Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9886
DC FieldValueLanguage
dc.contributor.authorallKanduč, T.; Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Sloveniaen
dc.contributor.authorallGrassa, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallMcIntosh, J.; Department of Hydrology and Water Resources, University of Arizona, 1133 E. James E, Rogers Way, Tucson, AZ 85721, USAen
dc.contributor.authorallStibilj, V.; Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Sloveniaen
dc.contributor.authorallUlrich-Supovec, M.; HGEM D.O.O., Zaloška 143, Ljubljana, Sloveniaen
dc.contributor.authorallSupovec, I.; HGEM D.O.O., Zaloška 143, Ljubljana, Sloveniaen
dc.contributor.authorallJamnikar, S.; Velenje Coal Mine, Partizanska 78, 3320 Velenje, Sloveniaen
dc.date.accessioned2015-06-11T13:40:33Zen
dc.date.available2015-06-11T13:40:33Zen
dc.date.issued2014-03-04en
dc.identifier.urihttp://hdl.handle.net/2122/9886en
dc.description.abstractThe geochemical and isotopic composition of surface waters and groundwater in the Velenje Basin, Slovenia, was investigated seasonally to determine the relationship between major aquifers and surface waters, water–rock reactions, relative ages of groundwater, and biogeochemical processes. Groundwater in the Triassic aquifer is dominated by HCO3 –, Ca2+, Mg2+ and δ13CDIC indicating degradation of soil organic matter and dissolution of carbonate minerals, similar to surface waters. In addition, groundwater in the Triassic aquifer has δ18O and δD values that plot near surface waters on the local and global meteoric water lines, and detectable tritium, likely reflecting recent (<50 years) recharge. In contrast, groundwater in the Pliocene aquifers is enriched in Mg2+, Na+ , Ca2+, K+, and Si, and has high alkalinity and δ13CDIC values, with low SO4 2– and NO3 – concentrations. These waters have likely been influenced by sulfate reduction and microbial methanogenesis associated with coal seams and dissolution of feldspars and Mg-rich clay minerals. Pliocene aquifer waters are also depleted in 18O and 2H, and have 3H concentrations near the detection limit, suggesting these waters are older, had a different recharge source, and have not mixed extensively with groundwater in the Triassic aquifer.en
dc.description.sponsorshipProjects Z1-2052 and L1-5451 funded by the Slovenian Research Agency (ARRS) and the Velenje coalmine D.D.en
dc.language.isoEnglishen
dc.publisher.nameSpringer-Verlag Germanyen
dc.relation.ispartofHydrogeology Journalen
dc.relation.ispartofseries/22(2014)en
dc.subjectHydrogeochemistry . Stable isotopes . Groundwater/surface-water relations . Groundwater age . Sloveniaen
dc.titleA geochemical and stable isotope investigation of groundwater/surface-water interactions in the Velenje Basin, Sloveniaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber971-984en
dc.subject.INGV03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamicsen
dc.subject.INGV03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processesen
dc.subject.INGV03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoringen
dc.identifier.doi10.1007/s10040-014-1103-7en
dc.relation.referencesAravena R, Harrison SM, Barker JF, Abercrombie H, Rudolph D (2003) Origin of methane in the Elk Valley coalfield, southeastern British Columbia, Canada. Chem Geol 1–4:219–227 Atekwana EA, Krishnamurthy RV (1998) Seasonal variations of dissolved inorganic carbon and δ13C of surface waters: application of a modified gas evaluation technique. J Hydrol 205(3–4):260–278 Aucour AM, Sheppard SMF, Guyomar OJ, Wattelet J (1999) Use of 13C to trace origin and cycling of inorganic carbon in the Rhône River system. Chem Geol 159(1–4):87–105 Brezigar A, Ogorelec B, Rijavec L, Mioč P (1988) Geologic setting of the pre-Pliocene basement of the Velenje depression and its surroundings (in Slovene). Geologija (Ljubljana) 30(1987):31–65 Cartwright I (2010) Using groundwater geochemistry and environmental isotopes to assess the correction of 14C ages in a silicatedominated aquifer system. J Hydrol 382:174–187 Cartwright I, Weaver T, Tweed S, Ahearne D, Cooper M, Czapnik C, Tranter J (2000) O, H, C isotope geochemistry of carbonated mineral springs in central Victoria, Australia: sources of gas and water–rock interactions during basaltic volcanism. J Geochem Explor 69–70(69/1):257–261 Cartwright I, Weaver T, Tweed S, Ahearne D, Cooper M, Czapnik K, Tranter J (2002) Stable isotope geochemistry of cold CO2- bearing mineral spring waters, Daylesford, Victoria, Australia: sources of gas and water and links with waning volcanism. Chem Geol 185:71–91 Cartwright I, Weaver TR, Cend n DI, Fifield LK, Tweed SO, Petrides B, Swane I (2012) Constraining groundwater flow, residence time, inter-aquifer mixing, and aquifer properties using environmental isotopes in the southeast Murray Basin, Australia. Appl Geochem 27:1698–1709 Celle-Jeanton H, Huneau H, Travi Y, Edmunds WM (2009) Twenty years of groundwater evolution in the Triassic sandstone aquifer of Lorraine: impacts on baseline water quality. Appl Geochem 24:1198–1213 Clark I, Fritz P (1997) Environmental isotopes in hydrology. Lewis, New York, pp 1–328 Coetsiers M, Walraevens K (2009) A new correction model for 14C ages in aquifers with complex geochemistry-application to the Neogene Aquifer, Belgium. Appl Geochem 24:768–776 Coplen TB (1994) Reporting and stable hydrogen, carbon, and oxygen isotopic abundances. Pur Appl Chem 66:273–276 Coplen TB, Wildman JD, Chen J (1991) Improvements in the gaseous hydrogen-water equilibration technique for hydrogen isotope ratio analysis. Anal Chem 63:910–912 Craig H (1961) Isotopic variation in meteoric waters. Science 133:1702–1703 Currell MJ, Cartwright I, Bradley DC, Han D (2010) Recharge history and controls on groundwater quality in the Yuncheng Basin, north China. J Hydrol 385:216–229 Dogramaci SS, Herzceg AL (2002) Strontium and carbon isotope constraints on carbonate-solution interactions and inter-aquifer mixing in groundwaters of the semi-arid Murray Basin, Australia. J Hydrol 262:50–67 Edmunds WM (2009) Geochemistry s vital contribution to solving water resource problems. Appl Geochem 24:1058–1073 Epstein S, Mayeda T (1953) Variations of 18O contents of water from natural sources. Geochim Cosmochim Acta 4:213–224 Gams I, Zupan M (1994) Paka. In: Voglar D (ed) Encyclopedia Slovenia, vol 8 (in Slovene). Mladinska knjiga, Ljubljana, Slovenia, 224 pp Gieskes JM (1974) The alkalinity-total carbon dioxide system in seawater. In: Goldberg ED (ed) Marine chemistry of the sea. Wiley, New York, pp 123–151 Glavič-Cindro D (2011) Yearly report on gamma and beta ray emiters activity measurements. Working report no. 8/21, Jožef Stefan Institute, Ljubljana, Slovenia, 25 pp Gonfiantini R (1986) Environmental isotopes in lake studies. Elsevier, Amsterdam, pp 113–168 Gröning M, Rozanski K (2003) Uncertainty assessment of environmental tritium measurements in water. Accred Qual Assur 8:359–366 Hem JD (1985) Study and interpretation of chemical characteristics of natural water. US Geol Surv Water Suppl Pap 2254, 264 pp Herzeg AI, Leaney FWJ, Stadler MF, Allan GI, Fifield LK (1997) Chemical and isotopic indicators of point-source recharge to a karst aquifer, South Australia. J Hydrol 192:271–299 Kallin RM (2000) Radiocarbon dating of groundwater system. In: Cook P, Herczeg P (eds) Environmental tracers in subsurface. Kluwer, New York, pp 11–144 Kanduč T, Ogrinc N (2007) Hydrogeochemical characteristics of the River Sava watershed in Slovenia. Geologija 50(1):157–177 Kanduč T, Pezdič J (2005) Origin and distribution of coalbed gases from the Velenje Basin, Slovenia. Geochem J 39:397–409 Kanduč T, Szramek K, Ogrinc N, Walter LM (2007) Origin and cycling of riverine inorganic carbon in the Sava River watershed (Slovenia) inferred from major solutes and stable carbon isotopes. Biogeochemistry 86:137–154 Kanduč T, Jamnikar S, McIntosh J (2010) Geochemical characteristics of surface and groundwaters in the Velenje basin (Slovenia). Geologija 53(1):37–46 Kanduč T, Žula J, Zavšek S (2011) Tracing coalbed gas dynamics and origin of gases in advancement of the working faces at mining areas Preloge and Pesje, Velenje Basin. RMZ-Mater Geoenviron 58:273–288 Kanduč T, Markič M, Zavšek S, McIntosh J (2012) Carbon cycling in the Pliocene Velenje Coal Basin, Slovenia, inferred from stable carbon isotopes. Int J Coal Geol 89:70–83 Katz BG, Coplen TB, Bullen TD, Davis JH (1997) Use of chemical and isotopic tracers to characterize the interactions between groundwater and surface water in mantled karst. Ground Water 36(6):1014–1028 Kendall C, SklashMG, Bullen TD (1995) Isotope tracers of water and solute sources in catchments. In: Trudgill ST (ed) Solute, modeling in catchment system. Wiley, Somerset, NJ, pp 261–303 Kennedy VC, Kendall C, Zellweger GW, Wyerman TA, Avanzino RJ (1986) Determination of the components of stormflow using water chemistry and environmental isotopes, Mattole River Basin, California. J Hydrol 84:107–140 Larsen D, Swihart GH, Xiao Y (2001) Hydrochemistry and isotope composition of springs in the Tecopa basin, southeastern California, USA. Chem Geol 179:17–35 Levin I, Kromer B, Wagenback D, Minnich KO (1987) Carbon isotope measurements of atmospheric CO2 at a coastal station in Antarctica. Tellus 39(B):89–95 Li SL, Liu CQ, Tao FX, Lang YC, Han GL (2005) Carbon biogeochemistry of ground water, Guiyang, Southwest China. Ground Water 43:494–499 Mali N (1992) Uporaba multivariatnih statističnih metod pri ločevanju rudniških vod [The application of multivariate statistical methods to distinguish mining waters]. RMZ 39:347–363 Mali N, Veselič M (1989) Določanje izvora rudniških vod v rudniku lignita Velenje na osnovi njihove kemične sestave [Determination of the origin of mining waters in Velenje coalmine on the basis of their chemical composition]. RMZ 36:383–394 Mayo AL, Loucks MD (1995) Solute and isotopic geochemistry and groundwater flow in the central Wasatch Range, Utah. J Hydrol 172:31–59McIntosh JC, Martini AM (2008) Hydrogeochemical indicators for microbial methane in fractured black shales: case studies of the Antrim, New Albany, and Ohio shales. In: Hill D, Lillis P, Curtis J (eds) Gas shale in the Rocky Mountains and beyond. Association of Geologists 2008 Guidebook, Association of Geologists, Denver, CO, pp 162–174 Mihelak V (2010) Premogovnik Velenje MEJNIKI [Velenje coalmine MILESTONES]. Založnik Premogovnik Velenje, Velenj, Slovenia, 115 pp Mioč P, Žnidarčič M (1972) Osnovna geološka karta SFRJ 1: 100000 [Basic geological map SFRJ 1:100000]. Tolmač lista Slovenj Gradec [The interpreter sheet Slovenj Gradec], L33–34, Zvezni geološki zavod Beograd, Belgrade, Serbia, 39 pp Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett 22:169–176 Orem WH, Voytek MA, Jones EJ, Lerch HE, Bates AL, Corum MD, Warwick PD, Clark AC (2010) Organic intermediates in the anaerobic biodegradation of coal to methane under laboratory conditions. Org Geochem 41:997–1000 Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv Water Resour Invest Rep 99–4259 Pezdič J (2003) Isotope fractionation of long-term precipitation averages in Ljubljana (Slovenia). RMZ-Mater Geoenviron 50:643–652 Plastino W, Chereji I, Cuna S, Kaihola L, Felice P, Lupsa N, Balas G, Mirel V, Berdea P, Baciu C (2007) Tritium in water electrolytic enrichment and liquid scintillation counting. Radiat Meas 42:68–73 Ranzinger M (2003) X-ray diffraction of clays in the Velenje coalmine (in Slovene). Project work, Velenje coalmine, Velenje, Slovenia, 16 pp Romanek CS, Grossman EL, Morse JW (1992) Carbon isotopic fractionation in synthetic aragonite and calcite: effects temperature and precipitation rate. Geochim Cosmochim Acta 46:419– 430 Šlejkovec Z, Kanduč T (2005) Unexpected arsenic compounds in low-rank coals. Environ Sci Technol 39:3450–3454 Spötl C (2005) A robust and fast method of sampling and analysis of δ13C of dissolved inorganic carbon in groundwaters. Isot Environ Health Stud 41:217–221 Supovec I, Lenart M, Božič D (2012a) Verifikacija vpliva odvodnjevanja triadnih vodonosnikov na območju jame Preloge