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Abstract 

The Calabrian Arc is a narrow subduction-rollback system resulting from Africa/Eurasia plate 

convergence. We analysed the structural style of the frontal accretionary wedge through a multi-

scale geophysical approach. Pre-stack depth-migrated crustal-scale seismic profiles unravelled the 

overall geometry of the subduction complex; high-resolution multi-channel seismic and sub-bottom 

CHIRP profiles, together with morpho-structural maps, integrated deep data and constrained 

the fine structure of the frontal accretionary wedge, as well as deformation processes along the 

outer deformation front.  

We identified four main morpho-structural domains in the western lobe of the frontal wedge: 

the proto-deformation area at the transition with the abyssal plain; two regions of gentle and 

tight folding; a hummocky morphology domain with deep depressions and intervening structural 

highs; a highstanding plateau at the landward limit of the salt-bearing accretionary wedge, 

where the detachment cuts through deeper levels down to the basement. Variation of 

structural style and seafloor morphology in these domains are related to a progressively more 

intense deformation towards the inner wedge, while abrupt changes are linked to inherited 

structures in the lower African plate. Our data suggest focusing of intense shallow 

deformation in correspondence of deeply rooted faults and basement highs of the incoming plate.  

Back-arc extension in the Southern Tyrrhenian Sea has recently ceased, producing a 

slowdown of slab rollback and plate-boundary re-organization along trans-tensional 

lithospheric faults segmenting the continental margin. In this complex setting, it is not clear if the 

accretionary wedge is still growing through frontal accretion. Our data suggest that shortening is 

still active at the toe of the wedge, and uplift rates along single folds are in the range of 

0.25-1.5 mm/yr. An unconformity within the Plio-Quaternary sediments suggests a discontinuity 

in sedimentation and tectonic processes, i.e. a slowdown of shortening rate or an increase in 

sedimentation rate, but not a real inactivation of frontal accretion, which still contributes to 

the migration of the outer deformation front towards the foreland. 
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Introduction 

The Calabria Arc (CA) is a narrow and arcuate subduction-rollback system characterized by a 

thickly sedimented lower African plate and an irregular plate boundary reflecting the presence of 

continental blocks, indenters, and different rates of continental collision. The subduction complex is 

the result of the  southeastward  retreat  of  the  Tethyan  slab during the last 35–30 Ma (Rehault et 

alii, 1984; Malinverno and Ryan, 1986; Gueguen  et  al.,  1998;  Jolivet  and  Faccenna,  2000;  

Faccenna  et  al., 2001a, 2004; Rosenbaum and Lister, 2004), back-arc extension in the Tyrrhenian 

Sea since ~10 Ma (Malinverno and Ryan, 1986; Faccenna et alii, 2001b) and the formation of the 

Aeolian island arc. It shows a composite structure reflecting interaction of crustal blocks along an 

irregular plate boundary and the interference between different tectonic domains:  (i) the Tyrrhenian 

back arc basin and the volcanic arc to the North; (ii) two buoyant continental lithospheric blocks, 

i.e. the Malta-Iblean plateau to the West and Apulia platform to the East, bounding laterally the

subduction system; (iii) the forearc region dominated by underplating and offscraping processes and 

crustal scale margin segmentation; (iv) the foreland region to the South-East marked by the 

presence of topographic highs and varying structure of the incoming plate; v) the Hellenic 

subduction system to the SE. 

In the forearc region, a 300 km wide accretionary wedge (Finetti et alii, 2005; Cernobori et 

alii, 1996; Doglioni et alii, 1999a; Minelli and Faccenna 2010; Polonia et alii, 2011; Gallais et alii, 

2012) records recentmost convergence processes and shows very fast rates of outward growth since 

Messinian times (Polonia et alii, 2011). The accretionary complex is segmented both along and 

across strike, and this has been related to various tectonic processes, and different rates of plate 

coupling on the subduction interface. Moreover, transfer tectonics along major NW-SE lithospheric 

features have been described as the shallow expression of slab tearing and plate boundary re-

organization during Pleistocene (Polonia et alii, 2016a). The transition between the CA accretionary 

complex and the African foreland occurs at the toe of the frontal wedge, where an abyssal plain is 

still present (Fig. 1). The Ionian basin is one of the Eastern Mediterranean domains with “Tethyan 
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affinity”, together with the Sirte and Herodotus deep basins, and it marks the western boundary of 

the Hellenic subduction system (Fig. 1).  

In this paper, we combine high penetration multichannel seismic reflection profiles, gravity 

data and multibeam maps collected in the frontal part of the CA subduction system to describe: a) 

shallow deformation of the frontal accretionary wedge; b) structure of the underplating African 

crust; c) the interplay between active tectonics and deeply rooted features in the lower plate. Our 

analyses aims to understand if the wedge is still growing or if its activity is ceased recently and if 

structural development is influenced by the structure of the lower plate. 

 

2.0 – Tectonic setting  

The Calabrian Arc subduction complex is the result of Africa Eurasia plate convergence, 

presently occurring at the very slow rate of about 5-7 mm/yr (De Mets et alii, 1994; Hollenstein et 

alii, 2003; Serpelloni et alii, 2007; D’Agostino et alii, 2008; Devoti et alii, 2008) and slab rollback 

in the backarc region (Malinverno and Ryan,  1986; Faccena et alii, 2004; Doglioni et alii, 1999b, 

which produced the 1200 km displacement of Calabria (Bonardi et alii, 2001; Faccenna et alii, 

2001a; Barberi et alii, 2004; Rosembaum and Lister, 2004) during the opening of the Liguro-

Provencal (35-16 Ma) and the Tyrrhenian (12 Ma – present) basins (Patacca et alii, 1990; Gueguen 

et alii, 1998; Faccenna et alii, 2001b; Rosembaum et alii, 2002; Nicolosi et alii, 2006).  

Recent GPS measurements suggest a small amount of E-W extension in the Tyrrhenian basin 

(Serpelloni et alii; 2007). Trench retreat was particularly fast over the Neogene and early 

Quaternary (Patacca et alii, 1990) as indicated by high extension rates (50-70 mm/yr) recorded in 

the Tyrrhenian oceanic seamounts (Marani and Trua, 2002; Mattei et alii, 2002) and rapid 

migration of the trench (Faccenna et alii, 2001). On the other hand, vertical axis rotations 

responsible for the arcuate shape of the CA occurred during Miocene to Quaternary but were almost 

finished 1 Ma (Mattei et alii, 2007) as confirmed by GPS results showing no active back-arc 

extension in the Southern Tyrrhenian Sea (D’Agostino et alii, 2008). 
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Despite the very slow modern-day plate convergence rates observed by GPS, shortening is 

still active in the CA, as outlined by incipient deformation observed in different portions of the 

accretionary wedge (Polonia et alii, 2011 and 2012). GPS vectors of Calabria relative to Apulia 

motion show systematic residuals directed towards the Ionian Sea suggesting an outward motion of 

the CA with shortening taken up in the accretionary wedge (D’Agostino et alii, 2008). 

In the submerged subduction complex, five main morpho-structural domains have been 

identified (Fig. 2) from SE to NW: 1) the abyssal plain which is possibly characterized by the oldest 

in situ fragment of oceanic crust in the world even though its nature is highly debated (Speranza et 

al., 2012 and references therein); 2) the post-Messinian accretionary wedge; 3) a slope terrace; 4) 

the pre-Messinian accretionary wedge; and 5) the inner plateau. Variation of structural style and 

seafloor morphology in these domains are related to different tectonic processes, including frontal 

accretion, out-of-sequence thrusting, underplating and complex faulting. 

Along strike segmentation of the continental margin has produced two different lobes of the 

accretionary wedge with very different structural setting and geometry (Polonia et alii, 2011). The 

Western Lobe (WL), offshore the Messina Straits region, shows an accretionary wedge bounded 

towards the continent by a slope terrace that is the site of a Messinian thrust-top basin. This basin 

develops in the region where the basal detachment cuts through deeper levels down to the basement 

and where out-of-sequence thrust faults develop to accommodate basal detachment depth variations. 

The frontal part of the Western lobe detaches on the base of Messinian evaporites and the associated 

thin-skinned tectonics produces a very low tapered (taper < 1.5°) salt-bearing accretionary wedge 

(Fig. 3a). The Eastern Lobe (EL), in front of Central Calabria, shows a different structure (Fig. 3b), 

with a more elevated wedge (500-600m shallower), characterized by steeper slopes and higher 

deformation rates. This is reflected in a different structural style and thrust faults that involves the 

basement (thick skinned tectonics) in the frontal part of the accretionary wedge. The migrating 

Calabria trench drives the entire accretionary wedge outward, but the two lobes of the wedge 

experience different boundary conditions: the EL collides with the Mediterranean Ridge, whereas 
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the WL is free to spread into the Ionian abyssal plain. The EL and WL are delimited by the Ionian 

Fault system (IF), a NW-SE deformation zone (Fig. 2) crossing the entire subduction complex from 

the abyssal plain to the Messina Straits.  

Seismic data reveal that the subduction complex is segmented also within the WL, along a 

NNW-SSE trending active crustal fault named Alfeo-Etna fault system (AEF) by Polonia et alii, 

(2016a) and described by other authors in the past (Nicolich et alii, 2000; Rosembaum et alii, 

Argnani et alii, 2008; Polonia et alii, 2011; Polonia et alii, 2012; Gallais et alii, 2013; Gutscher et 

alii, 2016).  

Analysis of multichannel seismic reflection profiles shows that the IF and the AEF are transfer 

crustal tectonic features bounding a complex deformation zone, which produces the downthrown of 

the WL along a set of poliphased transtensive fault strands. During Pleistocene, transtensive 

faulting reactivated structural boundaries inherited from the Mesozoic Tethyan domain, which 

presently accommodate a recent tectonic re-arrangement coeval and possibly linked to the Mt. Etna 

formation. Regional geodynamic models show that, whereas AEF and IF are neighboring tectonic 

systems, their individual roles are different. The IF accommodates, along its NW sector, 

deformation primarily resulting from the ESE retreat of the Ionian slab. On the other hand, the AEF 

is part of the overall dextral shear deformation resulting from differences in the Africa-Eurasia 

motion between the western and eastern sectors of the Tyrrhenian margin of northern Sicily 

(Polonia et alii, 2016a). It thus accommodates diverging motions in the adjacent compartments, 

which result in rifting processes within the WL of the Calabrian Arc accretionary wedge. As such, it 

is primarily associated with Africa-Eurasia relative motion which causes the segmentation of the 

Neogene accretionary wedge.  

In the following sections, we will describe in detail the frontal part of the WL through the 

analysis of seismic reflection profiles at different scales, with the main purpose of understanding 

whether margin segmentation is active in the frontal part of the system and if shortening is still 

active along the plate boundary. Moreover, we will try to investigate the deeply rooted structures on 
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the incoming plate, to see whether they are related to the composite nature of the incoming plate 

and whether this complex setting controls active deformation in the accretionary wedge. 

 

3.0 - Methods 

To resolve active tectonics at the front of the subduction system we carried out a combined 

interpretation of seismic reflection profiles at different scales.  

Deep penetration multichannel seismics. Deep penetration seismic profiles (CNR_ENI Deep Crust 

Seismic Profiles – CROP) were used to reconstruct the overall geometry of the subduction complex, 

i.e., depth of the basal detachment, top of the African basement and deep structure of the incoming 

plate. We obtained full pre-stack depth-migrated (PSDM) seismic sections, through an iterative 

migration procedure (the SIRIUS/GXT, Migpack software package), that uses seismic velocities 

constrained by focusing analysis and common reflection point gathers. Other deep penetration 

seismic lines (Mediterranean Sea MS dataset collected by OGS) have been used to define geometry 

and extent of deep structures in the Ionian Sea abyssal plain. 

High resolution multichannel seismic lines have been used to define the structural style in the 

different domains of the outer accretionary wedge. MCS profiles were collected using an array of 2 

SERCEL G.I. guns as seismic source, and a 48 channels, 1200 m-long streamer as receiver. Seismic 

data processing includes preliminary velocity analysis, Dip Move Out (DMO), velocity analysis 

after DMO, stack and time migration. 

Sub-bottom CHIRP data: We used these data to study active deformation in the shallow sub-

surface. Seismic data has been acquired with a Benthos CHIRP-III sonar system operating with 16 

hull-mounted transducers (3-7 KHz sweep frequency) and processed using SeisPrho software 

(Gasperini and Stanghellini, 2009), applying time variant gain, automatic gain control and band –

pass filters.  

Multibeam data were acquired during two cruises in 2007 and 2009 with R/V OGS Explora 

equipped with a Reson 8150 multibeam system (234 beams, 12 kHz) and positioning provided by 
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GPS Ashtech Acquarius. Sound profiles were performed using the Reson Navitronic sound velocity 

profile (SVP) 25.   

 

4.0 Data analyses 

Three seismic lines orthogonal to the outer deformation front are analysed from East to West. 

They highlight structural variations across the plate boundary suggesting the subdivision of the 

frontal portion of the subduction complex in different seismo-tectonic provinces, characterized by 

rather homogeneous structural style, deformation rate, basal detachment and basement depth. 

Structural boundaries between seismo-tectonic domains are marked by abrupt variation of these 

characters. Seismic lines were selected among the whole CALAMARE dataset as the most 

representative of these provinces. One tie MCS line, roughly parallel to the foredeep (MS-112) is 

then described, to address along strike structural and stratigraphic variations. Finally, a 

morphobathymetric high-resolution multibeam map is used to connect shallow morphotectonic 

setting of these domains and analyse the shallow expression of their boundaries. 

  

4.1 Multichannel seismic lines 

4.1.1 – Seismic line CALA 05 (Figs. 4 and 5) 

This line crosses the subduction complex in the westernmost study region (Fig. 2), close to the 

Malta escarpment and the Medina seamount.  

- Abyssal plain (s.p. 100 - 580). The relatively undeformed abyssal plain domain allows good 

seismic penetration and deep reflector imaging down to the basement (about 8.5 s TWT). The 

Mesozoic carbonates are 3.5 s (TWT) thick, while the Tertiary section is only 200 ms (TWT) thick. 

Messinian evaporites are relatively undeformed (Fig. 5a) and about 2000 m thick (0.5 s TWT) while 

Plio-Quaternary (P-Q) sediments resting on the evaporites are made of a succession of sediment 

drifts (Fig. 5b) possibly related to bottom currents controlled by prominent topography.  
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- Accretionary wedge (s.p. 580-end of line): The wedge is bounded by the outer deformation front, 

which is located where the outermost fold affects the seafloor morphology (s.p. 580). The blow-up 

in Fig. 5a shows a cumulative deformation producing a progressive increase in fold amplitude in 

deeper layers. Two piggy back basins are controlled by the outermost folding processes. As the 

outer deformation front is approached the P-Q and Messinian units are shortened and uplifted along 

tight folds bounded by landward dipping thrust faults soling out on the base of the Messinian 

evaporites which acts as the basal detachment. Fold amplitude increases also moving towards the 

inner portions of the accretionary wedge. Within the wedge, deformation is rather homogenous and 

no major structural variations are imaged. In the outer part of the accretionary wedge both landward 

and seaward structural vergence is present while from s.p. 1500 the seaward vergence prevails. 

 

4.1.2 – Seismic line CALA-04 (Figs. 6 and 7) 

In this MCS line, the outer wedge shows a step like morphology with three topographic scarps 

delimiting rather flat regions. Five domains are imaged in line CALA-04: 

- Abyssal plain (s.p. 2980 - end of line). Deep reflectors down to the basement at about 8.5 s TWT 

are well imaged. The P-Q sediments are 400 ms thick on average (about 400 m), while the 

Messinian evaporites are about 500 ms thick (about 1000 m). Tertiary and Mesozoic sediments, 

about 1500 m and 3500 m thick respectively, show deformation along S-ward dipping thrust faults 

which possibly re-activate previous normal faults bounding crustal blocks, as imaged in seismic line 

M-2B (Fig. 3a). This tectonic uplift affects the base of the Messinian evaporites (see s.p. 3400-

3450). The abyssal plain is bounded towards NW by the outer deformation front (s.p. 2980), where 

the outermost deformation affecting the seafloor is visible. At s.p. 3030, close to the deformation 

front, an incipient fold deforms the entire sedimentary section without affecting the seafloor (proto-

deformation). Seaward of this point (s.p. 3030-3120), deformation does not reach up to the seafloor, 

but rather stops at a major unconformity present at about 200 ms TWT b.s.f.. Below this 

unconformity, deformation is related to wide folding, which shorten and uplift the top of the 
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Messianian evaporites too; above, sediments in the abyssal plain are less deformed, while in the 

proto-deformation zone the unconformity is uplifted above the growing fold at s.p. 3030 (Fig. 7a).  

Chirp profile in Figure 7b displays a succession of turbidite beds filling the abyssal plain. The 

recentmost of these megabeds is the HAT (Homogenite/Augias turbidite), emplaced after the A.D. 

365 Crete earthquake and tsunami (Polonia et alii, 2013), while the deeper megaturbidite is the 

Deep Transparent Layer (DTL) of Hieke (2000), whose age, reconstructed through 14C dating, is 

about 14,000 yr b.p. (Polonia et alii, 2013). This implies that about 30 m of sediments were 

deposited during the last 14,000 yrs, suggesting a relative high sedimentation rate for this abyssal 

environment. Below the DTL, a third megabed is visible, the TTL (Thick Transparent Layer) of 

Hieke (2000). 

- Outer wedge, gentle deformation (s.p. 2730-2980, Figs. 6 and 7a). Sediments are uplifted 

landward of the deformation front. This part of the accretionary wedge shows very low taper, gentle 

folding and a rather thick P-Q sediment section. Landward dipping reflectors, topographic breaks of 

the seafloor and offset of deeper reflectors, suggest the existence of thrust faults. Morphological 

breaks (s.p 2730 and 2900, Fig. 6) and alternating sedimentary basins develop above a deeply 

rooted fault system, which produces displacement in the Tertiary and Mesozoic sediments and uplift 

of the basement.  

- Outer wedge, tight deformation (s.p. 2540-2730). Here, short wavelength and low amplitude 

folding affects P-Q sediments as well as upper Messinian evaporites. This sector is bounded by two 

morphological breaks (Fig. 6).  

- Outer wedge, rough topography (s.p. 2070-2540, Fig. 6). A number of V-shaped troughs and 

box shaped depressions, up to 250 m deep, are present, producing a very rough morphology of the 

seafloor, with Messinian salt possibly outcropping at the seafloor. This peculiar morphology is 

associated with disruption of deep reflectors. 

- Outer wedge, highstanding plateau (s.p. 1320-2070, Fig. 6). This is a rather flat area, with a 

relatively less deformed seafloor. The basal detachment is present at about 6.3-6.5 s (TWT), while 
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high amplitude and sub-horizontal deep reflectors are imaged down to the basement, located at 

about 8.3 s TWT. This domain is bounded towards the continent by a slope terrace which hosts the 

out-of-sequence thrust fault Splay-1 (Fig. 2), developing at the transition between the salt-bearing 

post-Messinian accretionary wedge, and the pre-Messinian wedge detaching on a deeper level (see 

Fig. 3a for correlation). 

 

4.1.3 – Seismic line CALA-15 (Figs. 8 and 9) 

This profile was collected in the eastern region of the WL and is close and parallel to the CROP 

seismic line M-2B (Figs. 2 and 3a).  

- Abyssal plain (s.p. 1670 - end of line, Fig. 8). Deep reflectors, down to the basement at about 8.2 

s TWT, are well imaged. The thickness of P-Q sediments ranges between 300 and 500 ms TWT 

(about 300-500 m), while the Messinian evaporites are 700 ms thick on average (about 1400 m). 

Tertiary and Mesozoic sediments (about 1 s TWT and 0.8 s TWT respectively) are affected by 

progressive deformation along S-ward dipping reverse faults, as imaged in seismic line M-2B (Fig. 

3a). The abyssal plain is bounded towards NW by the outer deformation front (s.p. 1670), where the 

first fold affecting the seafloor is visible on the MCS line. However, seaward of the deformation 

front, the top of the Messinian evaporites and the Plio-Quaternary sequence are folded and uplifted, 

even though deformation does not reach the seafloor. A major unconformity is present at about 250 

ms TWT b.s.f. (Fig. 9a). Below this unconformity, deformation is related to large wavelength 

folding, while uppermost sediments are less deformed and show only weak undulations. In the 

proto-deformation zone (s.p. 1700-1800, Fig. 9b) the unconformity is also uplifted above growing 

folds, as evidenced by the Chirp profile in Fig.6c, which images a succession of deformed 

megabeds (HAT, DTL and TTL) filling the abyssal plain. The HAT is about 18 m thick, while the 

DTL  is 8 m thick providing a very high sedimentation rate during the Holocene.  

- Outer wedge, gentle deformation (s.p. 1670-1520, Fig. 8). Sediments are uplifted due to gentle 

folding. Landward dipping reflectors, sediment disruption and displacement of deeper reflectors, 
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suggest the existence of thrust faults. Opposite verging folds and wide sedimentary basins, develop 

in this region, which appears to be in continuity with the abyssal plain. This domain is bounded 

towards the continent by a morphological break at s.p. 1520 (Figs. 8 and 9a). 

- Outer wedge, tight deformation (s.p. 1520-1220, Fig. 8). As s.p. 1520 is approached, short 

wavelength and low amplitude tight folding affects P-Q sediments, as well as upper Messinian 

evaporites. This domain develops above a basement high, and deep faults which deform Mesozoic 

and Tertiary sediments. Thrust faults within the post-Messinian accretionary wedge sole out on the 

base of the Messinian evaporites. 

- Outer wedge, rough topography (s.p. 1220-500, Fig. 8). A number of V-shaped troughs and box 

shaped depressions, up to 250 m deep, are associated with a rough morphology of the seafloor. 

Major depressions, where Messinian evaporites appear to outcrop at the seafloor, develop above 

deep faults, suggesting that the two occurences, i.e. rough topography and deeply rooted 

deformation, are somehow related.  

- Outer wedge, highstanding plateau (s.p. 1320-2070, Fig. 8). This is a rather flat area, with a 

relatively undeformed seafloor. The basal detachment is present at about 6.2-6.3 s (TWT), while 

high amplitude and sub-horizontal deep reflectors are imaged down to the basement, located at 

about 8.0 s TWT.  

 

4.1.4 – Seismic line MS-112 (Fig. 10) 

This E-W trending profile crosses all seismic lines described in the previous sections and 

provides a complete longitudinal section of the WL, which could be used to check whether margin 

segmentation processes are active at the frontal wedge. Three major crustal discontinuities, CD1, 

CD2, and CD3 are visible in this seismic profile (Fig. 10). CD1 is located at the western 

deformation front, where frontal wedge thrust faults displace the seafloor; these faults are 

associated, but apparently not directly linked, to deep sub-vertical faults, which produce tilting and 

displacement of seismic reflectors down to the basement. The second set of sub-vertical crustal 
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faults (CD2) are located at s.p. 1400. Seismic reflectors appear to be disrupted along such structural 

boundary, even though they do not show vertical throws, suggesting prevalent strike-slip 

deformation. This region is on the seaward extension of the Alfeo-Etna fault system (Fig. 2), and 

thus may represent a propagation of this fault in the frontal wedge, despite deformation is weaker 

than in the inner domain (see for example Fig. 8 in Polonia et alii, 2016a). A wide region of crustal 

deformation is present between s.p. 1800 and 2100 (CD3 in Fig. 10), where the seafloor shows a 

very rough topography with large depressions and intervening structural highs. Seaward of this 

region the Tertiary and Mesozoic sediments are uplifted, tilted and deformed along seaward dipping 

faults as imaged in seismic line CROP M-2B (Fig. 3a). The basal detachment, i.e., the base of the 

Messinian evaporites, is slightly deformed along these tectonic features. The progression of 

structural domains within the frontal wedge (gentle and tight deformation, rough morphology and 

high-standing plateau) is well imaged in the eastern part of the profile, which crosses the eastern 

part of the frontal wedge. The basal detachment at the base of the Messinian evaporites is located at 

a depth between 6 and 6.5 s TWT; above the detachment, the salt-bearing accretionary wedge 

shows a chaotic seismic facies, while older sedimentary units, represented by well layered seismic 

reflectors down to the basement (purple reflector in Fig. 10), are underthrusted below the basal 

detachment. The seaward boundary of the rough morphology domain is clearly located where the 

basement high and deep faults are imaged (Fig. 10). 

 

4.2 – Multibeam data 

High-resolution multibeam data highlight the fine morpho-structural setting of the frontal wedge, 

which is dominated by a corrugated pattern of small-scale folds and depressions aligned parallel to 

the isobaths (Fig. 11). The transition between the flat, relatively undeformed abyssal plain and the 

accretionary wedge is marked by the inception of small wavelength folds, which appear to be rather 

discontinuous. The frontal wedge shows two lateral ramps (LR1 and LR2 in Fig. 11), that displace 

left-laterally the outer deformation front, and are associated with NE-SW lineaments within the 
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accretionary wedge. These lineaments are marked in the seismic line CALA 04 by seafloor scarps 

(s.p. 2900 and 2730, Fig. 6). The NW/SE morpho-tectonic lineaments develop in sectors where 

MCS lines show evidence of deep faulting and basement highs (Figs. 6, 8, and 10).  

Short and overlapping folds, whose trend follow the arcuate external shape of the WL (Fig. 11), 

represent the gentle deformation domain. The tight deformation domain, given by even shorter 

wavelength folds, is bounded towards NW by a very rough morphology represented by elongated 

and anastomosing depression and structural highs. This domain widens towards East where it 

reaches its maximum width as evidenced in the MCS lines (Figs. 4, 6, 8 and 10). To the East, the 

intervening structural highs between the depressions are wider (Fig. 11). On the other hand, in the 

western region (seismic line CALA 05, Fig. 4) this domain appears very narrow and represented by 

two isolated depressions between s.p. 1400 and 1500 (Fig. 4). The innermost high standing plateau 

is a rather flat domain where elongated depressions are less frequent (red area at about 3200-3500 m 

depth in Fig. 11). 

 

5.0 Discussion 

Post-Messinian frontal accretion in the WL has produced a salt-bearing accretionary wedge 

with a very peculiar geometry and structural setting. The very low taper angle (about 1-1,5°) is 

mainly related to the rheology of evaporites, which provide a very weak basal detachment 

enhancing high rates of outward growth of the accretionary complex towards the foreland. On the 

other hand, recent margin segmentation processes along lithospheric transtensive fault systems have 

produced the downthrown of the western accretionary wedge and rifting perpendicular to the trench 

axis along the Ionian and Alfeo/Etna fault systems (Polonia et alii, 2016a). This complex setting 

may be related to a Middle Pleistocene tectonic reorganization in the central Mediterranean driven 

by the stalling of the Calabrian roll-back/subduction and related Tyrrhenian back-arc extension 

(Wortel and Spakman, 2000; Goes et alii, 2004; Faccenna et alii, 2011). Several crustal expressions, 

including the partial jump of the Sicilian thrusting towards the southern Tyrrhenian contractional 
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belt, and the triggering of Mt. Etna volcanism (Gvirtzman and Nur, 1999; Doglioni et alii, 2001; 

Faccenna et alii, 2011; Polonia et alii, 2016a) are probably among the major consequences of such 

processes. Given the complex tectonic setting, characterized by different stress fields acting 

together, and considering that the CA is close to continental collision, it is not clear whether the 

Africa/Eurasia plate convergence is still driving shortening in the frontal wedge or the wedge is 

presently inactive. The combined interpretation of MCS lines and multibeam data in the frontal part 

of the subduction-rollback system provides new insights to address this issue. 

 

5.1 Summary of tectonic domains in the frontal accretionary wedge 

Analyses of MCS lines in the frontal wedge suggests the progression of different tectonic 

domains characterized by varying structural styles and morpho-bathymetric features. The flat and 

relatively undeformed abyssal plain is filled by turbidites and thick megabeds, while close to the 

Malta escarpment bottom currents cause the formation of prominent contourite drifts (Fig. 5b). As 

the deformation front is approached, the P-Q and Messinian sediments resting on the African plate 

are shortened and uplifted along fault-controlled folds. Thrust faults sole out on the base of the 

Messinian evaporites and generally breach through the Plio-Quaternary sedimentary section 

displacing the seafloor (see s.p. 970 in Fig. 4). Moving from the outer deformation front, towards 

the inner parts of the frontal wedge, progressive deformation produces more intense sediments 

disruption and tectonic uplift. In the western domain (line CALA 05, Fig. 4) the frontal wedge 

shows a rather uniform slope with taper of about 1°, while in the central and eastern sectors (lines 

CALA 04 and CALA 15, Figs. 6 and 8) structural changes are more abrupt. Here, the frontal wedge 

shows three main domains, characterized by gentle folds, tight folding and a succession of deep 

depressions and structural highs (rough topography domain), respectively. The high-standing 

plateau represents the transition to the slope terrace (Figs. 3a and 6), which is the site of out-of-

sequence thrust faults developing at the transition with the pre-Messinian inner wedge, where the 

detachments cuts through deeper levels down to the basement.  
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5.2 Structure of the lower African plate 

MCS line MS-112 (Fig. 2) suggests that the Alfeo-Etna fault system did propagate in the 

frontal part of the wedge, but deformation rates are lower than in the region to the North and no 

sedimentary basin develops along the fault in this region. This would imply that the fault has 

propagated recently, or that it dies out in the frontal wedge. On the other hand, the prominent rough 

morphology domain of the frontal wedge, characterized by the presence of alternating structural 

highs and deep troughs, appears related to the presence of deeply rooted structures (Fig. 10, s.p. 

1800-2100). NW and SE of this region, below the accretionary complex, which is detaching on the 

base of evaporites located between 6.2 and 6.5 s TWT, Tertiary and Mesozoic sediments are 

characterized by high-amplitude and sub-horizontal layering. In the rough morphology domain, the 

basal detachment is discontinuous, and no coherent reflectors are visible below the evaporites. The 

rough topography domain is bounded towards the SE by Tertiary and Mesozoic seaward dipping 

reflectors and a prominent basement high (Figs. 3a, 6, 8, 10).  

Analysis of all available MCS lines suggests that the top of the basement in the abyssal plain 

is located at a rather constant depth (about 8.2 s TWT). It appears uplifted and displaced by 0.8-1 s 

TWT along a sub-vertical fault below the frontal wedge (Fig. 3a s.p. 200-800, Fig. 8 s.p. 1200-1300 

and Fig. 10 s.p. 2000-2400). On the other hand, the thickness of Mesozoic and Tertiary sediments 

varies across strike. The base of Tertiary sediments is 1.5 s TWT deeper to the East (line CALA 15, 

Fig. 8) relative to the western region, and the same is true for the base of the Messinian sediments. 

This implies that thicker Tertiary and Messinian basins were present in the eastern part of the WL 

closer to the Ionian Fault.  

In this region, the basement high shows its maximum uplift as evidenced by MCS lines. 

These observations suggest that the deep structure of the incoming plate is probably inherited since 

Mesozoic times. We thus propose that the discontinuity bounding the rough topography domain 

may represent a major Mesozoic paleoceanographyc boundary.  
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The deep structure of the lower African plate is controlling structural development within the 

accretionary wedge. Subduction of the basement topography and related faults on the lower plate 

may have played a role in the shallow structure possibly triggering fluid flow, dissolution of 

evaporites and recent sediment deformation. The rough seafloor morphology of the Calabrian Arc 

accretionary wedge was termed “cobblestone topography” (Hersey, 1965; Kastens and Cita, 1981; 

and Rossi and Sartori, 1981) and interpreted as due to collapse structures driven by karst processes 

(Hinz, 1972; Ryan, Hsu et alii, 1973) or by a combined effect of tectonics and salt diapirism 

(Kastens, 1981; Camerlenghi and Cita, 1987). Our data suggest that these surficial features appears 

to be controlled by deeply rooted faults and basement highs on the incoming plate. Subduction or 

underplating of lateral morphological or rheological heterogeneities affects upper plate and may 

produce structural disruption, tectonic erosion as shown in other setting (Lallemand et al., 1992). 

The basement high and deep faults below the accretionary wedge as imaged by seismic line CALA 

05 (Fig. 4), CALA 15 (Fig. 8) and CROP M2B (Fig. 3a) clearly show that have affected sediment 

disruption within the accretionary wedge despite it is sealed by sediments. 

 

5.3 The Calabrian Arc and the Kephalonia fault system 

The complex structural development in the frontal part of the CA accretionary wedge is the 

result of the overall Africa/Eurasia plate convergence. However, its location close to the Hellenic 

Arc makes this region accommodating deformation processes of both subduction systems and, more 

importantly, their lateral boundaries. Let us consider the structural control exerted by the segmented 

Calabrian and Hellenic Arcs on the frontal accretionary wedge in the Ionian Sea. 

Margin segmentation in the CA occurs along the AEF and IF systems in the WL of the 

accretionary wedge. Active deformation along such major transverse faults suggests a transtensional 

motion associated with a complex deformation pattern of strike-slip and normal faulting, which give 

rise to the formation of sedimentary basins, ridges and morphological scarps (Polonia et alii, 

2016a). Seismo-stratigraphic analysis reveals that transtensional faulting along the AEF and IF 
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systems re-activates Mesozoic features located in the lower African plate. They could be oceanic 

fracture zones of the Tethyan domain, whose orientation is compatible with the NW-SE fault 

direction (Frizon de Lamotte et alii, 2011). These major boundaries acted as paleo-oceanographic 

boundaries during the Messinian salinity crisis and are presently accommodating plate boundary re-

organization. Tearing processes at the slab edge in the Messina Straits region and the collision of 

the CA with the Mediterranean Ridge (Fig. 2) are accommodated along the IF system (Polonia et 

alii, 2016a) and causes segmentation of the subduction complex in two lobes (WL and EL, Fig. 2). 

The EL is characterized by thick skinned tectonics along an imbricate fault structure (Fig. 3b) which 

produces an accretionary wedge more similar to a fold and thrust belt (Polonia et alii, 2011). The 

WL shows a very wide (300 Km) and very low tapered accretionary wedge still free to move 

towards the foreland (Fig. 3a).  

The active Hellenic subduction front to the East, is dextrally offset by 100 –120 km across the 

Kephalonia Transform Zone, coinciding with the junction of a slowly subducting Adriatic 

continental lithosphere in the north and a rapidly subducting Ionian oceanic lithosphere in the south 

(Royden and Papanikolau, 2011). Pliocene differentiation of the Hellenides and formation of the 

Kephalonia transform are the direct result of oceanic lithosphere of the Ionian Sea entering the 

trench south of Kephalonia while continental lithosphere continued to be subducted north of the 

trench (Royden and Papanikolau, 2011; Bradley et alii, 2013). The frontal CA accretionary wedge 

is located in a region where the foredeeps, the NW-SE transtensive faults of the CA and the 

Kephalonia fault system connect and interfere in a sort of triple junction. We propose that the deep 

structure of the frontal accretionary wedge with deep faults soling out below the uplifted basement 

is the result of basement-involved tectonic processes controlled by the paleoceanography of the 

Tethyan ocean and by recent (Pleistocene) processes driven by collision between the Mediterranean 

Ridge and Calabrian Arc. This combination of processes may re-activate old tectonic features 

similarly to what has been described by Polonia et alii (2016a) along the Ionian and Alfeo-Etna 

fault systems. Different tectonics processes are thus acting simultaneously in the study region and 
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distinguishing the relative contribute of each of them is not trivial. It is not clear, for example, if 

shortening within the accretionary wedge is still active and if the accretionary wedge is still 

growing.  

 

5.4 Activity of the CA accretionary wedge and deformation rates 

The outermost accretionary wedge and the proto-thrust domains are sites most suitable to 

record the activity of the Calabrian Arc. In all analysed profiles, the Africa/Eurasia plate boundary, 

i.e., the outer deformation front, is represented by a fault-controlled anticline bounding the 

transition between the relatively flat abyssal plain and the accretionary wedge (Figs. 4, 6, 8, 10 and 

11). At the toe of the wedge, in the proto-deformation domain, tectonic deformations visible in the 

MCS lines do not appear reaching up to the seafloor. Moreover, seismo-stratigraphic analyses has 

shown that an unconformity (Figs. 7a and 9a) is present in the abyssal plain at about 200-250 ms bsf 

(about 200-250 m), bounding two units with different rates of deformation: high-amplitude folding 

affects the sediments below the unconformity, while sediments that are more recent show very little 

deformation. This would imply a slowdown of frontal accretionary processes starting from the age 

of the unconformity. A Plio-Quaternary unconformity was described also in the inner domains of 

the accretionary wedge offshore Calabria (Praeg et alii, 2009) and offshore the Messina Straits 

(Polonia et alii, 2012; 2016a) and interpreted as related to a regional tectonic reorganization. Even 

though this unconformity represents a transition to lower deformation rates, it is worth noting that 

the unconformity itself is uplifted and folded close to the deformation front (Fig. 8 s.p. 1600-1700) 

implying that shortening processes remain active after the unconformity formed, but possibly 

deformation shifted inwards in the wedge. Moreover, high resolution Chirp data collected in the 

proto-thrust region (Fig. 9) show that the seafloor is only apparently flat in this region. The HAT 

deposit, which is the megabed deposited after the AD 365 Crete earthquake and tsunami (Polonia et 

alii, 2013; 2016b) shows a large wavelength bulge above the fold, at the toe of the accretionary 

wedge, which might suggest incipient fold growing. The homogenite mud deposit of the megabed, 
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represented by the transparent unit in Chirp profiles, is generally related to the re-suspension of the 

finer-grained sediment, which deposit over the basal sand of the turbidite bed (Polonia et alii, 

2016c). This homogenite unit could drape pre-existing morphology, implying that the observed 

seafloor bulge at the toe of the accretionary wedge not necessarily is related to tectonic processes, 

but rather to the peculiar emplacement process of the megabed. However, Chirp seismic line in Fig. 

12b collected along MCS line CALA 04 provide further indications. In this region, the deposition of 

the HAT produced sediment erosion over the fold (Fig. 12b, ping 2000-3000) while erosion did not 

take place in the piggy-back basins. This observation suggests that the deposition of the HAT has 

flattened the topography and thus the observed seafloor bulge has a tectonic origin and post-dates 

the HAT emplacement time.  

Regional 14C dating of the HAT indicates that it was deposited during a single basin-wide 

event within the time window AD 364–415 and thus it can be traced back to the large tsunami 

sourced from the AD 365 Crete megathrust earthquake (Polonia et alii 2016b) implying it is about 

1650 yrs old.  

The HAT uplift above the growing fold is between 2.0-2.5 m suggesting an uplift rate of 

about 1.1-1.5 mm/yr. This procedure could be applied also to the older megabeds, such as the DDL 

of Hieke (2000), which is about 14.000 years old (Polonia et alii, 2013). The uplift rate estimated 

considering the DDL varies between 0.25 and 0.48 mm/year (Fig. 12), but this rate does not take 

into account sediment compaction. These results suggest that the CA front of the accretionary 

wedge is still active even though the system is close to continental collision and affected by 

different transtensional processes orthogonal to the trench axis. An estimate of cumulative tilting of 

the megabeds in the proto-thrust area (Fig. 13) confirms this interpretation, and suggests the 

presence of growing folds in the abyssal plain, which are going to incorporate these sediments into 

the accretionary wedge through frontal accretion. Our data thus suggest that the unconformity 

within the Plio-Quaternary sediments may be interpreted as a discontinuity in sedimentation and 
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tectonic development (i.e. a slowdown of shortening rate or an increase in sedimentation rate) but 

not a real stop in frontal accretion. 

 

Conclusion 

We used a multi-scale marine geophysical dataset to describe the tectonic setting of the frontal 

part of the Calabrian Arc, along the African-Eurasian plate boundary in the Ionian Sea. Several 

structural domains were described through analysis of multi-channel seismic lines, while a 

kinematic reconstruction was based on morpho-structural and stratigraphic constraints provided by 

Chirp-sonar data and morphobathymetric maps. The migrating Calabria trench drives the entire 

accretionary wedge outward, but the two lobes of the wedge experience different boundary 

conditions: the eastern lobe (EL) collides with the Mediterranean Ridge and produces basement-

involved tectonics, whereas the western lobe (WL) is free to spread into the abyssal plain of the 

Ionian Sea through frontal accretion and offscraping processes. We found that:   

-The WL shows a progression of morphotectonic domains whose structural style and 

deformation rates varies across strike; the boundaries of such domains are linked to deep faults 

within the lower plate, suggesting that structural development in the shallow accretionary wedge is 

driven by inherited structures of the African plate. These structures could represent oceanic fracture 

zones or paleo-oceanographic boundaries of the Tethyan domain, which presently accommodate 

intraplate deformation and/or a plate boundary re-organization. 

-Seismo-stratigraphic analysis reveals that transtensional faulting along the Alfeo-Etna fault 

system (AEF) is not very active in the frontal part of the accretionary wedge; the fault is 

propagating to the SE but deformation rates are low south of the Alfeo seamount. 

-Despite rifting processes orthogonal to the trench axis were described in the WL, our data 

suggest that shortening is active in the proto-deformation zone at the toe of the accretionary wedge. 

Deformed turbidite beds filling the abyssal plain and perched basins of the accretionary wedge, 

were used to estimate uplift rates along single folds. Using the two more recent megabeds (the HAT 



Ac
ce

pt
ed

 m
an

us
cr

ip
t

and DTL) emplaced 1.7 and 14 kyrs b.p., we estimated an uplift rate along the frontal fold of about 

0.25-1.5 mm/yr during the Holocene. 

-Seismo-stratigraphic analysis has shown that an unconformity is present in the abyssal plain 

at about 200-250 ms bsf (about 200m). This unconformity, located within Plio-Quaternary (P-Q) 

deposits, bounds two units with different rates of deformation; high-amplitude folding affects the 

sediments below the unconformity, while very little deformation is visible above. This would imply 

a slowdown of frontal accretion starting from the age of the unconformity. The presence of a P-Q 

event in other domains of the Calabrian Arc points for a regional importance of such unconformity.  

- Even though this Plio-Quaternary unconformity represents a transition to lower deformation 

rates, it is worth noting that the unconformity itself is uplifted and folded close to the deformation 

front implying that shortening processes remain active, but possibly deformation shifted inwards in 

the wedge or slowed down.  

- We propose that recent structural development in the frontal accretionary wedge is related to 

a positive flower structure, which is the result of multiple tectonic processes involving 

Africa/Eurasia plate convergence and lower plate topography entering the subduction complex.  

We can conclude that in the incipient collisional setting of the Calabrian Arc deformation 

patterns are more complex than in classic subduction systems. Morphotectonic processes are 

strongly dependent on regional aspects concerning large-scale plate motion, such as plate boundary 

setting, structure of the lower plate, and interference of the two facing and opposite verging 

Calabrian and Hellenic Arcs and their structural boundaries (i.e. the Ionian and Kephalonia faults). 

Further studies addressing the recent kinematics of this region and modelling of deformation 

patterns should focus on these important regional tectonic lineaments. 
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Figure Captions 
 
Fig. 1 – Geodynamic setting of the central Mediterranean Sea. Shaded relief map of 
topography/bathymetry of the central and eastern Mediterranean Sea: Global Bathymetry and 
Elevation Data from SRTM30_PLUS (Becker et alii, 2009). The geological model is modified from 
Polonia et alii (2011).  Slip vector in the African reference frame is indicated by a yellow arrow. 
The NW ward dipping subducting slab of the African plate is represented by the yellow isodepth 
lines in the Tyrrhenian Sea spacing from 100 to 450 Km depth (Selvaggi and Chiarabba, 1995). Eu: 
Europe, Afr: Africa. 
 
Fig. 2 – Structural map of the CA region derived from integrated interpretation of available seismic 
data and multibeam bathymetry (modified from Polonia et alii, 2016) superposed over a gray levels 
bathymetric slope map. Major structural boundaries, active faults and the extent of the structural 
domains (i.e. pre and post-Messinian wedges and inner plateau) are indicated. The continental 
margin is segmented both across and along strike. The deformation zones corresponding to the 
major lithospehric faults segmenting the continental margin (i.e. the Alfeo-Etna and Ionian fault 
systems) are indicated by the grey pattern. The diffuse structural boundary between EL and WL 
accommodates different rates of shortening, slab rollback and tearing in the different segments of 
the CA subduction zone.  
 
Fig. 3 – a: Line drawing of the PSDM (Pre Stack Depth Migrated) MCS line CROP M-2B 
(modified from Polonia et alii, 2011 and 2012) collected in the Western Lobe. b: Line drawing of 
PSDM MCS line CROP M-4 (modified from Polonia et alii, 2011 and 2012) collected in the 
Eastern Lobe. Location of seismic profiles is shown in Figure 2. Yellow reflector: base of Plio-
Quaternary sediments; Orange reflector: base of Messinian evaporites; Green domain: base of 
Tertiary sediments; and Mesozoic sediments; Purple reflector: African plate basement. 
 
Fig. 4 – Seismic  (above) and line drawing (below) of high resolution MCS time migrated line 
CALA-05 across the western part of the WL close to the Malta escarpment (see Figure 2 for 
location). Yellow reflector: base of Plio-Quaternary sediments; Orange reflector: base of Messinian 
evaporites; Green domain: base of Tertiary sediments; and Mesozoic sediments; Purple reflector: 
African plate basement.  
 
Fig. 5 – a: Zoom of MCS line CALA-05) across the deformation front (location on Figure 4). As 
the relatively undeformed abyssal plain sediments approach the deformation front they are folded 
and uplifted and included through frontal accretion in the wedge. b: Chirp seismic line collected in 
the abyssal plain close to the Malta escarpment (Figure 2 for location). A succession of sediment 
drifts possibly related to bottom currents are imaged. 
 
Fig. 6 –  Seismic  (above) and line drawing (below) of high resolution MCS time migrated line 
CALA-04 across the central part of the WL (see Figure 2 for location). Yellow reflector: base of 
Plio-Quaternary sediments; Orange reflector: base of Messinian evaporites; Green domain: base of 
Tertiary sediments; and Mesozoic sediments; Purple reflector: African plate basement. 
 
Fig. 7 -  a: Zoom of MCS line CALA-04 across the deformation front (location in Figure 6). A 
major unconformity at about 200 ms (TWT) is present in the abyssal plain. This unconformity 
separates sediment packets with different rates of deformation. The unconformity itself as it reaches 
the outer deformation front is uplifted and deformed. b: Chirp seismic line collected across the outer 
deformation front. Three major megabeds are well imaged in the abyssal plain (HAT: 
Homogenite/Augias turbidite; DTL: deep transparent layer; TTL: thick transparent layer). 
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Fig. 8 -  Seismic (above) and line drawing (below) of high resolution MCS time migrated seismic 
line CALA-15 across the eastern part of the WL (see Figure 2 for location). Yellow reflector: base 
of Plio-Quaternary sediments; Orange reflector: base of Messinian evaporites; Green domain: base 
of Tertiary sediments; and Mesozoic sediments; Purple reflector: African plate basement. 
 
Fig. 9 - a: Zoom of MCS line CALA-15 across the deformation front (location on Figure 8). A 
major unconformity at about 200 ms (TWT) is present in the abyssal plain. This unconformity 
separates sediment packets with different rates of deformation. The unconformity itself as it reaches 
the outer deformation front is uplifted and deformed. b: Chirp seismic line collected across the outer 
deformation front. Three major megabeds are visible in the abyssal plain (HAT: 
Homogenite/Augias turbidite; DTL: deep transparent layer; TTL: thick transparent layer). 
 
Fig. 10 –  Migrated seismic line MS-112 (above) and its line drawing (below) across the WL of the 
accretionary wedge (see Figure 2 for location). Yellow reflector: base of Plio-Quaternary 
sediments; Orange reflector: base of Messinian evaporites; Green domain: base of Tertiary 
sediments; and Mesozoic sediments; Purple reflector: African plate basement. CD: crustal 
discontinuity.  
 
Fig. 11 – High resolution morphobathymetric map of the frontal part of the WL. Two lateral ramps 
(LR1 and LR2) offset left-laterally the deformation front. Major structural domains in the frontal 
accretionary wedge (gentle and tight deformation, rough deformation and highstanding plateau) are 
characterized by varying morphology on the map. 
 
Fig. 12 – Chirp seismic profile in the proto-thrust area where three megabeds are present (HAT: 
Homogenite/Augias turbidite; DTL: deep transparent layer; TTL: thick transparent layer). The uplift 
of the HAT and DTL megabeds, whose age was reconstructed through 14C dating, was used to 
estimate uplift rates in this area during the Holocene. 
 
Fig. 13 – Chirp seismic profile in the proto-thrust area. An estimate of cumulative tilting of the 
megabeds HAT, DTL and TTL in the proto-thrust area. Cumulative titling of these reference layers 
suggests the presence of growing folds in the abyssal plain, which are going to incorporate these 
sediments into the accretionary wedge through frontal accretion. 
 
 
Table captions: 
 
Table 1 - Acquisition parameters, processing sequence and resolution of geophysical data used in 
this study. 
 
Table 2 - depth of principal seismic reflectors in 8 seismic lines (from West to East). 
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Fig. 1 – Geodynamic setting of the central Mediterranean Sea. Shaded relief map of topography/bathymetry 
of the central and eastern Mediterranean Sea: Global Bathymetry and Elevation Data from SRTM30_PLUS 

(Becker et alii, 2009). The geological model is modified from Polonia et alii (2011).  Slip vector in the African 

reference frame is indicated by a yellow arrow. The NW ward dipping subducting slab of the African plate is 
represented by the yellow isodepth lines in the Tyrrhenian Sea spacing from 100 to 450 Km depth (Selvaggi 

and Chiarabba, 1995). Eu: Europe, Afr: Africa. 
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Fig. 2 – Structural map of the CA region derived from integrated interpretation of available seismic data and 
multibeam bathymetry (modified from Polonia et alii, 2016) superposed over a gray levels bathymetric slope 
map. Major structural boundaries, active faults and the extent of the structural domains (i.e. pre and post-

Messinian wedges and inner plateau) are indicated. The continental margin is segmented both across and 
along strike. The deformation zones corresponding to the major lithospehric faults segmenting the 

continental margin (i.e. the Alfeo-Etna and Ionian fault systems) are indicated by the grey pattern. The 
diffuse structural boundary between EL and WL accommodates different rates of shortening, slab rollback 

and tearing in the different segments of the CA subduction zone. 
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Fig. 3 – a: Line drawing of the PSDM (Pre Stack Depth Migrated) MCS line CROP M-2B (modified from 
Polonia et alii, 2011 and 2012) collected in the Western Lobe. b: Line drawing of PSDM MCS line CROP M-4 
(modified from Polonia et alii, 2011 and 2012) collected in the Eastern Lobe. Location of seismic profiles is 
shown in Figure 2. Yellow reflector: base of Plio-Quaternary sediments; Orange reflector: base of Messinian 
evaporites; Green domain: base of Tertiary sediments; and Mesozoic sediments; Purple reflector: African 

plate basement. 
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Fig. 4 – Seismic  (above) and line drawing (below) of high resolution MCS time migrated line CALA-05 across 
the western part of the WL close to the Malta escarpment (see Figure 2 for location). Yellow reflector: base 

of Plio-Quaternary sediments; Orange reflector: base of Messinian evaporites; Green domain: base of 

Tertiary sediments; and Mesozoic sediments; Purple reflector: African plate basement. 
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Fig. 5 – a: Zoom of MCS line CALA-05) across the deformation front (location on Figure 4). As the relatively 
undeformed abyssal plain sediments approach the deformation front they are folded and uplifted and 

included through frontal accretion in the wedge. b: Chirp seismic line collected in the abyssal plain close to 

the Malta escarpment (Figure 2 for location). A succession of sediment drifts possibly related to bottom 
currents are imaged. 
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Fig. 6 –  Seismic  (above) and line drawing (below) of high resolution MCS time migrated line CALA-04 
across the central part of the WL (see Figure 2 for location). Yellow reflector: base of Plio-Quaternary 

sediments; Orange reflector: base of Messinian evaporites; Green domain: base of Tertiary sediments; and 
Mesozoic sediments; Purple reflector: African plate basement. 
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Fig. 7 -  a: Zoom of MCS line CALA-04 across the deformation front (location in Figure 6). A major 
unconformity at about 200 ms (TWT) is present in the abyssal plain. This unconformity separates sediment 
packets with different rates of deformation. The unconformity itself as it reaches the outer deformation front 

is uplifted and deformed. b: Chirp seismic line collected across the outer deformation front. Three major 
megabeds are well imaged in the abyssal plain (HAT: Homogenite/Augias turbidite; DTL: deep transparent 

layer; TTL: thick transparent layer). 
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Fig. 8 -  Seismic (above) and line drawing (below) of high resolution MCS time migrated seismic line CALA-
15 across the eastern part of the WL (see Figure 2 for location). Yellow reflector: base of Plio-Quaternary 
sediments; Orange reflector: base of Messinian evaporites; Green domain: base of Tertiary sediments; and 

Mesozoic sediments; Purple reflector: African plate basement. 
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Fig. 9 - a: Zoom of MCS line CALA-15 across the deformation front (location on Figure 8). A major 
unconformity at about 200 ms (TWT) is present in the abyssal plain. This unconformity separates sediment 
packets with different rates of deformation. The unconformity itself as it reaches the outer deformation front 

is uplifted and deformed. b: Chirp seismic line collected across the outer deformation front. Three major 
megabeds are visible in the abyssal plain (HAT: Homogenite/Augias turbidite; DTL: deep transparent layer; 

TTL: thick transparent layer). 
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Fig. 10 –  Migrated seismic line MS-112 (above) and its line drawing (below) across the WL of the 
accretionary wedge (see Figure 2 for location). Yellow reflector: base of Plio-Quaternary sediments; Orange 
reflector: base of Messinian evaporites; Green domain: base of Tertiary sediments; and Mesozoic sediments; 

Purple reflector: African plate basement. CD: crustal discontinuity. 
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Fig. 11 – High resolution morphobathymetric map of the frontal part of the WL. Two lateral ramps (LR1 and 
LR2) offset left-laterally the deformation front. Major structural domains in the frontal accretionary wedge 
(gentle and tight deformation, rough deformation and highstanding plateau) are characterized by varying 

morphology on the map. 
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Fig. 12 – Chirp seismic profile in the proto-thrust area where three megabeds are present (HAT: 
Homogenite/Augias turbidite; DTL: deep transparent layer; TTL: thick transparent layer). The uplift of the 

HAT and DTL megabeds, whose age was reconstructed through 14C dating, was used to estimate uplift rates 

in this area during the Holocene. 
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Fig. 13 – Chirp seismic profile in the proto-thrust area. An estimate of cumulative tilting of the megabeds 
HAT, DTL and TTL in the proto-thrust area. Cumulative titling of these reference layers suggests the 
presence of growing folds in the abyssal plain, which are going to incorporate these sediments into the 

accretionary wedge through frontal accretion. 
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MULTI-SCALE DATASET 

Acquisition parameters Main processing 

sequence 

Deep penetration MCS 

(CROP dataset) 

Source: 4906 cu inch air guns 

Streamer: 4500 m 

Group interval: 25 m 

Shot Interval: 62.5 m 

Coverage: 3600% 

Sampl. Int.: 4 msec 

Full pre-stack depth-migration (PSDM), with 

SIRIUS/GXT, Migpack software package. 

Deep penetration MCS 

(MS dataset) 

Source: 4906 cu inch air guns 

Streamer: 4500 m 

Group interval: 25 m 

Shot Interval: 62.5 m 

Coverage: 3600% 

Sampl. Int.: 4 msec 

Preliminary velocity analysis, Dip Move Out (DMO), 

velocity analysis after DMO, stack and time 

migration 

High resolution MCS 

seismic 

(CALAMARE) 

Source: 2 Sodera G.I. guns,  

Streamer: 600 m Group int.: 12.5 m 

Shot interval: 50 m 

Coverage: 600% 

Sampl. Int.: 1 msec 

Velocity analysis, stack, DMO, velocity analysis, 

stack 

Sub-bottom 

Seismic data 

16 hull mounted transducers CHIRP- 

Benthos sonar system (3-7 KHz sweep 

frequency) 

Data represented through variable density section 

with instantaneous amplitude 

Multibeam data Reson 8150 100 m grid 

Table 1 – Acquisition parameters, processing sequence and resolution of geophysical data used in this study 
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MCS line Base Messinian K reflector  Basement (high) 
Cala-05 5,8 sec 6,0 sec 8,2 sec (no high) 

Cala-13 5,8 sec 6,0 sec 8,1 sec (no high) 

MS-27 5,8 sec 6,0 sec 8,2 sec (no high) 

Cala-04 6,0 sec 6,4 sec 8,2 sec (7,8 sec) 

PM-01 6,0 sec 7,0 sec 8,2 sec (7,3 sec) 

Cala-14 6,4 sec 7,2 sec 8,4 sec (7,2 sec) 

M-2B 6,2 sec 7,2 sec 8,2 sec (7.7 sec) 

Cala 15 6,5 sec 7,4 sec 8,2 sec (7,4 sec) 

Table 2 - depth of principal seismic reflectors in 8 seismic lines (from West to East). 
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