Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9881
DC FieldValueLanguage
dc.contributor.authorallLazar, J.; Velenje Coal Mine, Partizanska 78, 3320 Velenje, Sloveniaen
dc.contributor.authorallKanduč, T.; Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Sloveniaen
dc.contributor.authorallJamnikar, S.; Velenje Coal Mine, Partizanska 78, 3320 Velenje, Sloveniaen
dc.contributor.authorallGrassa, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallZavšek, S.; Velenje Coal Mine, Partizanska 78, 3320 Velenje, Sloveniaen
dc.date.accessioned2015-06-11T13:12:12Zen
dc.date.available2015-06-11T13:12:12Zen
dc.date.issued2014-05-29en
dc.identifier.urihttp://hdl.handle.net/2122/9881en
dc.description.abstractCoal gas outbursts (especially CO2) present a high risk in mining of lignite in the Velenje Coal Mine, located in the Velenje Basin in northern Slovenia. A programme of monitoring geochemical parameters was set up to help understand the behaviour of the coalbed gas distribution in advance of the working face using mass spectrometric methods to study its molecular and isotopic compositions and origin. Coalbed gas samples from four different excavation fields (G2/C and K.-130/A from the north and south Preloge mining area and K.-5/A and K.-50/C from the Pesje mining area), which were operational between the years 2010 and 2011 were investigated. The major gas components are CO2 and methane. Temporal changes in the chemical and isotopic composition of free seamgaseswere observedwithin boreholes as a function of the advancement of theworking face. The study also revealed that at a distance of around 120 m from the working face, the influence of coal exploitation by the Velenje Longwall Mining Method causes coalbed gas to migrate. At a distance of 70 m the lignite structure is crushed causing desorption of fixed CO2 from the coal. Differences in coalbed gas composition at the longwall panels which underlie the unmined area or under previously mined areas were found. A high CDMI {=[CO2/(CO2+CH4)]100 (%)} indexwith values up to 95.6% was typical for areas of pre-mined excavation fields (South Preloge K.-130/A and Pesje area K.-5/A), while in excavation fieldswith no previous mining activity (North Preloge G2/C and Pesje area K.-50/C) up to 61.9 vol % of CH4 was detected. The concentration measurements and isotopic studies revealed endogenic CO2 (including CO2 originating from dissolution of carbonates) with δ13CCO2 values ranging from −7.0‰ to 5.5‰, microbial methane and CO2 with values ranging from −70.4 to −50‰ and from −11.0 to −7.0‰, respectively. Higher δ13CCH4 values ranging from −50 to −19.8‰ could be attributed to so-called secondary processes influencing the δ13CCH4 value, such as migration due to lignite excavation (escape of isotopically lighter methane). In excavation fields (G2/C and K.-50/C) with no-premining activity higher δ13CCH4 values could also be explained by migration of methane fromdeeper strata. The δ13CCH4 value also depended on the depth of the excavation field; at shallower levels of the excavation field (K.-5/A) a lower δ13CCH4 value was traced indicating microbial gas, while at deeper levels higher δ13CCH4 values were found.en
dc.description.sponsorshipSlovenian Research Agency (L2-4066 and L1-5451)en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofInternational journal of coal geologyen
dc.relation.ispartofseries/131 (2014)en
dc.subjectExcavation fields Advancement of the working face Coalbed gas composition Stable isotopes Coalbed gas origin Velenje Basinen
dc.titleDistribution, composition and origin of coalbed gases in excavation fields from the Preloge and Pesje mining areas, Velenje Basin, Sloveniaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber363-377en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.identifier.doi10.1016/j.coal.2014.05.007en
