Abstracts Volume 6th International INQUA Meeting on
Paleoseismology, Active Tectonics and
Archaeoseismology
19 | 24 April 2015, Pescina, Fucino Basin, Italy
6TH INTERNATIONAL INQUA MEETING ON
PALEOSEISMOLOGY, ACTIVE TECTONICS AND ARCHAEOSEISMOLOGY

19 | 24 APRIL 2015, PESCINA, FUCINO BASIN, ITALY

Editors Anna Maria Blumetti, Francesca Romana Cinti, Paolo Marco De Martini, Fabrizio Galadini, Luca Guerrieri
Alessandro Maria Michetti, Daniela Pantosti, Eutizio Vittori
The Fucino 2015 Organizing Committee
Anna Maria Blumetti (ISPRA - Istituto Superiore per la Protezione e la Ricerca Ambientale) annamaria.blumetti@isprambiente.it
Francesca Romana Cinti (INGV - Istituto Nazionale di Geofisica e Vulcanologia) francesca.cinti@ingv.it
Paolo Marco De Martini (INGV - Istituto Nazionale di Geofisica e Vulcanologia) paolomarco.demartini@ingv.it
Fabrizio Galadini (INGV - Istituto Nazionale di Geofisica e Vulcanologia) fabrizio.galadini@ingv.it
Luca Guerrieri (ISPRA - Istituto Superiore per la Protezione e la Ricerca Ambientale) luca.guerrieri@isprambiente.it
Alessandro Maria Michetti (Università degli Studi dell’Insubria) alessandro.michetti@uninsubria.it
Daniela Pantosti (INGV - Istituto Nazionale di Geofisica e Vulcanologia) daniela.pantosti@ingv.it
Eutizio Vittori (ISPRA - Istituto Superiore per la Protezione e la Ricerca Ambientale) eutizio.vittori@isprambiente.it

Scientific committee
Alfonsi L., Amit R., Audemard F., Baize S., Boncio P., Bosi C., Comerchi V., Costa C., Doglioni C., Galli P., Grutzner C.,
Hinzen K., Karakhanian A., Kim Y.S., Livio F., Masana E., Mc Calpin J., Messina P., Okumura K., Papanikolaou I.,
Perez Lopez R., Piccardi L., Porfido S., Reichert K., Roberts G., Rockwell T., Saroli M., Schwartz D., Scotti O.,
Serva L., Silva P.G., Smedile A., Szcucinski W., Tatevossian R. and Villani F.
A contribution to seismic hazard assessment of the Salento Peninsula (Apulia, Southern Italy)

(1) Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli - Osservatorio Vesuviano, Napoli, Italy. Email: rosa.nappi@ingv.it
(2) CNR-IAMC Napoli, Italy

Abstract: The aim of this study is a critical revision of historical and recent seismicity of the Salento peninsula (Apulia, Southern Italy), offering an updated evaluation of its seismic hazard currently underestimated. This area is actually included in the least dangerous IV category of the Italian seismic classification. The Salento Peninsula was struck by the February 20, 1743 earthquake, considered as the strongest seismic event of this area. The reassessment of both the macroseismic effects on man-made structures, and the triggered effects in the natural environment has been carried out on the basis of archival documents and recent literature, according to the MCS and the ESI 2007 scale. The main result of our study has been the re-evaluation of the maximum intensity (Imax=XMCS) of the 1743 earthquake, besides new intensity values for some localities along the Apulian coasts.

Key words: Salento, 1743 earthquake, ESI 2007 scale, historical seismicity, seismically-induced effects, instrumental seismicity.

INTRODUCTION

The geodynamic framework of the Apulian area is characterized by the subduction of the Ionian slab beneath the Calabrian Arc; such compressive regime is still active (Caputo et al., 1970; Castello et al., 2006). The Salento peninsula (Apulia, Southern Italy) is considered the stable foreland of the Southern Apennines chain (Cinque et al., 1993, Gambini & Tozzi, 1996), although it has been epicentral area of several earthquakes over the last centuries with magnitude 3 ≤ Mw ≤ 5, apart from the February 20, 1743 earthquake with Mw=7.1 (CPTI11, Rovida et al., 2011). This area is also affected by significant seismicity of the surrounding regions: to the east the coast of Albania and the Ionian Islands (western Greece); to the west the Calabrian arc and the Southern Apennines chain (Fig. 1). The Salento area is actually included in the least dangerous IV category of the Italian seismic classification (http://www.protezionecivile.gov.it/resources/cms/documents/A3_class20140605.pdf).