in jame Škale [Verification of the impact of drainage of Triassic aquifers at mining areas Preloge and Škale], Raziskovalnorazvojna naloga [research and development task]. HGEM, Ljubljana, Slovenia, 28 pp Supovec I, Lenart M, Božič D (2012b) Analiza vpliva posedanja krovninskih peskov zaradi odkopavanja na uspešnost odvodnjavanja [Analysis of the impact of subsidence of overburden sands due to excavation on success of dewatering], Raziskovalno-razvojna naloga [Research and development task]. HGEM, Ljubljana, Slovenia, 25 pp Szramek K, Walter LM, Kanduč T, Ogrinc N (2011) Dolomite versus calcite weathering in hydrogeochemically diverse watersheds established on bedded carbonates (Sava and Soča rivers, Slovenia). Aquat Geochem 17:357–396 Taylor CB, Brown LJ, Cunliffe JJ, Davidson PW (1992) Environmental tritium and 18O in a hydrological study of the Wairau Plain and its contributing mountain catchments, Marlborough, New Zeeland. J Hydrol 138:269–319 Urbanc J, Lajlar B (2002) Interpretation of groundwater origin in the Velenje coal mine on the basis of isotope composition (in Slovene). Geologija 45:595–598 Veselič M, Pezdič J (1998) Hydrogeological aspects of lignite mine Velenje: environmental isotope study. RMZ 45:192–196 Villa M, Mannjón G (2004) Low-level measurements of tritium in water. Appl Radiat Isot 61:319–323 Vižintin G, Veselič M, Bombač A, Dervarič E, Likar J, Vukelič Ž (2009) The development of a “drive-in” filters dewatering system in the Velenje coal mine using finite-element modeling. Acta Geotech Slov 1:51–63 Weaver TK, Frape SK, Cherry JA (1995) Recent cross-formational fluid flow and mixing in the shallow Michigan Basin. Geol Soc Am Bull 107:697–707 Williams EL, Szramek KJ, Jin L (2007) The carbonate system geochemistry of shallow groundwater-surface water systems in temperate glaciated watersheds (Michigan, USA): significance of open-system dolomite weathering. Geol Soc Am Bull 119:515–528 Zavadlav S, Kanduč T, McIntosh J, Lojen S (2013) Isotopic and chemical constraints on the biogeochemistry of dissolved Inorganic carbon and chemical weathering in the Karst Watershed of Krka River (Slovenia). Aquat Geochemistry. doi:10.1007/s10498-013-9188-5en
dc.description.obiettivoSpecifico5A. Energia e georisorseen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn1431-2174en
dc.relation.eissn1435-0157en
dc.contributor.authorKanduč, T.en
dc.contributor.authorGrassa, F.en
dc.contributor.authorMcIntosh, J.en
dc.contributor.authorStibilj, V.en
dc.contributor.authorUlrich-Supovec, M.en
dc.contributor.authorSupovec, I.en
dc.contributor.authorJamnikar, S.en
dc.contributor.departmentDepartment of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Sloveniaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentDepartment of Hydrology and Water Resources, University of Arizona, 1133 E. James E, Rogers Way, Tucson, AZ 85721, USAen
dc.contributor.departmentDepartment of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Sloveniaen
dc.contributor.departmentHGEM D.O.O., Zaloška 143, Ljubljana, Sloveniaen
dc.contributor.departmentHGEM D.O.O., Zaloška 143, Ljubljana, Sloveniaen
dc.contributor.departmentVelenje Coal Mine, Partizanska 78, 3320 Velenje, Sloveniaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptDepartment of Hydrology and Water Resources, University of Arizona, 1133 E. James E, Rogers Way, Tucson, AZ 85721, USA-
crisitem.author.deptDepartment of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia-
crisitem.author.deptHGEM D.O.O., Zaloška 143, Ljubljana, Slovenia-
crisitem.author.deptHGEM D.O.O., Zaloška 143, Ljubljana, Slovenia-
crisitem.author.deptVelenje Coal Mine, Partizanska 78, 3320 Velenje, Slovenia-
crisitem.author.orcid0000-0001-5043-792X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Kanduc et al., 2014, Hydrogeology Journal.pdfMain article1.94 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

24
checked on Feb 10, 2021

Page view(s) 10

338
checked on Apr 20, 2024

Download(s) 50

98
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric