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Abstract CO2 injection in saline aquifers is one solution to avoid the emission of

this greenhouse gas to the atmosphere. This process induces a pore-pressure build-up

around the borehole that generates tensile and shear micro-earthquakes which emit P

and S waves if given pressure thresholds are exceeded. Here, we develop a simple model

to simulate micro-seismicity in a layer saturated with brine, based on an analytical

solution of pressure diffusion and an emission criterion for P and S waves. The model

is based on poroelasticity and allows us to obtain estimations of the hydraulic diffusivity

on the basis of the location of the micro-earthquakes (defining the CO2 plume) and

the triggering time. Wave propagation of P and S waves is simulated with a full-

wave solver, where each emission point is a source proportional to the difference of

the pore pressure and the tensile and shear pressure thresholds. Finally a reverse-time

migration algorithm is outlined to locate the asynchronous sources induced by the fluid

flow, determinated by the maximum amplitude at each cell versus the back propagation

time.

Keywords CO2 injection and monitoring · fluid injection · micro-seismicity · wave
propagation · reverse-time migration

1 Introduction

Geological storage is an immediate option to solve in part the problem of CO2 emission

to the atmosphere. Practical choices are injection into hydrocarbon reservoirs and saline

aquifers (e.g., Arts et al., 2004; Carcione et al., 2006). It is essential to monitor the

injected plumes as they diffuse into the reservoir, and any leakage has to be carefully

detected. Active seismic methods can be used for a non-invasive location of the CO2

plume (e.g., Carcione et al., 2012). On the other hand, passive seismic emission caused

1Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante
42c, 34010 Sgonico, Trieste, Italy. E-mail: jcarcione@inogs.it
2 Istituto Nazionale di Geofisica e Vulcanologia (INGV) – Sezione di Catania, Catania, Italy.
3 Istituto Nazionale di Geofisica e Vulcanologia (INGV) – Sezione di Roma, Sismologia e
Tettonofisica, Roma, Italy.



2

by fluid injection can also be used, on the basis of the induced micro-cracks by the

fluid front (e.g., Vesnaver et al., 2010; Oye et al., 2013), since the fluid pressure may

exceed the fracture pressure in many parts of the reservoir and emit P and S waves. In

fact, induced seismic events of low magnitude are present during and after the injection

(e.g., Urbancic et al., 2009; Oye et al., 2013; Martinez-Garzón et al., 2013). Moreover,

micro-seismic data can be used to estimate the hydraulic diffusivity of the medium

(Shapiro et al., 1997; Angus and Verdon, 2013).

In this study, we first obtain the tensile and shear seismic sources generated by

CO2 injection in an infinite layer on the basis of an analytical solution of pressure

diffusion obtained by Mathias at al. (2011) and an emission criterion based on the

stiffness properties of the medium. Fluid injection in a borehole causes an increase of

the pore pressure in rocks, which implies a decrease of the effective stress, which, low

enough, can trigger micro-earthquakes in zones of weakness. Tensile and shear failure

occur as a consequence of the injection (Rutqvist et al., 2008; Stanchits et al., 2011)

and the common criterion to decide failure is based on a critical fluid pressure for

fracturing that exceeds a given tectonic stress. Rutqvist et al. (2008) conclude that it

is essential to have an accurate estimate of the in situ stress field to use this criterion.

It is easier to establish the failure criterion on the basis of the strength of the rock,

since this information (stiffness moduli) can be obtained from seismic data. The cri-

terion we adopt here is the following. If the pore pressure exceeds the tensile and/or

shear strength of the rock, defined by very small Young and shear moduli, there is

emission whose strength is proportional to the excess pressure. These thresholds are

assumed to vary on a fractal manner based on the von-Kármán correlation function

(e.g., Carcione and Gei, 2009). Langenbruch and Shapiro (2014) show that the

elastic heterogeneity of rocks obtained from sonic and density logs along

boreholes cause significant fluctuations of fracture reactivation and open-

ing pressures. As a result fluctuations of principal stress magnitudes are of

fractal nature. Correlation lengths of 1 m are assumed on the basis that the

heterogeneities are smaller than the wavelength of a seismic signal. In the

case of fine layering values from tens of cm to 1 m are realistic. The stiffness

moduli can be obtained from seismic and sonic-log data or from ultrasonic experiments

on cores. Other criteria exist to determine the emission, for instance, Rozhko (2010)

uses the effective-stress law and the Coulomb yielding stress; the parameters are ob-

tained from geo-mechanical triaxial laboratory measurements. Application of the

injection technology near urban areas may involve seismic hazards (e.g.,

Sminchak et al., 2001). Supercritical CO2 is lighter than water and may

cause pressure buildup leading to seismicity. The injection pressure at the

wellhead should not exceed a maximum which has to be calculated to as-

sure that the pore pressure does not initiate new fractures or propagate

existing fractures inducing micro-earthquakes of a given magnitude.

The hydraulic diffusivity of the medium can be obtained from the envelope of events

by representing the distance of the events to the injection point as a function of the

emission times. The calculated diffusivity can then be used to estimate the formation

permeability. Then, we simulate wave propagation of P and S waves, by using a for-

ward modeling algorithm based on the pseudospectral method (Carcione et al., 2006;

Carcione, 2015), to obtain microseismic data. Finally, we consider the location of the

microseismic sources. A partial review of the method used so far to locate hypocenters

of microseismic data can be found in Haldorsen et al. (2013). In particular they use a

full-waveform migration algorithm and an imaging condition based on “a semblance-
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weighted deconvolution between two or more reconstructed source signatures, requir-

ing similarity and simultaneity of the reconstructed signatures”. It is not clear if this

method deals with asynchronous sources. Here, we outline an automatic technique

to image asynchronous micro-earthquake sources, which should provide an image of

the CO2 cloud, by using reverse-time migration based on the Fourier pseudospectral

method (e.g., Baysal et al., 1983).

2 The model

The model is based on an analytical solution to obtain the pore pressure around the

injection point (Mathias et al., 2011) and an criterion for the emission of P and S waves.

We simulate the distribution of injection-induced micro-seismicity that depends on the

stiffness properties of the medium and the spatial distributions of emission sources

follows a fractal law (Rothert and Shapiro, 2003).

2.1 Pressure buildup

To obtain the pore pressure around a well due to CO2 injection in a brine saturated

formation, we use the analytical solution (Sol. 1, immiscible fluids) derived by Mathias

et al. (2009a,b). This solution gives the pressure as a function of time and radial

(horizontal) distance in a formation of thickness H and radius R. The solution, subject

to an initial pressure pi and constant injection rate m0, is given in Appendix A.

2.2 Emission criterion

Induced seismicity by fluid injection in a porous rock depends on the prop-

erties of the medium, basically on the relation between the fluid pressure

and the elastic properties of the skeleton. When the fluid pressure reaches

the fracture pressure, the dry-rock stiffnesses decrease dramatically (e.g.,

Shapiro, 2003; Carcione et al., 2006). A realistic expression of the dry-rock Young

and shear moduli, Ym and µm, respectively, has the form

A = a− b exp(−pe/p
∗), pe = pc − np (1)

(Shapiro, 2003; Carcione, 2015), where pc, p and pe are the confining, pore and effective

pressures, respectively, a, b and p∗ are constants, and n is the effective stress coefficient.

Constants a, b, p∗ and n define the strength of the medium to an applied pore pressure

and are found by fitting experimental data versus confining and pore pressures.

The rock emits elastic energy at a given fracture pressure P , which we assume to

occur at a small stiffness, i.e., if A = γa, where γ ≪ 1. Then,

P =
1

n

(
pc − p∗ ln

b

a(1− γ)

)
. (2)

Ym = µm = γa imply tensile and shear sources, respectively, whose strength is propor-

tional to the pressure difference p − PT (tensile) and p − PS (shear). There is tensile

emission when p > PT and shear emission when p > PS . The confining pressure
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is related to the vertical stress. It is implicitly assumed that there is a dif-

ferential stress and/or anisotropy (vertical compaction) to generate shear

failure.

Rutqvist et al. (2008) found that shear failure usually occurs at a lower injection

pressure than tensile hydro-fracturing. We assume that PS < PT and a fractal be-

haviour of these thresholds around an average value obtained from equation (2). Then,

we apply the procedure described in Appendix B. The approach is different from

that of Rothert and Shapiro (2003), who consider only reactivation of pre-

existing fractures and no tensile opening. These authors discretize the space

and consider a single threshold. Here, each cell emits only one time; after

the cell has emitted its stiffness is set to a very high value.

Rocks are in a subcritical state of stress in some regions. Fracture occurs

when the pore pressure is close but smaller than the confining pressure. At

the fracture pressure the rock starts to break which means that the rock

stiffness is approximately zero but not zero. Once determined the fracture

pressure, the threshold stiffness can be determined from equation (1). Most

fracture models are based on equations of the form P = k(pc−p)+p (Hubbert

and Willis (1957), where k is the effective stress ratio (also termed matrix

stress coefficient) set to k=1/3 by Hubbert and Willis (1957) but allowed

to vary with depth, in the range 0.3-1.0, by Pennebaker (1968), from values

of 0.3 for shallow layers to values near 1.0 at depths. Moreover, fracture

pressures can vary randomly according to the rock stiffness locally. Here,

we consider variations as in Rother and Shapiro (2003).

2.3 Seismic modeling

The synthetic seismograms are computed with a modeling code based on an isotropic

and viscoelastic stress-strain relation. The equations are given in Section 3.9 of Carcione

(2015) and the algorithm is based on the Fourier pseudospectral method for comput-

ing the spatial derivatives and a 4th-order Runge-Kutta technique for calculating the

wavefield recursively in time. The differential equations are outlined in Appendix C.

Each micro-earthquake is triggered at the emission time and location dictated by the

injection pressure, generating P and S waves which are recorded at the surface.

3 Example

We consider the Utsira Sand formation at the Sleipner field in the North Sea. At the

injection site it has 280 m thickness (top at 820 m and bottom 1100 m b.s.l.). The

sea bottom is located at nearly zb = 100 m depth and the caprock is a sealing unit,

a silty-mudstone layer 200 m thick approximately (Arts et al., 2008). We consider an

injection point in the middle of the aquifer at z0 = 960 m. The hydrostatic pressure is

pH = ρwgz, with ρw = 1040 kg/m3 the density of brine and g =9.81 m/s2, the gravity

constant. We obtain 8.4 MPa, 9.8 MPa and 11.2 MPa at the top, z0 and bottom,

respectively. The confining pressure is pc = ρwgzb + ρ̄g(z− zb), where ρ̄ =2100 kg/m3

is the average sediment density (taken from well logs). We obtain 15.8 MPa, 18.8 MPa

and 21.6 MPa at the top, z0 and bottom, respectively.
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The properties to simulate the injection are given in Table 1. The permeability

is an effective value because the formation contains low-permeability mudstone layers

(Arts et al., 2008). The analytical solution (Mathias et al., 2011) is compared to nu-

merical simulations using the TOUGH2 ECO2N commercial software (Pruess et al.,

1999; Pruess, 2005), which also considers thermal effect by solving in addition the

heat transport equation. The model assumes the following relationship between brine

effective saturation Se and capillary pressure pcp:

Se =

(
1 +

∣∣∣∣
pcp
pc0

∣∣∣∣
1/(1−m)

)
−m

, with Se =
1− S − Sr

1− Sr
(3)

(van Genuchten, 1980), where pc0 and m are the van Genuchten parameters. Linear

relative permeability functions are assumed for the gas and brine phases:

κrw = κrw0

(
1− S − Sr

1− Sgc − Sr

)
, κr = κrg0

(
S − Sgc

1− Sgc − Sr

)
, (4)

where Sgc is the critical gas saturation and κrw0 and κrg0 are the end-point relative

permeabilities. The properties used by the TOUGH2 code are: pc0 = 19.6 kPa, m =

0.46, Sgc = 0, κrw0 = 1, κrg0 = 0.3, the grain density ρs = 2650 kg/m3, the specific

heat capacity cp = 1000 J/kg/◦C and the thermal conductivity kr = 2.5 W/m/◦C.

The system is assumed to be initially free of CO2 at a temperature of 40 ◦C with an

hydrostatic pressure uniformly distributed in the radial direction. The reservoir obeys

at its sides impermeable and adiabatic boundary conditions. The constant mass flux

m0 of pure supercritical CO2 is injected at the well boundary. The radially symmetric

computational domain is vertically divided in 14 equally spaced layers of 20 m thickness.

In the radial direction, the domain is divided in 456 cells, whose spacing is finer (5 mm)

near the well and coarser (1500 m) at the outermost boundary. The radial symmetry

makes the problem basically two-dimensional. Figure 1 shows the pressure (a)

and saturation (b) profiles for different injection times. Comparisons with these non-

isothermal numerical results confirm that the analytical iso-thermal solution provides

acceptable estimates of pressure buildup.

We assume that at infinite effective pressure the dry-rock moduli are given by the

upper limits

K0 = Ks(1− φ) and µ0 = µs(1− φ) (5)

where Ks = 37 GPa and µs = 35 GPa are the grain bulk and shear moduli, (Carcione

et al., 2006). Since the Young modulus is related to the bulk and shear moduli as

Y = 9Kµ/(3K + µ), we obtain K0 = 23.7 GPa, µ0 = 22.4 GPa and Y0 = 51.1 GPa.

The moduli (1),

Ym = 51.1 − 50.6 exp(−pe/0.35) and µm = 22.4 − 22.37 exp(−pe/0.30), (6)

with n = 0.8 yields Km = 1.37 GPa and µm = 0.82 GPa at z = z0, are in agreement

with the experimental values (Carcione et al., 2006), where a and b are given in GPa

and p∗ is given in MPa in equation (6). Assuming γ = 0.03, the mean values (2) are

PT = 14.4 MPa and PS = 12.4 MPa. (7)

Figure 2 shows a vertical section of the fractal distribution of PT , where the medium

has 375 × 375 cells with a grid spacing of 100 m/375 = 0.26 m along the horizontal and
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vertical directions. The fractal parameters are P0 = PT (P0 = PS in the shear case),

with ∆Pm = 60 % P0, ν = 0.18, l = 1 m and d = 2. If PT or PS are smaller or equal

than 9.94 MPa (slightly above pi), we set their value to 9.94 MPa, since at hydrostatic

values of the pore pressure we assume no emission. Figure 3 shows the tensile (a) and

shear (a) emission sources after one hour of injection, where the events are 4006 and

22009, respectively.

The location of the events as a function of the emission time is represented in Figure

4, where the solid lines corresponds to

r =
√
4πDt (8)

(Shapiro et al., 1997), with D = 0.137 m2/s, where D is the hydraulic diffusivity. It

can be seen that from a distance of 50 m the density of events is strongly

decreasing. This signature occurs due to the small spatial extent of the

model. Moreover, there are many events at the distance of the triggering

front. These events correspond to cells where the initially selected critical

pressure is below the value of 9.94 MPa. The triggering front correspond

to this isobar in both the shear and the tensile events. This is why the

triggering front in both cases is identical. Thus, the difference of critical

pressure magnitudes for tensile and shear events have only an effect on the

density of the events.

There is an equation based on poroelasticity to estimate the value of D. According

to Biot theory, an approximation for a single fluid is

D =
MEmκ

EGη
(9)

(Shapiro et al., 1997; Carcione, 2015) where

M =
Ks

1− φ−Km/Ks + φKs/Kf
,

Em = Km +
4

3
µm,

EG = Em + ᾱ2M,

ᾱ = 1−
Km

Ks
,

(10)

where Kf is an effective fluid bulk modulus. Assuming, φ = 0.36, Km = 1.37 GPa,

µm = 0.82 GPa, Ks = 37 GPa, Kf = 0.3 GPa and η = 0.000963 Pa s, we obtain D =

0.13 m2/s, since the presence of CO2 implies a lower value of Kf . Conversely, equation

(9) can be used to estimate the permeability if the poroelastic properties and effective

fluid modulus are known.

The numerical modeling theory to compute passive microseismograms is illustrated

in Appendix C and the source implementation in Appendix D. We consider a numerical

mesh with nx = nz = 231 grid points and a grid spacing dx = dz = 5 m. The medium

is homogeneous with the properties vP = 1170 m/s, vS = 650 m/s and ρ = 2017 kg/m3

(from equation (41), see below), matching those of the Utsira formation (Carcione et

al., 2006). The source time history is

g(t) =
(
u−

1

2

)
exp(−u), u =

[
π(t− ts)

T

]2
, (11)
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where T is the period of the wave and we take ts = 1.4T . The peak frequency is

fp = 1/T = 25 Hz. The time step of the Runge-Kutta algorithm is 1 ms. Tensile

sources are described by equation (37) with δ = 0 and shear sources are described by

equation (38) with δ = π/2. Daugherty and Urbancic (2009) report magnitudes Mw

from − 2.3 to 0 from events caused by CO2 injection. Moment magnitude is related to

the seismic moment M0 as M0 = 101.5Mw+9 for M0 expressed in J (Joule). We consider

events with Mw = − 1, i.e., M0 = 107.5 J, although different magnitudes can be

modeled as well. Then, the non-zero components are Mzz = 1.8 MJ (tensile source)

and Mxz = 0.9 MJ (shear source). Figure 5a shows a snapshot where the radiation

pattern and relative amplitudes of the two types of sources can be observed. Theoretical

expressions and representations of the radiation patterns are given in Vavryčuk (2011).

To illustrate a simulation, we consider the interval 3000 s to 3020 s, with 52 shear

sources and 6 tensile sources. Figure 6 shows the model and a snapshot at 3000.5 s

corresponding to the first three shear sources and a tensile source, all synchronous with

onset times of 3000.056 s. The time parameter of the relaxation mechanisms is τ0 =

1/(2 π 25 Hz). In this simulation, absorbing strips are active to damp the wave fields

reaching the sides, top and bottom of the mesh to avoid wraparound (50 nodes at the

sides and 40 nodes in the vertical direction). The P-wave velocities are computed with

the model outlined in Appendix E. For simplicity, we assume a formation with average

dry-rock properties given by equations (39) and (40), with the properties reported

above and Kc = 25 MPa (Carcione et al., 2006), Kw = 2.63 GPa, ρs = 2650 kg/m3,

ρc = 869 kg/m3 and ρw = 1040 kg/m3. Figure 7 shows the P- and S-wave velocities

and bulk density as a function of the radial distance, based on the saturation shown

in Figure 1b. Note the remarkable change in the velocity of the compressional wave

due to the replacement of water near the well by CO2 with a very low bulk modulus.

However, at 3000 s the CO2 is practically confined around a few meters from the well

and the rest of the formation is still saturated with brine. The synthetic seismogram

and time histories are shown in Figures 8a and 8b, respectively. The solid and dashed

lines correspond to the receivers located at 330 m and 430 m and indicated with a

letter V in the figure. The events correspond to the four sources whose snapshots are

displayed in Figure 6. Figure 9 shows the time histories recorded at receivers 1 (left)

and 2 (right) shown in Figure 8, where we have assumed lossless media, i.e., Qν = ∞.

The corresponding simulation in the lossy case is displayed in Figure 10, where it is

clear that the wavefield has been attenuated and some events can be too weak to be

detected. The P and S events of the 58 sources and the reverberations in the layer can

be observed in these seismic traces.

Modeling is essential to map the location of the sources. Here, we briefly outline

a possible method based on reverse-time migration and an imaging condition, that

we shall develop in a future work in more detail. The algorithm is illustrated in Ap-

pendix F. To illustrate the method, we assume that the P and S wave fields have been

separated. Let us consider a simple example consisting in three sources of dissimilar

strength activated at different onset times. The mesh has 220 × 220 points with grid

spacing of 10 m along the horizontal and vertical directions. The model (seismic veloc-

ity) is known. In this example, we consider a layer with a velocity of 2 km/s embedded

in a background medium of velocity 2.5 km/s. The source central frequency is fp = 25

Hz and ts = 1.2/fp. The forward modeling uses dt = 1 ms and the field is propagated

0.8 s and recorded at a horizontal line of receivers at 300 m depth. Figure 11 shows a

snapshot at 320 ms (a) and the seismogram (b), where we can see that each source is

activated at different times. Each source has a different strength: in relative terms it
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is 1.2 (source 1), 1 (source 2) and 1.5 (source 3). In Figure 11a, from left to right the

source-onset times have a delay of 0, 160 ms and 100 ms, while their maxima have a

delay of 49, 209 and 149 ms, respectively, where 49 is ts/dt (see equation (11)). Then,

a proper imaging of each source occurs by back propagating (800 - 49) ms = 751 ms

(source 1), (800 - 209) ms = 591 ms (source 2) and (800 - 149) ms = 651 ms (source

3), where 800 ms is the maximum propagation time of the seismogram.

We represent in Figure 12 the maximum amplitudes of the images as a function of

the back propagation times, where the three maxima correspond to the sources. The

maxima occur at the grid points where the sources were implemented. The reverse-time

migration images are shown in Figure 13. The source numbers and propagation times

for an optimal focusing are indicated. It is clear that when the wave field is focused

almost at a point, a source has been located. The method is far from perfect since

wave-field constructive interference can enhance the amplitudes at some points where

no source is present. Therefore, this imaging method can miss some sources of the

CO2 cloud. A pattern recognition algorithm could be used in addition to determine

the source locations (Joswig, 1990) or an alternative technique, as for instance, seismic

interference (Sava, 2011).

Future work involves the use of more general simulations (e.g. Carcione et al., 2014)

and commercial software, such as TOUGH2, to model fluid flow in heterogeneous media

(e.g., Audigane et al., 2011).

4 Conclusions

Fluid-flow simulation and seismic methods are essential to monitor the presence of CO2

after and during the injection in geological formations. The success of the methodol-

ogy is subject to a correct description of the physical processes involved and use of

integrated geophysical methods. We propose a simple analytical model to describe the

pore-pressure build-up in a layer due to the injection and describe the emission of

seismic events due to the generation of micro cracks based on a criterion that takes

into account the stiffness moduli of the host rock. A poroelastic model allows us to

obtain the hydraulic diffusivity and permeability of the formation on the basis of the

location and onset time of the seismic events. We then introduce a realistic forward

modeling algorithm to simulate P- and S-wave propagation, where each source strength

and radiation pattern is determined by the pore pressure and a generalized moment-

tensor theory, respectively. Finally, we propose an algorithm to map the location of

the multiple sources, approximating the CO2 cloud, based on a reverse-time migration

algorithm and an imaging condition, where optimal focusing (maximum amplitude) of

the wave field back propagated in time occurs.



9

References

1. Abramowitz, M., and Stegun, I. A., 1964, Handbook of mathematical functions, National
Bureau of Standards, Applied Mathematical Series.

2. Angus, D. A., and Verdon, J. P., 2013, Using microseismicity to estimate formation
permeability for geological storage of CO2, Geophysics, doi:10.1155/2013/160758.

3. Arts, R. J., Chadwick, A., Eiken, O., Thibeau, S., and Nooner, S., 2008, Ten years’
experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway,
First Break, 26, 65-72.

4. Audigane, P., Chiaberge, C., Mathurin, F., Lions, J., Picot-Colbeaux, G., 2011, A work-
flow for handling heterogeneous 3D models with the TOUGH2 family of codes: Appli-
cations to numerical modeling of CO2 geological storage, Computers & Geosciences, 37,
610-620.

5. Baysal, E., Kosloff, D. D., and Sherwood, J. W. C., 1983, Reverse time migration, Geo-
physics, 48, 1514-1524.

6. Carcione, J. M., 2015, Wave Fields in Real Media. Theory and numerical simulation
of wave propagation in anisotropic, anelastic, porous and electromagnetic media, 3rd
edition, Elsevier.
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Table 1. Material properties and dimensions.

φ 0.36

κ 0.2 D

κr 0.3

Cw 0.38 1/GPa

Cr = 1/Km 0.73 1/GPa

η 0.0847 × 10−3 Pa s

ηw 0.000963 Pa s

ρc 869 kg/m3

Sr 0.5

m0 300 Kg/s

pi 9.8 MPa

r0 0.2 m

H 280 m

R 20 km

b 0

br 0

A Solution of the pressure equation

We use the solution obtained by Mathias et al. (2009a,b, 2011) to model the pressure buildup
in a layer of thickness H and finite radial extent around a well, subject to a constant injection
rate. The assumptions are i) The pressure is constant along the vertical direction, ii) Capillary
pressure are neglected, ii) The CO2 and brine phases are immiscible, iv) Relative permeability
is linear with the saturation, iv) The properties are uniform, and v) The radial extent is much
greater than the hole radius. On the basis of the list of symbols give below, the solution is

p̂(t, r) = E(2/γ) − 1

2
ln

(
x

2γ

)
− 1 +

1

γ
+

β√
xt̂
, x ≤ 2γ

= E(2/γ) −
√

x

2γ
+

1

γ
, 2γ < x < 2/γ,

= E(x), x ≥ 2/γ

(12)

where

E(x) =
1

2γ
E1

(
αx

4γ

)
t̂ ≤ t̂c,

=
2t̂

αR̂2
− 1

γ

[
3

4
− 1

2
ln

(
R̂2

xt̂

)
− (γx− 2)t̂

2γR̂2

]
, t̂ > t̂c,

(13)

where E1 (x) = − Ei (−x) is the exponential integral, and

t̂ =
m0t

2π(1− Sr)φHr20ρc
, γ =

η

κrηw
, R̂ =

R

r0
,

p̂ =
2πHρcκrκ(p − pi)

m0η
, r̂ =

r

r0
, t̂c =

αR̂2

2.246γ
,

α =
m0η(Cr + Cw)

2π(1 − Sr)Hρcκrκ
, β =

m0κrκbrb

2πHr0η
, x =

r̂2

t̂
.

(14)
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Equation (13) assumes that the radial extent of the CO2 plume is much smaller than R (closed
formation). The whole solution corresponds to Eqs. 20 and 42 in Mathias et al. (2011).

Mathias et al. (2009a)(Eq. 26) provide a solution for the CO2 brine interface elevation,
which translated to CO2 saturation is

S = 1− Sr , x ≤ 2γ

=
1− Sr

γ − 1

(
γ −
√

2γ

x

)
, 2γ < x < 2/γ,

= 0, x ≥ 2/γ.

(15)

This solution is valid for α≪ 1.
The symbols are defined as follows.

b = Forchheimer parameter, m−1

br = Relative Forchheimer parameter
Cr = Rock compressibility, (Pa)−1

Cw = Brine compressibility, (Pa)−1

η = CO2 viscosity, Pa s
ηw = Brine viscosity, Pa s
κr = CO2 relative permeability
κ = Permeability, m2

H = Formation thickness,m
m0 = Mass injection rate, kg s−1

φ = Porosity
p = Pressure, Pa
pi = Initial pressure, Pa
r = Radial distance,m
r0 = Well radius,m
R = Formation radius,m
ρc = CO2 density, kg m−3

S = CO2 saturation
Sr = Residual brine saturation
t = Time, s

(16)

Units are given in the SI system.
A generalisation should consider a non-linear pressure equation, since the per-

meability depends on the pressure field, meaning that the diffusivity varies with
pressure. The reason is that cracks re-open when the pore pressure exceeds a given
threshold. There are several permeability-pressure models ranging from exponen-
tial laws (e.g., Palmer and Mansoori, 1998) to power laws (Gangi and Carlson,
1996). Shapiro and Dinske (2009) and Hummel and Shapiro (2012) use basically
a model similar to that of Gangi and Carlson (1996).

B Fractal failure criterion

We vary the threshold P fractally. Let ∆Pm be the maximum deviation from the background
value P0. P at r is first subjected to the variations (∆P )r , such that

−∆Pm ≤ (∆P )r ≤ ∆Pm, (17)

where (∆P )r is obtained from a random generator, and the superindex “r” denotes random.
(Random numbers between 0 and 1 are generated and then scaled to the interval [−1, 1]∆Pm.)

The fractal variations can be described by the von Kármán autocovariance function. The
exponential function used by Rothert and Shapiro (2003) is a particular case of this function,
which is widely used in seismic applications (e.g., Carcione et al., 2003). The corresponding
wavenumber-domain spectrum of the von Kármán function.is

S(k1, k2) = C(1 + k2l2)−(ν+d/2), (18)
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where k =
√
k21 + k22 is the wavenumber, l is the correlation length, ν (0 < ν < 1) is a self-

similarity coefficient, C is a normalization constant, and d is the Euclidean dimension. The
von Kármán correlation function describes self-affine, fractal processes of fractal dimension
d + 1 − ν at scales smaller than l. Correlation lengths can be determined from the
power spectral density of physical rock properties determined from well-logging
data, such as sonic logs (e.g., Holliger, 1997).

The threshold P is then calculated as

P (x, y) = P0 ±∆P (x, y), (19)

where

∆̃P (k1, k2) = ˜(∆P )
r
(k1, k2)S(k1, k2, ), (20)

with ˜(∆P )
r
(k1, k2) being the Fourier transform of (∆P )r(x, y). (The tilde denotes the space

Fourier transform.)
The variation range ∆P around the mean value may determine the number of

events. The larger this range the higher this number.

C Viscoelastic differential equations

The time-domain equations for 2D wave propagation in a heterogeneous viscoelastic medium
can be found in Carcione et al. (2008) and Carcione (2015). The anelasticity is described by
the standard linear solid, also called the Zener model, that gives relaxation and creep functions
in agreement with experimental results.

The two-dimensional velocity-stress equations for anelastic propagation in the (x, z)-plane,
assigning one relaxation mechanism to dilatational anelastic deformations (ν = 1) and one
relaxation mechanism to shear anelastic deformations (ν = 2), can be expressed by

i) Euler-Newton’s equations:

v̇x =
1

ρ
(σxx,x + σxz,z) + fx, (21)

v̇z =
1

ρ
(σxz,x + σzz,z) + fz , (22)

where vx and vz are the particle velocities, σxx, σzz and σxz are the stress components, ρ is the
density and fx and fz are the body forces. A dot above a variable denotes time differentiation.

ii) Constitutive equations:

σ̇xx = K(vx,x + vz,z + e1) + µ(vx,x − vz,z + e2) + Ṁxx, (23)

σ̇zz = K(vx,x + vz,z + e1)− µ(vx,x − vz,z + e2) + Ṁzz, (24)

σ̇xz = µ(vx,z + vz,x + e3) + Ṁxz, (25)

where e1, e2 and e3 are memory variables, Mij are moment-tensor components and k and µ
are the unrelaxed (high-frequency) bulk and shear moduli, respectively, given by K = ρ(v2P −
4v2S/3) and µ = ρv2S , where vP and vS are the P- and S-wave velocities.

iii) Memory variable equations:

ė1 =

(
1

τ
(1)
ǫ

− 1

τ
(1)
σ

)
(vx,x + vz,z)−

e1

τ
(1)
σ

, (26)

ė2 =

(
1

τ
(2)
ǫ

− 1

τ
(2)
σ

)
(vx,x − vz,z)−

e2

τ
(2)
σ

, (27)

ė3 =

(
1

τ
(2)
ǫ

− 1

τ
(2)
σ

)
(vx,z + vz,x)−

e3

τ
(2)
σ

, (28)
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where τ
(ν)
σ and τ

(ν)
ǫ are material relaxation times, corresponding to dilatational (ν = 1) and

shear (ν = 2) deformations.
The relaxation times can be expressed as

τ
(ν)
ǫ =

τ0

Qν

(√
Qν

2 + 1 + 1

)
, τ

(ν)
σ = τ

(ν)
ǫ − 2τ0

Qν
, (29)

where τ0 is a relaxation time such that 1/τ0 is the center frequency of the relaxation peak and
Qν are the minimum quality factors.

D Tensile and shear sources

The moment-tensor components in 3D space are

Mij = M0mijδ(x)δ(y)δ(z)g(t) (30)

where M0 is the moment tensor, δ is Dirac delta and g(t) is the source time history, which
satisfies ∫

∞

0

|ġ|dt = 1 (31)

(Carcione et al., 2014). The discrete version of the moment-tensor components are

Mij =
M0

dxdydz
mijg(t), (32)

where dx, dy and dz are the grid spacings (dy =1 in the 2D case).
The moment-tensor theory describing tensile and shear sources is given, for instance, in

Vavryčuk (2011). We have

√
2 m =

(
2n1ν1 n1ν2 + n2ν1 n1ν3 + n3ν1

n1ν2 + n2ν1 2n2ν2 n2ν3 + n3ν2
n1ν3 + n3ν1 n2ν3 + n3ν2 2n3ν3

)
(33)

where
n1 = − sin δ sinφ,
n2 = sin δ cosφ,
n3 = − cos δ,

(34)

ν1 = (cos λ cosφ+ cos δ sinλ sinφ) cosϕ− sin δ sinφ sinϕ,
ν2 = (cos λ sinφ− cos δ sinλ cos φ) cosϕ+ sin δ cosφ sinϕ,
ν3 = − sinλ sin δ cosϕ− cos δ sinϕ,

(35)

where here δ, λ and φ are the dip, rake and strike angles, respectively, and ϕ is the slope angle
describing the tensility of the source, such that ϕ = 90o for pure extensive sources, ϕ = 0o for
shear sources and ϕ = − 90o for pure compressive sources. The components satisfy mijmij =

1, where implicit summation is assumed. This implies the
√
2 normalization in equation (35).

For ϕ = 0, we recover the usual moment-tensor components describing shear faulting:
√
2m11 = −(sin δ cosλ sin 2φ+ sin 2δ sinλ sin2 φ),√
2m12 = (sin δ cosλ cos 2φ+ 1

2
sin 2δ sinλ sin 2φ),√

2m13 = −(cos δ cosλ cosφ+ cos 2δ sinλ sinφ),√
2m22 = (sin δ cosλ sin 2φ− sin 2δ sinλ cos2 φ),√
2m23 = −(cos δ cosλ sinφ− cos 2δ sinλ cosφ),√
2m33 = sin 2δ sinλ.

(36)

Here we consider the 2D case and pure tensile and shear sources. In the first case, we
assume ϕ = λ = φ = 90o, giving

√
2mxx = 2 sin2 δ,

√
2mzz = 2 cos2 δ,

√
2mxz = sin 2δ, (37)

while shear sources are described by ϕ = 0 and λ = φ = 90o giving
√
2mxx = − sin 2δ,

√
2mzz = sin 2δ,

√
2mxz = − cos 2δ. (38)
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E Porous-media model

To obtain the unrelaxed moduli K and µ for partial saturation, we consider Gassmann equa-
tions by which

K = Km + ᾱ2M, (39)

where Km = Cr , and ᾱ and M are given in equation (10) (e.g., Carcione, 2015). The effective
fluid bulk modulus is given by Wood equation,

Kf =

(
S

Kc
+

1− S

Kw

)
−1

, (40)

where Kc and Kw = 1/Cw are the bulk moduli of CO2 and brine, respectively.
On the other hand, the density is

ρ = (1− φ)ρs + φ[Sρc + (1− S)ρw], (41)

where ρs, ρc and ρw are the solid, CO2 and brine densities, respectively.
Then, the P- and S-wave velocities are given by

vP =

√
K + 4µm/3

ρ
and vS =

√
µm

ρ
, (42)

respectively.
A more refined and accurate method is to consider the poro-viscoelastic model used in

Carcione et al. (2012) and based on White mesoscopic theory, which also gives a physical
estimations of the loss parameters Q1 and Q2.

F Location of sources. Reverse-time migration

Sources can be located by a reverse-time migration algorithm for instance (McMechan, 1982),
although the wave equation given in appendix C cannot be back propagated with ease due
to the presence of seismic attenuation. First, it is difficult to obtain an attenuation model
from seismic data with enough accuracy to correct for amplitude loss and velocity dispersion.
Second, that equation is not time reversible, although there are a few techniques based on Q
compensation to deal with seismic loss in migration algorithms, e.g., Zhu et al. (2014).

A time-reversible 2D elastic wave equation is the impedance-matching equation

v̈x = cP ∂xcP (∂xvx + ∂zvz)− 2cS∂xcS∂zvz + cS∂zcS (∂zvx + ∂xvz) ,

v̈z = cP ∂zcP (∂xvx + ∂zvz)− 2cS∂zcS∂xvx + cS∂xcS (∂zvx + ∂xvz)
(43)

(Carcione et al., 1994), where ∂i is the spatial derivative with respect to xi and cP and cS are
the P- and S-wave velocities. Since each discontinuity at the subsurface can generate unwanted
secondary fields, it is desirable to suppress these effects. Equation (43) is the result of using
the density as a parameter so that there is no discontinuity in acoustic impedance.

If the wave field can be separated into P and S waves (e.g., Robertsson and Curtis, 2002),
so that these fields can be migrated separately, the wave equation for each mode is

ψ̈ = c (∂xc∂x + ∂zc∂z)ψ, (44)

(Carcione et al., 2003; Gajewski and Tessmer, 2005), where c is the wave velocity, which may
correspond to P waves or to S waves.

The discretization of equation (44) in a uniform mesh with square cells and based on a
O(2,∞)-scheme is

ψn+1
i,j − 2ψn

i,j + ψn−1
i,j

dt2
= c (∂xc∂x + ∂zc∂z)ψ (45)

(e.g., Abramowitz and Stegun, 1964), where t = ndt and the spatial derivatives are computed
with the Fourier pseudospectral method, as in Baysal et al. (1983).
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Back-propagation is performed from (45) as

ψn−1
i,j = 2ψn

i,j − ψn+1
i,j + cdt2 (∂xc∂x + ∂zc∂z)ψ. (46)

The elastic wave equation (43) can easily be discretized and its back-propagation version
obtained in the same manner. In the migration process, the seismogram is a time-dependent
boundary condition in equation (46). The time step dt is equal to the sample rate of the data.
The seismic trace is applied at each receiver in reverse time and the propagation goes back
in time until the origin time, where the best focusing occurs. The reverse modeling sums the
energy of all receivers, enhancing the signal-to-noise ratio.

The imaging condition is that of Gajewski and Tessmer (2005), i.e., the origin times of
the events are given by the time where maximum focusing (maximum amplitude) occurs. In
our case, this is performed for each grid point of the mesh and we choose a number of sources
whose relative amplitudes exceed a given threshold. The problem is that the sources are not
synchronous. A simple method applied here considers the maximum amplitudes at the grid as
a function of the back propagation time.
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Fig. 1 CO2 injection in sand. Pressure (a) and saturation (b) profiles as a function of the
radial distance from the well at different injection times, where the solid lines correspond to
the analytical solution and the open circles refer to simulations obtained with the commercial
software TOUGH2 ECO2N. The fluids are immiscible.
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Fig. 2 Random distribution of the failure criterion PT (in MPa) based on the Young modulus.
The medium is divided into 375 × 375 cells.
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Fig. 3 Cloud of tensile (a) and shear (b) events
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Fig. 4 Location of the tensile (a) and shear (b) events as a function of the emission time,
where the solid lines corresponds to equation (8) with D = 0.137 m2/s.
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Fig. 5 Snapshot of the vertical component of the particle velocity at 0.4 s, showing the
radiation patterns of the tensile and shear sources. The maximum value is 8.4 mm/s
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Fig. 6 Geological model and snapshot at 3000.05 s, where three shear sources and one tensile
source are active. The unrelaxed velocities, density and loss parameters are shown. The star
indicates the injection point and the dashed line represents the receivers.
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Fig. 7 Unrelaxed wave velocities and density as a function of the radial distance at 3000 s
from the onset of injection.
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Fig. 8 Synthetic seismogram (a) and time history at the two receivers indicated with a V
letter (b); receiver 1 (solid line) and receiver 2 (dashed line).
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Fig. 9 Time histories recorded at receivers 1 (a) and 2 (b) shown in Figure 8. The media are
lossless.
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Fig. 10 Time histories recorded at receivers 1 (a) and 2 (b) shown in Figure 8. The media
are lossy.
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Fig. 11 Snapshot (a) and seismogram (b) corresponding to three sources activated at different
onsets. The location of the sources are indicated by stars and the seismic events are labeled
by the source that has generated them. The dashed line are the receivers.
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Fig. 12 Wave field maxima at the images obtained by reverse-time migration as a function
of the back propagation time. The numbers correspond to the the sources in Figure 11.
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Fig. 13 Reverse-time migration images at different back propagation times, where the wave
field has been focused at each source location. The numbers indicate the sources.