The main goal of this paper is to provide a contribution to the Salento seismic hazard evaluation through the following investigations:

- Analysis of historical and recent seismicity from available catalogues of the Apulia region and particularly of the Salento peninsula;
- Analysis of historical and recent seismicity of the Salento surrounding regions (Adriatic and Ionian sea, Albania and Greece) in order to identify the seismoinduced effects in the Salento area;
- Identification and evaluation of earthquake environmental effects of the February 20, 1743 earthquake from archival documents and scientific papers;
- Macroseismic revision of the February 20, 1743 earthquake according to the Mercalli-Cancani-Sieberg scale (MCS) and to the Environmental Seismic Intensity scale (ESI 2007) (Michetti et al., 2007; Guerrieri et al., 2012).

DATA ANALYSIS

The historical and recent seismicity in the Apulia region is characterized by a greater frequency of earthquakes in the northern sector compared to the southern one (Fig. 1).

Figure 1: The map shows the spatial distribution of historical and recent seismicity extracted from: CPTI11 (Rovida et al., 2011) and SHEEC, (Stucchi et al., 2013; Grünthal et al., 2013).

Over the last centuries, the Apulia region from Gargano to Salento has been affected by significant earthquakes (Fig. 2), the most important of which have been extracted from the seismic catalogues CPTI11 (Rovida et al., 2011) and SHEEC (Stucchi et al. 2013; Grünthal et al., 2013), and occurred in:
According to the above mentioned catalogues, the 1743 earthquake epicenter is located in the Ionian sea, but the maximum intensity refers to some localities on land. The instrumental recent seismicity of the Salento peninsula is mainly concentrated around the Strait of Otranto, with the strongest events recorded on October 20, 1974 (Mw = 5.0), (CPTI11, Rovida et al., 2011) and May 7, 1983 (ML = 5.3) (CSI 1.1, Castello et al., 2006). The 1627, 1731, 1743 and 1889 earthquakes also generated considerable seismo-induced environmental effects such as tsunami deposits along the Apulian coasts, landslides, liquefaction phenomena and hydrological changes (Margottini, 1982; De Simone, 1993; De Martini et al., 2003; Mastronuzzi et al., 2007; Maramai et al., 2014). The whole Apulia region has also been struck by strong earthquakes of neighbouring seismogenetic areas located in the Southern Apennines, Adriatic and Ionian Sea, Albania and Greece. Several ground effects, mostly hydrological variations, have been triggered in Northern Apulia by the July 23, 1930 Irpinia earthquake (Imax = X MCS) and the November 23, 1980 Irpinia-Basilicata earthquake (Imax = XI MCS) (Porfido et al. 2002, Porfido et al. 2007). The strongest historical seismic events of the Campania-Lucania Apennines that produced intensity values of I ≥ VI MCS in the Salento area, are the following:

- the 1456 Molise earthquake, Imax = XI MCS;
- the 1694 Irpinia-Basilicata earthquake, Imax = XI MCS;
- the 1857 Basilicata earthquake, Imax = XI MCS.

In addition, well documented examples of Greek earthquakes strongly felt in Salento and in the whole Apulia region were:

- the August 27, 1886 earthquake (epicenter in Peloponnesus, Greece) which was felt in the Salento area with very high values of intensity (I=VIII MCS) (Margottini, 1982; Papazachos & Papazachou, 2003; Serva & Michetti, 2010; Grünthal et al., 2013);
- the May 28, 1897 earthquake (epicenter in Tripole, Greece) with intensity I=VI MCS in the Salento area (Margottini, 1982; Papazachos & Papazachou, 2003; Serva & Michetti, 2010, Grünthal et al., 2013);
- the August 11, 1903 earthquake (epicenter in Peloponnesus area) with I=V MCS in the Salento area (Margottini 1982; Serva & Michetti, 2010);
- the June 26, 1926 earthquake (epicenter between Creta and Cipro, Imax=X MCS) which was severely felt all over the Southern Italy. The intensity in the town of Taranto (western Salento) was IV-V MCS (Castenetto et al., 1986);
- the August 28, 1962 earthquake (epicenter in Peloponnesus area) with I=IV-V MCS in the Salento area (Margottini 1982; Serva & Michetti, 2010).

The Salento peninsula was severely hit by the February 20, 1743 earthquake (I=IX MCS, Mw=7.1; CPTI11, Rovida et al., 2011), considered the strongest seismic event of the area, which also generated a large tsunami (Fig. 3) according to the Euro-Mediterranean Tsunami Catalogue (Maramai et al., 2014; NGDC/WDS, 2014). The 1743 epicenter is still very controversial due to the different locations ascribed respectively on land, near the town of Nardò (CFTIMED04, Guidoboni et al., 2007) and offshore, in the Ionian sea (CPTI11, Rovida et al., 2011). This earthquake caused mostly severe damage in Salento, killing about 180 people, 150 of which in the town of Nardò (Lecce), and inflicted heavy damage also in Francavilla Fontana (Brindisi) (Margottini, 1981, 1985). The seismic event was extensively felt on the

Figure 2: The map shows the spatial distribution of historical earthquakes occurred in the Apulian region, from Gargano to Salento, and in the Southern Italy extracted from CPTI11 (Rovida et al., 2011).

Figure 3: Boulders attributed to the 1743 seismo-induced tsunami on the Salento eastern coast (Torre S. Emiliano near Otranto (Lecce). (Photo by S. Porfido).
western coast of Greece, on the Malta island, in Southern Italy and in some localities of Central and Northern Italy.

DISCUSSION AND CONCLUSIONS

On the basis of recent scientific papers, (Margottini, 1981; Margottini, 1985; Ferrari, 1987; De Simone, 1993; Boschi et al., 1995; Galli & Naso, 2008, Nappi et al., 2014) and historical documents revision (De Giorgi, 1898; Baratta, 1901), a new estimation of the 1743 MCS intensity values of some localities, has been carried out. Furthermore, a critical review of archival documents coeval to the 1743 earthquake, found in the National Archives and church archives, has been performed. For obtaining a more accurate seismic hazard evaluation of the Salento area we have taken into account also geomorphologic data relative to environmental earthquake effects (Mastronuzzi et al., 2007; Nappi et al., 2014; De Lucia et al., 2014), and architectural elements (De Lucia et al., 2013). The revision of the MCS intensity values and the assessment of the intensity according to the ESI scale, for some localities of the Salento area, have been performed on the basis of all the collected data and the seismoinduced environmental effects.

On the basis of the MCS scale, our re-evaluation has assigned the value of X MCS intensity to the town of Nardò, whose previous intensity value was IX MCS (Margottini, 1981, 1985; Boschi et al., 1995; Guidoboni et al., 2007) and the value of IX - X MCS (Galli & Naso, 2008); the value of IX MCS to Francavilla Fontana, VIII MCS to Castrignano del Capo, Leverano, Mesagne, Tuturano, Manduria, Racale, Salve, and VII MCS to the localities of Calimera, Copertino, Lecce, Oria, Ostuni, Scili (Fig. 4).

For our re-evaluation of the 1743 earthquake on the basis of ESI scale, the tsunami phenomenon along the southern Adriatic coastline of Salento has been the most important environmental effect (Mastronuzzi et al., 2007; Mastronuzzi et al., 2011). Accordingly, for the town of Brindisi the ESI intensity value has been raised up from VIII to IX, due to the damage of the harbour mole caused by the tsunami.

Moreover, it has been possible to assess the ESI intensity values of VIII≥I ≥ X for the localities of Torre Sasso (Tricase) and Torre San' Emiliano (Otranto), along the coastline of the Salento peninsula, on the basis of the tsunami blocks dimensions consisting of large boulders with a maximum weight of about 70 tons (Mastronuzzi et al., 2007). Ground effect phenomena triggered by the 1743 earthquake also occurred in the town of Nardò where variations of the water flow rate of wells together with variations of chemical-physical properties of water were observed. A wide area that includes Albania, Greece and Malta Island (Ambraseys, 2009; Galea, 2007) suffered also significant ground seismo-induced effects. Indeed, in the northern area of the island of Kefalonia (Greece) changes of chemical-physical properties of water occurred, in Castel Sant’Angelo (Corfù, Greece) and Malta island landslides took place, and in Butrinto fortress (Albania) ruptures and probably liquefaction phenomena were observed.

In conclusion, a new macroseismic scenario for the 1743 earthquake has been hypothesized (Imax=X MCS), taking into account both the archival and geomorphological data. The earthquake triggered environmental effects that should be taken into account for the seismic intensity assessment, especially considering the destructive tsunami impact on the coastline of the Salento, currently crowded with tourists.

Consequently, the seismic hazard of the Salento peninsula must be re-evaluated and further study should be dedicated to this area, considering also a possible revision of the seismic classification.

Acknowledgements: We thank Prof. G. De Natale, Director of the Osservatorio Vesuviano, INGV (Napoli, Italy) that encouraged and supported this research; Prof. M.O. Spedicato and Prof. L. Ruggiero of the University of Salento; Prof. E. De Simone of the Liceo Scientifico Banzi Bazzoli of Lecce, for the useful discussion about the historical data of the Salento seismicity.

References

Figure 4: Map of the intensity values of the 1743 Salento earthquake: CFTIMED, 2007 MCS intensity values (red squares); re-evaluated MCS Intensity values in this study (yellow squares); re-evaluated ESI Intensity values in this study (yellow striped squares).
INQUA Focus Group on Paleoseismology and Active Tectonics