dc.relation.referencesBates, B.L., McIntosh, J.C., Lohse, K.A., Brooks, P.D., 2011. Influence of groundwater flowpaths, residence times and nutrients on the extent of microbial methanogenesis in coal beds: Powder River Basin, USA. Chem. Geol. 284, 45–61. Beamish, B.B., Crosdale, P.J., 1998. Instantaneous outbursts in underground coalmines: An overview and association with coal type. Int. J. Coal Geol. 35, 27–55. Brezigar, A., Ogorelec, B., Rijavec, L., Mioč, P., 1987. Geologic setting of the Pre-Pliocene basement of the Velenje depression and its surroundings. Geologija 30, 31–65 (in Slovene). Brown, A., 2011. Identification of source carbon for microbial methane in unconventional gas reservoirs. Am. Assoc. Pet. Geol. Bull. 95, 1321–1338. Busch, A., Gensterblum, Y., Krooss, B.M., Littke, R., 2004. Methane and carbon dioxide adsorption-diffusion experiments on coal: upscaling and modelling. Int. J. Coal Geol. 60, 151–168. Clayton, J.L., 1998. Geochemistry of coalbed gas – A review. Int. J. Coal Geol. 35, 159–173. Coplen, T.B., 2011. Guidelines and recommended terms for expression of stable-isotoperatio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 25 (17), 2538–2560. Dai, J.X., Song, Y., Dai, C.S., Wand, D.R., 1996. Geochemistry and accumulations of carbon dioxide gases in China. Am. Assoc. Pet. Geol. Bull. 80, 1615–1626. Faiz, M.M., Saghafi, A., Barclay, S.A., Stalker, L., Sherwood, N.R., Whitford, D.J., 2007. Evaluating geological sequestration of CO2 in bituminous coals. The Southern Sydney Basin, Australia as a natural analogue. Int. J. Greenh. Gas Control 1, 223–235. Flores, R.M., Rice, C.A., Stricker, G.D.,Warden, A., Ellis, M.S., 2008. Methanogenic pathways of coalbed gas in the Powder River basin, United States: the geological factor. Int. J. Coal Geol. 76, 52–75. Gao, L., Brassell, S.C., Mastalerz, M., Schimmelmann, A., 2013. Microbial degradation of sedimentary organic matter associatedwith shale gas and coalbedmethane in eastern Illinois Basin (Indiana), USA. Int. J. Coal Geol. 107, 152–164. Gilfillan, S.M.V., Lollar, B.S., Holland, G., Blagburn, D., Stevens, S., Schoell, M., Cassidy, M., Ding, Z.J., Zhou, Z., Lacrampe-Couloume, G., Ballantine, C.J., 2009. Solubility trapping in formation water as dominant CO2 sink in natural gas fields. Nature 458, 614–618. Golding, S.D., Boreham, C.J., Esterle, J.S., 2013. Stable isotope geochemistry of coal bed and shale gas and related production waters: A review. Int. J. Coal Geol. 120, 24–40. Guoyi, H., Jin, L., Chenghua, M., Zhisheng, L., Zgang,M., Qiang, Z., 2007. Characteristics and implications of the carbon isotope fractionation of desorbed coalbed methane in Qinshui Coalbed Methane Field, China. Earth Sci. Front. 14 (6), 267–272. Jarvie, D.M., Hill, R.J., Ruble, T.E., Pollastro, R.M., 2007. Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. Am. Assoc. Pet. Geol. Bull. 91, 475–499. Jedrysek,M.O., 1995. Carbon isotope evidence for diurnal variations inmethanogenesis in freshwater lake sediments. Geochim. Cosmochim. Acta 59, 557–561. Jenden, P.D., Kaplan, I.R., 1986. Comparison of microbial gases from the Middle America Trench and Scripps Submarine Canyon: Implications for the origin of natural gas. Appl. Geochem. 1, 631–646. Kanduč, T., 2004. Isotopic characteristics of coalbed gases in Velenje Coal Basin. (Master Thesis) , p. 80 (in Slovene). Kanduč, T., Pezdič, J., 2005. Origin and distribution of coalbed gases from the Velenje Basin, Slovenia. Geochem. J. 39, 397–409. Kanduč, T., Pezdič, J., Lojen, S., Zavšek, S., 2003. Study of the gas composition ahead of the working face in a lignite seam from the Velenje Basin. RMZ-Mater. Geoenviron. 50, 503–511. Kanduč, T., Jamnikar, S., McIntosh, J., 2010. Geochemical characteristics of surface waters and groundwaters in the Velenje Basin, Slovenia. Geologija 53, 37–46. Kanduč, T., Žula, J., Zavšek, S., 2011. Tracing coalbed gas dynamics and origin of gases in advancement of the working faces at mining areas Preloge and Pesje, Velenje Basin. RMZ-Mater. Geoenviron. 58, 273–288. Kanduč, T., Markič, M., Zavšek, S., McIntosh, J., 2012. Carbon cycling in the Pliocene Velenje Coal Basin, Slovenia, inferred from stable carbon isotopes. Int. J. Coal Geol. 89, 70–83. Kanduč, T., Grassa, F., McIntosh, J., Stibilj, V., Ulrich-Supovec, M., Jamnikar, S., 2014. A geochemical and stable isotope investigation of groundwater/surface-water interactions from the Velenje Basin, Slovenia. Hydrogeol. J. http://dx.doi.org/10.1007/ s10040-014-1103-7. Kedzior, S., 2011. The occurrence of a secondary zone of coalbed methane in the southern part of the Upper Silesian Coal Basin (Southern Poland); Potential for methane exploration. Int. J. Coal Geol. 86, 157–168. Kinnon, E.C.P., Golding, S.D., Boreham, C.J., Baublys, K.A., Esterle, J.S., 2010. Stable isotope and water quality analysis of coal bedmethane production waters and gases fromthe Bowen Basin, Australia. Int. J. Coal Geol. 82, 219–231. Kotarba, M., 1990. Isotopic geochemistry and habitat of the natural gases from the Upper Carboniferous Zacler coal-bearing formation in the Nowa Ruda coal district (Lower Silesia, Poland). Org. Geochem. 16, 549–560. Kotarba, M.J., 2001. Composition and origin of coalbed gases in the upper Silesian and Lublin basins, Poland. Org. Geochem. 163–180. Kotarba, M.J., Lewan, M.D., 2004. Characterizing thermogenic coalbed gas from Polish coals of different ranks by hydrous pyrolysis. Org. Geochem. 35, 615–646. Kotarba, M.J., Lewan, M.D., 2013. Sources of natural gases in Middle Cambrian reservoirs in Polish and Lithuanian Baltic Basin as determined by stable isotopes and hydrous pyrolysis of Lower Palaeozoic source rocks. Chem. Geol. 345, 62–76. Kotarba, M.J., Rice, D.D., 2001. Composition and origin of coalbed gases in the Lower Silesian Basin, northwestern Poland. Appl. Geochem. 16, 895–910. Lama, R.D., Bodziony, J., 1998. Management of outburst in underground coal mines. Int. J. Coal Geol. 35, 83–115. Lama, R.D., Saghafi, A., 2002. Overview of Gas outbursts and unusual emissions. Underground Coal Operators' Conference, University ofWollongong, the Australasian Institute of Mining and Metallurgy, pp. 74–78. Li, W., Cheng, Y.P., Wang, L., Zhou, H.X., Wang, H.F., Wang, L.G., 2013. Evaluating the security of geological coalbed sequestration of supercritical CO2 reservoirs: The Haishiwan coalfield, China as a natural analogue. Int. J. Greenh. Gas Control 13, 102–111. Macuda, J., Nodzeński, A., Wagner, M., Zawisza, L., 2011. Sorption of methane on lignite from Polish deposits. Int. J. Coal Geol. 87, 41–48. Markič,M., 2009. Petrology and genesis of the Velenje lignite. University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Geology, (Ph.D. Dissertation). Martini, A.M., Walter, L.M., Budai, J.M., Ku, T.C.W., Kaiser, C.J., Schoell, M., 1998. Genetic and temporal relations between formation waters and biogenic methane: Upper Devonian Antrim Shale, Michigan Basin, USA. Geochim. Cosmochim. Acta 62, 1699–1720. Martini, A.M.,Walter, L.M., Ku, T.C.W., Budai, J.M., McIntosh, J.C., Schoell, M., 2003. Microbial production and modification of gases in sedimentary basins: a geochemical case study from a Devonian shale gas play. Michigan Basin. Am. Assoc. Pet. Geol. Bull. 87, 1355–1375. Mastalerz, M., Gluskoter, H., Rupp, J., 2004. Carbon dioxide and methane sorption in high volatile bituminous coals from Indiana, USA. Int. J. Coal Geol. 60, 43–55. Mazumder, S., van Hemert, P., Busch, A., Wolf, K.-H.A.A., Tejera-Cuesta, P., 2006. Flue gas and pure CO2 sorption properties of coal: A comparative study. Int. J. Coal Geol. 67, 267–279. McIntosh, J.C.,Walter, L.M., Martini, A.M., 2002. Pleistocene recharge to mid-continent basins: effects on salinity structure andmicrobial gas generation. Geochim. Cosmochim. Acta 66, 1681–1700. Mihelak, V., 2010. Premogovnik Velenje MEJNIKI = Velenje coalmine MILESTONES. Edited by Premogovnik Velenje, Velenje, Slovenia (115 pp.). Moore, T.A., 2012. Coalbed methane: A review. Int. J. Coal Geol. 101, 36–81. Osborn, S.G., McIntosh, J.C., 2010. Chemical and isotopic tracers of the contribution of microbial gas in Devonian organic-rich shales and reservoir sandstones, northern Appalachian Basin. Appl. Geochem. 25, 456–471. Peide, S., 1990. Study of dynamic model for coal gas dynamics (part 2). Min. Sci. Technol. 12, 311–316. Rice, D.D., 1993. Composition and origins of coalbed gas. In: Law, B.E., Rice, D.D. (Eds.), Hydrocarbons from Coal, AAPF Studies in Geology #38, Tulsa, OK, pp. 159–184. Rowe, D., Muehlenbachs, A., 1999. Low-temperature thermal generation of hydrocarbon gases in shallow shales. Nature 398, 61–63. Schoell, M., 1980. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim. Cosmochim. Acta 44, 649–661. Scott, A.R., Kaiser,W.R., Ayers Jr.,W.D., 1994. Thermogenic and secondary biogenic gases, San Juan Basin, Colorado and New Mexico – implication for coalbed gas production. Am. Assoc. Pet. Geol. Bull. 78, 1186–1209. Sherwood Lollar, B., Lacrampe-Couloume, G., Slater, G.F.,Ward, J.,Moser, D.P., Gihring, T.M., Lin, L.H., Onstott, T.C., 2006. Unravelling abiogenic and biogenic sources ofmethane in the Earth`s deep subsurface. Chem. Geol. 226, 328–339. Smith, J.W., Gould, K.W., 1980. An isotopic study of the role of carbon dioxide in outbursts in coal mines. Geochem. J. 14, 27–32. Smith, J.W., Pallasser, R.J., 1996. Microbial origin of Australian coalbed methane. Am. Assoc. Pet. Geol. Bull. 80, 891–897. Strąpoć, D., Mastalerz, M., Schimmelmann, A., Drobniak, A., Hedges, S., 2008. Variability of geomechanical properties in a microbially dominated coalbed gas system from the eastern margin of the Illinois Basin, USA. Int. J. Coal Geol. 76, 98–110. Strapoć, D., Mastalerz, M., Schimmelmann, A., Drobniak, A., Hasenmueller, N.R., 2010. Geochemical constraints on the origin and volume of gas in the New Albany shale (Devonian-Mississippian), eastern Illinois Basin. Am. Assoc. Pet. Geol. Bull. 94, 1713–1740. Strapoć, D., Mastalerz, M., Dawson, K., Macalady, J., Callaghan, A.V.,Wawrik, B., Turich, C., Ashby, M., 2011. Biogeochemistry of microbial coakl-bed methane. Ann. Rev. Earth Planet. Sci. 39, 617–656. Tilley, B., Muehlenbachs, K., 2013. Isotope reversals and universal stages and trends of gas maturation in sealed, self-contained petroleum systems. Chem. Geol. 339, 194–204. Whiticar, M.J., 1996. Stable isotope geochemistry of coals, humic kerogens and related natural gases. Int. J. Coal Geol. 32, 191–215. Whiticar, M.J., 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161, 291–314. Whiticar, M.J., Faber, E., Schoell, M., 1986. Biogenic methane formation in marine and fresh water environment, CO2 reduction vs. acetate fermentation-isotopic evidence. Geochim. Cosmochim. Acta 50, 693–70Wolternate, I., Whiticar, M.J., Schoell, M., 1984. Carbon and hydrogen isotopic composition of bacterial methane in a shallow freshwater lake. Limnol. Oceanogr. 29, 985–992. Wycherley, H., Fleet, A., Shaw, H., 1999. Some observations on the origins of large volumes of carbon dioxide accumulation in sedimentary basins. Mar. Pet. Geol. 16, 489–494. Zavšek, S., 2004. Model for research of structural and petrographical changes of the Velenje lignite depending on various stress states and presence of gases. (PhD thesis) University of Ljubljana. Faculty of Natural Sciences and Engineering, Department of Geology. Zhang, Y., Zhang, Z., Cao, Y., 2007. Deformed-coal structure and control to coal-gas outburst. J.China Coal Soc. 3. Zumberge, J., Ferworn, K., Brown, S., 2012. Isotopic reversal (′rollover′) in shale gases produced from the Mississippianen
dc.description.obiettivoSpecifico5A. Energia e georisorseen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0166-5162en
dc.relation.eissn1872-7840en
dc.contributor.authorLazar, J.en
dc.contributor.authorKanduč, T.en
dc.contributor.authorJamnikar, S.en
dc.contributor.authorGrassa, F.en
dc.contributor.authorZavšek, S.en
dc.contributor.departmentVelenje Coal Mine, Partizanska 78, 3320 Velenje, Sloveniaen
dc.contributor.departmentDepartment of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Sloveniaen
dc.contributor.departmentVelenje Coal Mine, Partizanska 78, 3320 Velenje, Sloveniaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentVelenje Coal Mine, Partizanska 78, 3320 Velenje, Sloveniaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptVelenje Coal Mine, Partizanska 78, 3320 Velenje, Slovenia-
crisitem.author.deptDepartment of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia-
crisitem.author.deptVelenje Coal Mine, Partizanska 78, 3320 Velenje, Slovenia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptVelenje Coal Mine, Partizanska 78, 3320 Velenje, Slovenia-
crisitem.author.orcid0000-0001-5043-792X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Lazar et al., IJCG, 2014.pdfMain article3.66 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 10

12
checked on Feb 10, 2021

Page view(s) 50

164
checked on Apr 17, 2024

Download(s)

24
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric