilated points, without the need to employ non-stationary variogram models. 

The drift part can be represented by (Kitanidis 1997): 

 

 

𝑚(𝒙) = ∑𝑓𝑘(𝒙)𝛽𝑘

𝑝

𝑘=1

, 
 

(18) 

 

where 𝑓1 ( 𝒙 ),  .  .  .  ,  𝑓𝑝(𝒙) are known functions of spatial coordinates 𝒙 and are called base functions, and 

𝛽1,  .  .  .  ,  𝛽𝑝 are unknown deterministic coefficients referred to as drift coefficients. In our case, 𝑚(𝑥, 𝑦) =

𝐴 + 𝐵𝑥 + 𝐶𝑦, namely, the deterministic part is a two-dimensional regional linear mean in the 𝑥 (longitude) 

and 𝑦 (latitude) variables.  

Hence, the spatial function is given by: 

 

𝑧(𝒙) = ∑𝑓𝑘(𝒙)𝛽𝑘

𝑝

𝑘=1

+ 𝜖(𝒙). 
 

(19) 

 

Thus, the goal is to use Eq. (9) to derive an estimate of 𝑧 at 𝒙0, from measurements 𝑧(𝒙1), . . . ,  𝑧(𝒙𝑛), with the 

assumption that Eq. (19) follows the unbiasedness and minimum variance conditions. 

The unbiasedness condition, using Eq. (9), may be written:  
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𝐸[�̂�(𝒙0) − 𝑧(𝒙0)] = 𝐸 [∑𝜆𝑖𝑧(𝒙𝒊) − 𝑧(𝒙𝟎)

𝑛

𝑖=1

] = 0, 
 

(20) 

 

making use of Eqs (18)-(19) we get (remembering that 𝐸[𝜖(𝒙)] = 0) (Kitanidis 1997): 

 

∑(∑𝜆𝑖𝑓𝑘(𝒙𝒊) − 𝑓𝑘(𝒙𝟎)

𝑛

𝑖=1

)𝛽𝑘 = 0

𝑝

𝑘=1

. 
 

(21) 

 

For this condition to hold for any values of 𝛽1, … , 𝛽𝑝 it is required that: 

 
∑𝜆𝑖𝑓𝑘(𝒙𝑖) = 𝑓𝑘(𝒙0)

𝑛

𝑖=1

         𝑘 = 1,…… , 𝑝. 
 

(22) 

 

This set of p constraints must be satisfied by the 𝜆 coefficients, and each unbiasedness condition has the effect 

of eliminating an unknown drift coefficient.  

The variance of the estimation error, making use of the unbiasedness condition, involves only the stochastic 

part 𝜖(𝒙), which we assume described by its covariance 𝑅(𝒙, 𝒙′), leading to (Kitanidis 1997): 

 

𝐸 [(�̂�(𝒙0) − 𝑧(𝒙0))
2
] = 𝐸 [(∑𝜆𝑖𝜖(𝒙𝒊) − 𝜖(𝒙𝟎)

𝑛

𝑖=1

)

2

]

=∑∑𝜆𝑖𝜆𝑗𝑅(𝒙𝒊, 𝒙𝒋) − 2∑𝜆𝑖𝑅(𝒙𝒊, 𝒙𝟎) + 𝑅(𝒙𝟎, 𝒙𝟎).

𝑛

𝑖=1

𝑛

𝑗=1

𝑛

𝑖=1

 

 

 

 

(23) 

 

Thus, coefficients 𝜆1, … ,  𝜆𝑛 will be estimated by minimizing the expression in Eq. (23), which in turn depends 

on the 𝑝 linear constraints of the unbiasedness condition Eq.(22). The minimum variance condition make the 

Kriging method an optimization problem, with assigned constraints, that can be resolved by means of 

Lagrangian multiplier method, which has the general form: 

           𝑚𝑖𝑛 𝑓(𝜆1, … , 𝜆𝑛),                                                                 (24a) 

                                                             𝑔𝑘(𝜆1, … , 𝜆𝑛) = 𝑏𝑘     𝑘 = 1,… , 𝑝.                                                (24b) 

In our case: 

  

𝑓(𝜆1, … , 𝜆𝑛) =∑∑𝜆𝑖𝜆𝑗𝑅(𝒙𝒊, 𝒙𝒋) − 2∑𝜆𝑖𝑅(𝒙𝒊, 𝒙𝟎) + 𝑅(𝒙𝟎, 𝒙𝟎),

𝑛

𝑖=1

𝑛

𝑗=1

𝑛

𝑖=1

 

 

𝑔𝑘(𝜆1, … , 𝜆𝑛) =∑𝜆𝑖𝑓𝑘(𝒙𝑖),

𝑛

𝑖=1

 

 

𝑏𝑘 = 𝑓𝑘(𝒙0). 

 

 

(24c) 

 

 

 

(24d) 

 

 

(24e) 
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The Lagrangian (L) is: 

 𝐿(𝜆1, … , 𝜆𝑛, 𝜈1, … . , 𝜈𝑝)

= 𝑓(𝜆1, … , 𝜆𝑛) + 2𝜈1(𝑔1(𝜆1, … , 𝜆𝑛) − 𝑏1) + ⋯+ 2𝜈𝑝(𝑔𝑝(𝜆1, … , 𝜆𝑛) − 𝑏𝑝), 

 

(24f) 

where 𝜈1, … . , 𝜈𝑝 are parameters called Lagrange multipliers, and number 2 is used only for convenience. 

By taking derivatives of L with respect to 𝜆1, … , 𝜆𝑛 and setting them to zero 

 𝜕𝑓

𝜕𝜆𝑖
+ 2𝜈𝑖

𝜕𝑔𝑖
𝜕𝜆𝑖

+⋯+ 2𝜈𝑝
𝜕𝑔𝑝
𝜕𝜆𝑖

= 0    𝑖 = 1,… , 𝑛, 
(24g) 

we obtain 

 

∑𝑅(𝒙𝒊, 𝒙𝒋)𝜆𝑗 +∑𝑓𝑘

𝑝

𝑘=1

(𝒙𝒊)𝜈𝑘 = 𝑅(𝒙𝒊, 𝒙𝟎)    𝑖 = 1,… , 𝑛

𝑛

𝑗=1

. 
 

(25) 

 

Eqs (22) and (25) form the Kriging system which consists of 𝑛 +  𝑝 linear equations with 𝑛 +  𝑝 unknowns 

which can be easily resolved. 

The Kriging system can be put also in a matrix notation. Let x be the vector of unknowns: 

 

𝒙 =

(

 
 
 

𝜆1
…
𝜆𝑛
𝜈1
…
𝜈𝑝)

 
 
 
, 

 

 

 

 

(26a) 

b the right-hand side vector: 

 
𝒃 = (

𝑅(𝒙𝟏, 𝒙𝟎)…
𝑅(𝒙𝒏, 𝒙𝟎)

), 

 

 

(26b) 

and A the matrix of coefficients: 

 

𝑨 =

(

 

𝑅(𝒙𝟏, 𝒙𝟏) 𝑅(𝒙𝟏, 𝒙𝟐) … 𝑅(𝒙𝟏, 𝒙𝒏) 𝑓1(𝒙𝟏) 𝑓2(𝒙𝟏) … 𝑓𝑝(𝒙𝟏)

𝑅(𝒙𝟐, 𝒙𝟏) 𝑅(𝒙𝟐, 𝒙𝟐) … 𝑅(𝒙𝟐, 𝒙𝒏) 𝑓1(𝒙𝟐) 𝑓2(𝒙𝟐) … 𝑓𝑝(𝒙𝟐)
… … … … … … … …

𝑅(𝒙𝒏, 𝒙𝟏) 𝑅(𝒙𝒏, 𝒙𝟐) … 𝑅(𝒙𝒏, 𝒙𝒏) 𝑓1(𝒙𝒏) 𝑓2(𝒙𝒏) … 𝑓𝑝(𝒙𝒏))

 . 

 

 

(26c) 

 

Hence, the Kriging system can be written as: 

 𝑨𝒙 = 𝒃. 
 

(26d) 

3.4 Comparison of IRI UP and IRTAM methodology 

Both IRI UP and IRTAM belong to a class of assimilative models that use the underlying empirical quiet-time 

IRI representation of the ionosphere to constrain the process of its elastic transformation into a better match 

with observations. The final product of both models, an updated 2D map of foF2, hmF2, B0 (or any other 

characteristic in IRI) follows the ionospheric variability much closer than the background IRI climatological 

model. Such updates can be made every time a new measurement is available, typically at 15 minute cadence, 
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and feature a spatial super-resolution capability that modern ionosonde networks can now afford in Europe 

and the world at large. The underlying IRI representation ensures that, when and where measurements are not 

available, the assimilative model keeps its updates compatible with the empirical knowledge of the system: 

models gracefully retreat to the quiet-time ionosphere outside the sensor coverage areas. 

Both models preserve the spatial/diurnal expansion basis of the IRI formalism and manipulate other model 

constituents into agreement with available measurements. Manipulation techniques, however, are significantly 

different for IRI UP and IRTAM. While IRI UP adjusts, at local points, the “solar activity” driver of the IRI 

model to compensate observed deviations between modelled and measured values, IRTAM uses a 24-hour 

window of deviations to adjust original coefficients of the diurnal/spatial IRI expansion. The models use 

different concepts to fill gaps caused by the limited availability of measurements: IRI UP interpolates missing 

values of the effective activity index using an optimally selected variogram, and IRTAM builds interpolated 

maps of deviations themselves, individually for different diurnal harmonics, assuming that slower changing 

“eigen” modes of the diurnal ionospheric dynamics are applicable at larger distances away from sensor sites.  

Different strategies of protecting the assimilation from the measurement noise caused by occasional ionogram 

autoscaling mistakes are adopted by two models. IRTAM uses a low-pass temporal filter as a part of its diurnal 

harmonics analysis to smooth out data jitter, outliers, and low-confidence values; IRI UP discards 

computations that result in unreasonable 𝐼𝐺12eff and 𝑅12eff maps. Further investigation is warranted to study 

the intriguing capability of both models to predict, spatially and temporally, the ionospheric variability during 

periods of increased geomagnetic activity, as well as their capability to withstand input data noise for real-time 

applications. 

4 Results and discussion 

4.1 Variogram statistics 

For every hour of the studied period (9 March 2015 0 UT - 25 March 2015 23 UT), foF2 and M(3000)F2 values 

are assimilated from stations listed in Table 1 to calculate punctual 𝐼𝐺12eff and 𝑅12eff values. Then, the 

Universal Kriging method is used to interpolate these values over the chosen grid (15°W÷45°E in longitude, 

30°N÷60°N in latitude, with a 0.1°x0.1° resolution) using any of the five variogram models previously 

described, in order to evaluate which of these gives the best results against foF2 and M(3000)F2 values 

recorded at the test stations. An example of 𝐼𝐺12eff and 𝑅12eff maps are shown in Fig. 3. 𝐼𝐺12eff and 𝑅12eff 

values are then extracted from these maps for Fairford and San Vito grid-points and given as input to the IRI 

model, obtaining updated foF2 and M(3000)F2 values (and so hmF2 and foE updated values). These updated 

values are then compared with those measured at the test stations through the following statistical quantities 

(Root Mean Square Error (RMSE), Normalized Root Mean Square Error (NRMSE), Pearson correlation 

coefficient 𝜌, Mean delta, Standard Deviation delta): 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑋calculated,𝑖 − 𝑋ionosonde,𝑖)

2𝑁
𝑖=1

𝑁
, 

 

 

 

         (27) 

where 𝑋 stands for foF2 or M(3000)F2, the subscript calculated refers to updated values while the subscript 

ionosonde refers to values recorded by the ionosonde (the index i runs on the N hourly values of the time 

series); 

 
𝑁𝑅𝑀𝑆𝐸 =

𝑅𝑀𝑆𝐸(𝑋calculated, 𝑋ionosonde)

𝑋ionosonde̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
⋅ 100, 

 

 

         (28) 
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where 𝑋ionosonde̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the arithmetic mean over time of 𝑋ionosonde; 

 
𝜌 =

𝑐𝑜𝑣(𝑋calculated, 𝑋ionosonde)

𝜎𝑋calculated𝜎𝑋ionosonde 
∈ [−1,1], 

 

 

 

         (29) 

where 𝑐𝑜𝑣 is the covariance and 𝜎 the standard deviation; 

 
𝑀𝑒𝑎𝑛 𝑑𝑒𝑙𝑡𝑎 =

∑ (𝑋calculated,𝑖−𝑋ionosonde,𝑖)
𝑁
𝑖=1

𝑁
, 

 

 

        (30) 

 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑  𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛  𝑑𝑒𝑙𝑡𝑎 =

√∑ [(𝑋calculated,𝑖−𝑋ionosonde,𝑖)−𝑀𝑒𝑎𝑛 𝑑𝑒𝑙𝑡𝑎 (𝑋calculated−𝑋ionosonde)]
2𝑁

𝑖=1

𝑁
. 

 

 

        (31) 

In addition, also the following percentage of discarded points is calculated: 

 
% 𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑 =

# 𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑝𝑠 − # good 𝑚𝑎𝑝𝑠

# 𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑝𝑠
, 

 

 

  (32) 

where # good 𝑚𝑎𝑝𝑠 is the cumulative number of 𝐼𝐺12eff or 𝑅12eff maps which have passed some tests and 

# 𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑝𝑠 is the total potential number of maps. Thus, % 𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑 gives the percentage of maps not 

produced by the method, since the number of assimilated stations was lower than four, plus those produced by 

the method but the use of which might lead to errors. For instance, there are cases for which semivariance 

values represented in the experimental variogram are so scattered and randomly distributed that cannot be 

fitted by any of the five variogram model functions with an acceptable degree of confidence, or cases for which 

the fitting function is an approximately straight horizontal line independently of the used model. These 

variograms lead to unrealistical 𝐼𝐺12eff and 𝑅12eff maps that should be discarded. A decision was made to 

discard variograms (and consequently the corresponding maps) for which both the fitting procedure failed and 

the exponent s for the power model (Eq. (15)) is less than 0.1, i.e. it tends to a nearly horizontal straight line. 

In Table 2-3 statistical parameters (27)-(32) are calculated for Fairford and San Vito ionospheric stations, for 

all five variogram methods used, for foF2 and M(3000)F2 respectively. In Table 4 the same statistical 

parameters are calculated for hmF2 using the spherical model for 𝐼𝐺12eff and the linear model for 𝑅12eff. 

Table 2 Statistical results, for both test stations, Fairford and San Vito, for foF2 using all five variogram 

models. 

Station Ionospheric 

characteristic 

Variogram 

method 

RMSE  

[MHz] 

NRMSE 

[%]  

Correlation 

Coefficient 

Mean delta  

[MHz] 

Standard 

Deviation 

delta [MHz] 

discarded 

% 

 

F
ai

rf
o

rd
 

   

fo
F

2
 

linear 0.26 3.97 0.99 0.04  0.27  6.37 

power 0.26  3.92  0.99 0.03 0.27  6.37 

gaussian 0.27 4.12  0.99 0.02  0.28  6.37 

spherical 0.26  3.90  0.99 0.02  0.27  6.37 

exponential 0.26  3.93  0.99 0.02  0.27  6.37 

 S
an

 

V
it

o
 

  fo
F

2
 linear 0.38 5.17  0.99 -0.08  0.39  6.37 

power 0.39  5.27  0.99 -0.09  0.40  6.37 
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gaussian 0.37  5.00  0.99 -0.07  0.38  6.37 

spherical 0.37  5.02  0.99 -0.08  0.38  6.37 

exponential 0.37  5.03  0.99 -0.08  0.38  6.37 

Table 3 Same as Table 2, for M(3000)F2. 

Station Ionospheric 

characteristic 

Variogram 

method 

RMSE  

 
NRMSE 

%  

Correlation 

Coefficient 

Mean delta  

 

Standard 

Deviation 

delta  

discarded 

% 

 

F
ai

rf
o

rd
 

  

M
(3

0
0

0
)F

2
 

linear 0.081 2.64  0.92 0.006 0.093  23.77 

power 0.082 2.68  0.93 0.007 0.095 23.77 

gaussian 0.086 2.81  0.92 0.010 0.099  23.77 

spherical 0.084 2.75  0.93 0.012 0.097 23.77 

exponential 0.083 2.72  0.93 0.011 0.095 23.77 

 

S
an

 V
it

o
 

  

M
(3

0
0

0
)F

2
 

linear 0.098 3.18  0.89 0.051 0.102 23.77 

power 0.101 3.28  0.88 0.054 0.104 23.77 

gaussian 0.108 3.48  0.87 0.058 0.110 23.77 

spherical 0.103 3.35  0.88 0.056 0.106 23.77 

exponential 0.102 3.30  0.88 0.054 0.104 23.77 

 

Table 4  Same as Table 2, for hmF2 using the spherical model for 𝐼𝐺12eff and the linear model for 𝑅12eff. 

Station Ionospheric 

characteristic 

Variogram 

method 

RMSE  

[km] 

NRMSE 

%  

Correlation 

Coefficient 

Mean delta  

[km] 

Standard 

Deviation 

delta [km] 

discarded 

% 

 

F
ai

rf
o

rd
 

  

h
m

F
2
 

 

IG12eff = spherical 

 
R12eff = linear 

 

 

11.57  

 

 

3.96  

 

 

0.94 

 

 

-0.44  

 

 

13.78   

 

 

28.68 
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IG12eff = spherical 

 

R12eff = linear 

 
 

13.57  

 
 

4.63  

 
 

0.92 

 
 

-5.34  

 
 

15.44  

 
 

28.68 

 

Table 2-3 highlights that, for foF2 and M(3000)F2, all five methods show little differences. A close inspection 

of results of Table 2-3 leads however to the choice of the spherical model for foF2 and the linear model for 

M(3000)F2 as the best variograms. Thus, using the spherical method to obtain 𝐼𝐺12eff maps, with which we 

get updated foF2 values, and the linear method to obtain 𝑅12eff maps, with which we get updated M(3000)F2 

values, updated hmF2 values are obtained. 𝑅12eff values are used also to update foE values, that are used in the 

hmF2 calculation. As explained in the previous section, each variogram model displays its own small-scale 

and large-scale behavior to which are linked some mathematical implications, which imply the choice of the 

proper experimental variogram fitting procedure. However, a thorough knowledge of the geophysical 

quantities that have to be interpolated can help in the variogram model choice. For example, the electron 

density spatial distribution at mid latitudes shows, on average, spatial gradients with a very large scale, ranging 

from higher values at mid-low latitudes to lower values at mid-high latitudes. With the use of the universal 

Kriging method this large-scale spatial component can be represented by the regional linear mean described 

by the drift coefficients of Eq. (18). This is why for foF2 the spherical variogram model was chosen. For a 

more spatially variable characteristics like M(3000)F2, things become harder. In this case, the choice of the 

best variogram model was guided by the overall statistical analysis of Table 3, without any a priori hypothesis. 

Hence, for M(3000)F2, by choosing the linear variogram model, the stochastic part contributes to the 

description of the M(3000)F2 large-scale spatial behavior. 
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The last column of Table 2-4 shows the percentage of discarded maps and then the percentage of missing 

updated values. This value is small for foF2 (6.37%) and becomes larger for M(3000)F2 (23.77%) and hmF2 

(28.68%). The large value for hmF2 is simply due to the fact that it depends on both foF2 and M(3000)F2 

values (Eq. (5a)). The difference between foF2 and M(3000)F2 percentages is instead more difficult to explain; 

the reason is likely due to the intrinsic different spatial behavior between these two ionospheric characteristics, 

which make the spatial description of M(3000)F2 more challenging. 

4.2 𝑰𝑮𝟏𝟐𝐞𝐟𝐟 and 𝑹𝟏𝟐𝐞𝐟𝐟 indices  

Figure 3 shows an example of 𝐼𝐺12eff and 𝑅12eff maps for the 17 March 2015 (calendar day 76) at 11 UT, 

generated by using the spherical variogram model for 𝐼𝐺12eff and the linear variogram model for 𝑅12eff. Both 

maps show important spatial gradients with very extended magnitude scales which reflect the assimilated 

spatial variability. It is worth noting that in Fig. 3 maxima and minima of 𝐼𝐺12eff and 𝑅12eff are opposite; this 

is due to the fact that for that moment the highest values of foF2 and M(3000)F2 are recorded at Moscow and 

Warsaw, and the dependence between foF2 and IG12 is direct, while that between M(3000)F2 and R12 is inverse. 

Of course, to catch small-scale spatial structures, the ionospheric assimilated stations distribution is 

fundamental for two different reasons: 1) having many stations at very small distance allows to populate the 

part of the experimental variogram near the origin, which is essential to describe the small-scale spatial 

behavior of the represented characteristic; 2) to increase the goodness of the fitted variogram model. The large-

scale spatial distribution of assimilated stations is particularly important to spread over the map the information 

embedded in the variogram (even though this need is highly decreased using the universal Kriging, whatever 

variogram model is used).  

Two maps, as those shown in Fig. 3, are then used as input to the IRI model (point 5. of Section 2.3) to obtain 

updated values of foF2, M(3000)F2, foE and hmF2. Figure 4 shows time series of 𝐼𝐺12eff, 𝐼𝐺12,  𝑅12eff  and 

𝑅12, for Fairford and San Vito, respectively, along with those of geomagnetic indices Dst and AE, which 

highlight the effects of the St. Patrick storm. The figure clearly shows that effective indices 𝐼𝐺12eff and 𝑅12eff 

describe short-temporal variations, both for quiet and disturbed conditions. The power of the method is 

however mainly evident in the main and recovery phases of the storm. In particular, the 𝐼𝐺12eff time series 

correlates well with the Dst index, a sign that foF2 values, from which it derives, are significantly affected by 

storm induced effects; also oscillations in the recovery phase, seen especially in Fairford, tell us that also sub-

storm induced effects are well described by this effective index. The pattern of variability shown by the 𝑅12eff 

time series is more irregular than that of 𝐼𝐺12eff, highlighting however a more definite variability during the 

main phase of the storm. 
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Fig. 3 (top panel) 𝐼𝐺12eff and (bottom panel) 𝑅12eff maps for the 17 March 2015 (day 76) at 11 UT. They were 

generated by using the spherical variogram model for 𝐼𝐺12eff and the linear variogram model for 𝑅12eff. Black 

circles highlight the assimilated stations, red circles highlight stations, included in the stations list, for which 

values were not available. The two white stars mark the position of the two test stations, Fairford in the upper 

left corner and San Vito in the middle lower part of both panels. 
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Fig. 4 From top to bottom, for the studied period, time series of: 𝐼𝐺12 (blue)  and  𝐼𝐺12eff (green), for Fairford 

and San Vito; 𝑅12 (violet)  and 𝑅12eff (orange), for Fairford and San Vito; Dst (red) and  AE (cyan) magnetic 

indices. 

4.3 Comparison with IRI and IRTAM models 

Each method that, through data assimilation processes, has the purpose of improving an underlying model, 

needs to be compared, first of all, with the underlying model itself, and, when possible, with a model 

characterized by the same goal but based on different mathematical techniques. Hence, IRI UP will be 

compared first with IRI, while the second task will be accomplished by considering the IRTAM model 

(http://giro.uml.edu/IRTAM/, publicly available at http://giro.uml.edu/GAMBIT/) developed by Galkin et al. 

(2012). IRTAM assimilates data from the Global Ionospheric Radio Observatory (GIRO) (Reinisch and Galkin 

2011) to update the climatological IRI background in terms of foF2 and hmF2. The IRTAM model is global 

by design, i.e., it gives preference to smooth rather than detailed spatial representation, but, given that in the 

European sector it assimilates data from the same ionospheric stations considered by the method here proposed, 

it seems appropriate to perform a comparison between the two. Notably, the publicly available version of 

IRTAM does not treat Fairford and San Vito as control sites during its assimilation, but instead excludes nearby 

http://giro.uml.edu/IRTAM/
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Chilton (66 km away) and Rome (460 km) locations where older digisondes operate. This means that IRI UP 

is disadvantaged in this comparison as it does not assimilate the control sites and exercises its spatial prediction 

capability.  

4.3.1  foF2 statistical comparison 

Figure 5a, for the quiet period from 9 March 2015 to 16 March 2015, and Fig. 5b, for the disturbed period 

from 17 March 2015 to 25 March 2015, show a comparison between foF2 values autoscaled at Fairford and 

San Vito, and calculated by IRI (with the storm option on), by IRI UP and by IRTAM. Same figures show also 

the time series of the difference between values recorded by the ionosonde and those calculated by models. 

Statistical quantities (27)-(32) related to these time series are shown in Table 5. Figure 6 shows the histograms 

of differences between foF2 values measured at Fairford and San Vito, and calculated by IRI, IRI UP, and 

IRTAM. 
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Fig. 5a Comparison between foF2 values (blue) as measured by the ionosonde, and calculated by IRI (green) 

IRI UP (red), and IRTAM (cyan), for (first panel from the top) Fairford and (third panel from the top) San 

Vito, for the period from 9 March 2015 to 16 March 2015. Corresponding differences between measured and 

modelled values are also reported for Fairford (second panel from the top) and San Vito (fourth panel from the 

top). 
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Fig. 5b Same as Fig. 5a but from 17 March 2015 to 25 March 2015. 
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Fig. 6 Histograms of differences between measured foF2 and calculated by IRI (blue), IRI UP (green), and 

IRTAM (red), for Fairford (left side) and San Vito (right side). In the upper left corner of each histogram the 

distribution mean, the standard deviation, the 5th and 95th percentiles are reported. The number of points in IRI 

and IRTAM histograms are the same (408), while those for IRI UP are slightly lower (382), taking into account 

the discarded maps (whose percentage is highlighted by the rightmost columns of Table 2). 
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Fig. 7 Scatter plots of foF2 values as measured by the ionosonde against ones modelled by IRI (green) , IRI 

UP (red), and IRTAM (cyan), for Fairford (left side) and San Vito (right side). In each plot the linear fit is 

drawn, with the corresponding slope and intercept shown in the upper left corner, where also the value of the 

Pearson’s correlation coefficient is reported. 
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Figures 5a,b show that IRI performs: a) for quiet days, before the storm commencement and in the last part of 

the time window, a general underestimation of measured values at Fairford, while a more wavy behavior holds 

for San Vito; b) a general overestimation of measured values during the recovery phase of the storm; c) an 

important underestimation of measured values during the main phase of the storm (March 17-18). The relevant 

feature is however that the IRI storm option, for this particularly severe event, cannot properly describe the 

ionospheric plasma. On the other hand, IRI UP and IRTAM show, as expected, a better agreement with 

measured foF2 values. Specifically, the IRTAM model, although it is very efficient for quiet days, displays 

some deficiencies in the main phase of the storm. For example, at Fairford on March 18, IRTAM shows a 

general overestimation, while this does not happen for IRI UP. For the same period, IRTAM shows a general 

underestimation at San Vito, like IRI, but in a minor extent. This particular day (March 18), under severely 

disturbed conditions, demonstrates that, during the main phase of the storm, the ionosphere is really spatially 

variable, with very different foF2 values at Fairford and San Vito. This spatial variability is challenging for 

every model except IRI UP, whose behavior is good for both quiet and, more importantly, for disturbed 

conditions. This means that the spatial description of effective indices, made by the application of the universal 

Kriging spatial interpolation method, turns out to be very powerful for foF2, allowing to catch the different 

effects that the storm has at different latitudes. The latter statement is statistically supported by results shown 

in Table 5. Specifically, histograms shown in Fig. 6 point out that IRI UP performs better than IRI and IRTAM, 

with distributions that are more picked around the zero difference and with smaller dispersion values. Figure 

6 shows that IRTAM has a good accuracy but less precision than IRI UP. The precision of each model can be 

verified visually in scatter plots of Fig. 7, which show that IRI and IRTAM values are more scattered than IRI 

UP ones. In conclusion, Figs. 5-7 and Table 5 tell us that, for foF2, the IRI UP model leads to a net improvement 

with respect to IRI and, to a minor extent, IRTAM. 

4.3.2  hmF2 statistical comparison 

An analogous comparison is made between measured hmF2 values at Fairford and San Vito and calculated by 

IRI, IRI UP, and IRTAM. Statistical quantities (27)-(32) related to these time series are shown in Table 6. 

Figure 8 shows histograms of differences between hmF2 values measured at Fairford and San Vito, and 

calculated by IRI, IRI UP, and IRTAM.  
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Fig. 8 Same as Fig. 6 but for hmF2. The number of points in IRI and IRTAM histograms are the same (408), 

while those for IRI UP are lower (291), taking into account the discarded maps (whose percentage is 

highlighted by the rightmost columns of Table 4). 

Statistical quantities (27)-(32) of Table 6 show that IRI UP and IRTAM both improve the IRI output, but in 

this case values given as output by IRTAM are slightly better than IRI UP ones. These outcomes are supported 

also by statistical distributions of Fig. 8. However, in general, assimilation of measured ionospheric 

characteristics seems to be more effective to update foF2 than hmF2. The reason of this is that hmF2 values, 

as described in Section 3.2, are not directly measured or inferred by the ionogram, but calculated by analytical 

formula. This mathematical passage, unavoidably, lowers the degree of precision of this characteristic. 

Furthermore, hmF2 isn’t directly modeled by means of a single solar/ionospheric index, but it depends on both 

𝐼𝐺12 (through foF2) and 𝑅12 (through M(3000)F2 and foE); thus, errors related to the calculation of these 

indices can propagate and, normally, increase.  
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Table 5 Statistical results of the comparison between measured foF2 and calculated by IRI, IRI UP, and 

IRTAM for both test stations.  

Station Ionospheric 

characteristic 

Comparison RMSE  

[MHz] 

NRMSE 

[%] 

Correlation 

Coefficient 

Mean delta 

[MHz] 

Standard 

Deviation 

Delta [MHz] 

  F
ai

rf
o

rd
 

   

 

fo
F

2
 

Ionosonde vs IRI 0.92  13.81  0.93 -0.35   0.85  

Ionosonde vs IRI UP 0.26  3.90  0.99  0.02   0.27  

Ionosonde vs IRTAM 0.53  8.07  0.97  0.11   0.52  

 

S
an

 V
it

o
 

   

fo
F

2
 

Ionosonde vs IRI  0.95   12.82   0.94  -0.05   0.95  

Ionosonde vs IRI UP  0.37   5.02   0.99  -0.08   0.38  

Ionosonde vs IRTAM  0.56   7.55   0.98  -0.10   0.55  

 

Table 6 Same as Table 5, for hmF2. 

Station Ionospheric 

characteristic 

Comparison RMSE 

[km]  

NRMSE 

[%] 

Correlation 

Coefficient 

Mean delta 

[km] 

Standard 

Deviation 

Delta [km] 

 

F
ai

rf
o

rd
 

   

h
m

F
2
 

Ionosonde vs IRI 22.23  7.61  0.84 2.65 22.07  

Ionosonde vs IRI UP 11.57  3.96  0.94 -0.44  13.78  

Ionosonde vs IRTAM 13.72  4.70  0.94 -2.22  13.54  

 

S
an
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it

o
 

   

h
m

F
2
 

Ionosonde vs IRI 19.69  6.72  0.86 2.67  19.51  

Ionosonde vs IRI UP 13.57  4.63  0.92 -5.34  15.44  

Ionosonde vs IRTAM 14.48  4.94  0.93 1.07  14.44  

 

4.3.3  foF2 and hmF2 example maps 

Figures 9-11 are examples of foF2 and hmF2 maps, for the chosen European grid, generated by IRI with the 

storm option off, IRI with the storm option on, and IRI UP, for three selected moments. Figure 9 represents a 

quiet moment on March 9 2015 (calendar day 68) at 15 UT, Fig. 10 and Fig. 11 disturbed moments on March 

17 2015 (calendar day 76) at 11 UT and on March 18 2015 (calendar day 77) at 12 UT. 

Figure 9 represents an afternoon snapshot of F2-layer characteristics, for quiet conditions. Quiet conditions 

represented by this figure are testified by the fact that IRI and IRI-STORM maps are identical, for both foF2 

and hmF2; those associated to IRI UP show instead slight differences for foF2 and significant differences for 

hmF2. For foF2, IRI UP preserves more or less the same gradient direction shown by IRI but with a sensible 

intensification in magnitude, clear in the upper right and lower left corners; furthermore, a slight increase of 

foF2 values over Rome is evident, which is caused by an assimilation of an foF2 value at the ionospheric 

station of Rome well above the monthly median value. On the contrary, the hmF2 IRI UP map shows an 

important decrease of values, well below monthly median ones, in the eastern part of the map, preserving 

however the gradient direction in the other parts of the map. 
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Fig. 9 Examples of maps for (left side) foF2 and (right side) hmF2, generated by (top) IRI with the storm option 

off, (middle) IRI with the storm option on, and (bottom) IRI UP. They refer to the quiet day of March 9 2015 

(calendar day 68) at 15 UT. 

Figure 10 represents a near-noon snapshot of F2-layer characteristics, for disturbed conditions. Despite being 

a disturbed moment, IRI and IRI-STORM maps are identical, both for foF2 and hmF2 since the storm option 

uses a weighted mean of ap values for the previous 33 hours. Maps of Fig. 10 are calculated for a moment for 

which the storm has started only since a few hours (~6 h), and has not reached its maximum development (Dst 

index achieves its minimum on 17 March at 23 UT). The IRI storm option in the early phase of the storm 

cannot be effective in catching storm effects on the ionosphere. Instead, IRI UP maps turn out to be very 

effective, and their goodness is statistically supported by the analysis described in previous sections. These 

maps, obtained by means of updated effective indices, can properly represent both very fast ionospheric 

changes, from an hour to the next (and also every 15 minutes, it depends on the ionosonde sounding repetition 

rate), and also small spatial changes thanks to the universal Kriging interpolation method. 

  



36 
 

 

Fig. 10 Same as Fig. 9 but for the disturbed day March 17 2015 (calendar day 76) at 11 UT. 

Figure 11 represents a noon snapshot of F2-layer characteristics, for very disturbed conditions. In this case, 

being the storm well developed, IRI and IRI-STORM maps show large differences in magnitude, for both foF2 

and hmF2, even though the gradient direction is similar. IRI UP map for foF2 shows a gradient which is similar 

to that of IRI and IRI-STORM, although it manifests a wavier behavior than the more linear IRI ones. For 

hmF2 differences between IRI and IRI UP are again very important, both in gradient direction and magnitude.  
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Fig. 11 Same as Fig. 9 but for the disturbed day March 18 2015 (calendar day 77) at 12 UT. 

5 Conclusions 

This paper, after reviewing methods using effective indices to reliably represent the ionospheric plasma 

distribution, proposes a method, called IRI UP (International Reference Ionosphere UPdate), to update the IRI 

model, which is mathematically described and statistically evaluated under a severe geomagnetic event, the 

St. Patrick storm occurred in March 2015. IRI UP relies on the assimilation of foF2 and M(3000)F2 data 

routinely recorded by a network of ionosonde stations, to calculate updated effective indices 𝐼𝐺12eff and 𝑅12eff 

at each station of the network; then a universal Kriging method is applied to generate maps of these indices. 

To accomplish this task, five variogram models have been statistically evaluated; the spherical model and the 

linear model turn out to be the best choice for 𝐼𝐺12eff and 𝑅12eff, respectively. Maps of these updated indices 

are then used to update the IRI output in terms of foF2 (directly through 𝐼𝐺12eff) and hmF2 (indirectly through 

M(3000)F2 and foE values, dependent on 𝑅12eff, and foF2 values, dependent on 𝐼𝐺12eff). The IRI UP model 

has been tested by comparing its output with IRI (storm option on) and IRTAM. The statistical analysis show 

that IRI UP for foF2 has the best precision and accuracy. Concerning hmF2, the output of IRI UP is by far 

better than IRI and similar to that of IRTAM. Analysis of statistical distributions and scatter plots pointed out 

that IRI UP also for hmF2 is precise and accurate. Visual analysis of foF2 and hmF2 maps confirms the 

goodness of the IRI UP method, highlighting its ability to catch rapid and small-scale electron density changes 

occurring especially under disturbed conditions, that cannot be seen by IRI. 

The method, even though promising, has been tested by considering only a single storm. Since every 

geomagnetic storm shows very distinctive features from one to another, depending also on the season and on 
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the level of solar activity in which it occurs, a validation based on a larger database covering several 

geophysical conditions is needed and is planned in the future, to bring out any weakness not emerged through 

the analysis here described.  

An analysis based on a larger database is also necessary to further test the five variogram models, because their 

performance might depend on geophysical boundary conditions.  

Moreover, a preliminary quality check of effective index maps has been implemented in this work, based on 

both the ability to perform the experimental variogram fitting procedure and the value of the scale parameter 

of the power variogram model. It is intention of the authors to improve the quality check routine, by considering 

residuals obtained by comparing the experimental variogram values with the fitted variogram model, in order 

to obtain a quality index associated to any map. 

Finally, the authors think that, after an additional phase of testing, the method here described could be proposed 

for a real-time monitor of ionospheric plasma over the European region. It is worth noting that in this work the 

IRI model has been used as climatological background, but any other similar model using as input 

solar/ionospheric indices in their formulation of ionospheric characteristics, like for instance NeQuick, could 

be used as background model. 
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