Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9860
DC FieldValueLanguage
dc.contributor.authorallPrice, R.; Dept. of Earth Sciences, University of Southern California, Los Angeles, CA, USAen
dc.contributor.authorallLaRowe, D.; Dept. of Earth Sciences, University of Southern California, Los Angeles, CA, USAen
dc.contributor.authorallItaliano, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallSavov, I.; School of Earth and Environment, University of Leeds, Leeds, United Kingdomen
dc.contributor.authorallPichler, T.; Geochemistry Department, University of Bremen, Germanyen
dc.contributor.authorallAmend, J.; Dept. of Biological Sciences, University of Southern California, Los Angeles, CA, USAen
dc.date.accessioned2015-06-11T06:42:23Zen
dc.date.available2015-06-11T06:42:23Zen
dc.date.issued2015-04en
dc.identifier.urihttp://hdl.handle.net/2122/9860en
dc.description.abstractThe subsurface evolution of shallow-sea hydrothermal fluids is a function ofmany factors including fluid–mineral equilibria, phase separation, magmatic inputs, and mineral precipitation, all of which influence discharging fluid chemistry and consequently associated seafloor microbial communities. Shallow-sea vent systems, however, are understudied in this regard. In order to investigate subsurface processes in a shallow-sea hydrothermal vent, and determine how these physical and chemical parameters influence the metabolic potential of the microbial communities, three shallow-sea hydrothermal vents associated with Panarea Island (Italy) were characterized. Vent fluids, pore fluids and gases at the three sites were sampled and analyzed for major and minor elements, redoxsensitive compounds, free gas compositions, and strontiumisotopes. The corresponding data were used to 1) describe the subsurface geochemical evolution of the fluids and 2) to evaluate the catabolic potential of 61 inorganic redox reactions for in situ microbial communities. Generally, the vent fluids can be hot (up to 135 °C), acidic (pH 1.9–5.7), and sulfidic (up to 2.5 mM H2S). Three distinct types of hydrothermal fluids were identified, each with higher temperatures and lower pH,Mg and SO4, relative to seawater. Type 1 was consistently more saline than Type 2, and both were more saline than seawater. Type 3 fluids were similar to or slightly depleted in mostmajor ions relative to seawater. End-member calculations of conservative elements indicate that Type 1 and Type 2 fluids are derived from two different sources, most likely 1) a deeper, higher salinity reservoir and 2) a shallower, lower salinity reservoir, respectively, in a layered hydrothermal system. The deeper reservoir records some of the highest end-member Cl concentrations to date, and developed as a result of recirculation of brine fluids with long term loss of steam and volatiles due to past phase separation. No strong evidence for ongoing phase separation is observed. Type 3 fluids are suggested to be mostly influenced by degassing of volatiles and subsequently dissolution of CO2, H2S, and other gases into the aqueous phase. Gibbs energies (ΔGr) of redox reactions that couple potential terminal electron acceptors (O2, NO3 −, MnIV, FeIII, SO4 2−, S0, CO2) with potential electron donors (H2, NH4 +, Fe2+, Mn2+, H2S, CH4) were evaluated at in situ temperatures and compositions for each site and by fluid type.When Gibbs energies of reaction are normalized per kilogram of hydrothermal fluid, sulfur oxidation reactions are the most exergonic, while the oxidation of Fe2+, NH4 +, CH4, and Mn2+ is moderately energy yielding. The energetic calculations indicate that the most robust microbial communities in the Panarea hot springs combineH2S fromdeepwater–rock–gas interactions with O2 that is entrained via seawater mixing to fuel their activities, regardless of site location or fluid type.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofChemical geologyen
dc.relation.ispartofseries/407-408 (2015)en
dc.subjectsubmarine hydrothermal systemsen
dc.subjectsubsurface processesen
dc.subjectthermodynamicsen
dc.titleSubsurface hydrothermal processes and the bioenergetics of chemolithoautotrophy at the shallow-sea vents off Panarea Island (Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber21-45en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.identifier.doi10.1016/j.chemgeo.2015.04.011en
dc.relation.referencesAchterberg, E., Holland, T., Bowie, A., Fauzi, R., Mantoura, C., Worsfold, P., 2001. Determination of iron in seawater. Analytica Chimica Acta 442, 1–14. Akerman, N., Price, R., Pichler, T., Amend, J.P., 2011. Energy sources for chemlithotrophs in an arsenic- and iron-rich shallow-sea hydrothermal system. Geobiology 9, 436–445. Alt, J.C., 1994. A sulfur isotopic profile through the Troodos Ophiolite, Cyprus: primary composition and the effects of seawater hydrothermal alteration. Geochim. Cosmochim. Acta 58, 1825–1840. Alt, J.C., 1995. Seafloor processes inmid-ocean ridge hydrothermal systems. In: Humphris, S.E., Zierenberg, R.A., Mullineaux, L.S., Thomson, R.E. (Eds.), Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. American Geophysical Union, Washington, D.C., pp. 85–114. Alt, J.C., Honnorez, J., Laverne, C., Emmermann, R., 1986. Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B: mineralogy, chemistry and evolution of seawater–basalt interactions. J. Geophys. Res. Solid Earth 91 (B10), 10309–10335. Amend, J.P., Shock, E.L., 2001. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol. Rev. 25 (2), 175–243. Amend, J.P., Rogers, K.L., Shock, E.L., Gurrieri, S., Inguaggiato, S., 2003a. Energetics of chemolithoautotrophy in the hydrothermal system of Vulcano Island, southern Italy. Geobiology 1, 37–58. Amend, J.P., Meyer-Dombard, D.R., Sheth, S.N., Zolotova, N., Amend, A.C., 2003b. Palaeococcus helgesonii sp. nov., a facultatively anaerobic, hyperthermophilic archaeon from a geothermal well on Vulcano Island, Italy. Arch. Microbiol. 179, 394–401. Amend, J., McCollom, T., Hentscher, M., Bach,W., 2011. Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types. Geochim. Cosmochim. Acta 75, 5736–5748. Becke, R., Merkel, B., Pohl, T., 2009. Mineralogical and geological characteristics of the shallow-water massive sulfide precipitates of Panarea, Aeolian Islands, Italy. In: Merkel, B., Schipek, M. (Eds.), Research in Shallow Marine and Fresh Water Systems. Freiberg Online Geology. TU Bergakademie Freiberg, pp. 94–100. Berg, J., 2011. Microbial Characterization of White Mats in a Hydrothermally-influenced, Sulfur-rich Brine Pool. (Senior Honors Thesis). Washington University in St. Louis, St. Louis. Berndt, M.E., 1987. Experimental and Theoretical Constraints on the Origin of Mid-ocean Ridge Geothermal Fluids. University of Minnesota, Minneapolis, Minnesota. Berndt, M.E., Seyfried, W.E., 1993. Calcium and sodium exchange during hydrothermal alteration of calcic plagioclase at 400 °C and 400 bars. Geochim. Cosmochim. Acta 57 (18), 4445–4451. Berndt, M.E., Seyfried, W.E., Beck, J.W., 1988. Hydrothermal alteration processes at midocean ridges: experimental and theoretical constraints from Ca and Sr exchange reactions and Sr isotopic ratios. J. Geophys. Res. 93 (B5), 4573–4583. Berndt, M.E., Seyfried, W.E., Janecky, D.R., 1989. Plagioclase and epidote buffering of cation ratios in mid-ocean ridge hydrothermal fluids — experimental results in and near the supercritical region. Geochim. Cosmochim. Acta 53 (9), 2283–2300. Berndt, M.E., Person, M.E., Seyfried, W.E., 2001. Phase separation and two-phase flow in seafloor hydrothermal systems. 11th Annual V. M. Goldschmidt Conference. Geochemical Society, Hot Springs, VA. Bischoff, J.L., Disckson, F.W., 1975. Seawater–basalt interaction at 200 °C and 500 bars: implications for origin of sea-floor heavy-metal deposits and regulation of seawater chemistry. Earth Planet. Sci. Lett. 25, 385–397. Bischoff, J.L., Rosenbauer, R.J., 1984. The critical point and two-phase boundary of seawater. 200°–500°C: Earth Planet. Sci. Lett. 68, 172–180. Bischoff, J.L., Rosenbauer, R.J., 1985. An empirical equation of state for hydrothermal seawater (3.2 percent NaCl). Am. J. Sci. 285, 725–763. Bischoff, J.L., Rosenbauer, R.J., 1987. Phase separation in seafloor geothermal systems: an experimental study of the effects on metal transport. Am. J. Sci. 287, 953–978. Bischoff, J.L., Rosenbauer, R.J., 1989. Salinity variations in submarine hydrothermal systems by layered double-diffusive convection. J. Geol. 97 (5), 613–623. Butterfield, D.A., Massoth, G.J., 1994. Geochemistry of north Cleft segment vent fluids: temporal changes in chlorinity and their possible relation to recent volcanism. J. Geophys. Res. 99 (B3), 4951–4968. Butterfield, D.A., Massoth, G.J., McDuff, R.E., Lupton, J.E., Lilley, M.D., 1990. Geochemistry of hydrothermal fluids from Axial Seamount hydrothermal vent field, Juan de Fuca Ridge: subseafloor boiling and subsequent fluid–rock interaction. J. Geophys. Res. 95, 12895–12921. Calanchi, N., Tranne, C.A., Lucchini, F., Rossi, P.L., Villa, I.M., 1999. Explanatory notes to the geologic map (1:10,000) of Panarea and Basiluzzo islands (Aeolian arc, Italy). Acta Vulcanol. 11 (2), 223–243. Calanchi, N., Peccerillo, A., Tranne, C.A., Lucchini, F., Rossi, P.L., Kempton, P., Barbieri, M., Wu, T.W., 2002. Petrology and geochemistry of volcanic rocks from the island of Panarea: implications for mantle evolution beneath the Aeolian island arc (southern Tyrrhenian sea). J. Volcanol. Geotherm. Res. 115, 367–395. Caracausi, A., Ditta, M., Italiano, F., Longo, M., Nuccio, P.M., Paonita, A., Rizzo, A., 2005. Changes in fluid geochemistry and physico-chemical conditions of geothermal systems caused by magmatic input: The recent abrupt outgassing off the island of Panarea (Aeolian Islands, Italy). Geochim. Cosmochim. Acta 69, 3045–3059Charlou, J., Donval, J., Fouquet, Y., Jean-Baptiste, P., Holm, N., 2002. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the rainbow hydrothermal field (36°14"N, MAR). Chem. Geol. 191, 345–359. Cline, J., 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 14 (3), 454–458. Craig, H., Lupton, J., 1981. Helium-3 and mantle volatiles in the ocean and oceanic crust. In: Emiliani, C.E. (Ed.), The Sea, v. 7, The Oceanic Lithosphere.Wiley, NewYork, pp. 391–428. Dando, P.R., Hughes, J.A., Leahy, Y., Niven, S.J., Taylor, L.J., Smith, C., 1995. Gas venting rates from the submarine hydrothermal areas around the island of Milos. Hellenic volcanic arc. Continental Shelf Research 15, 913–929. Dando, P.R., Stüben, D., Varnavas, S.P., 1999. Hydrothermalism in the Mediterranean Sea. Prog. Oceanogr. 44 (1–3), 333–367. Dando, P.R., Aliani, S., et al., 2000. Hydrothermal studies in the Aegean Sea. Phys. Chem. Earth 25, 1–8. De Astis, G., Peccerillo, A., Kempton, P., La Volpe, L.,Wu, T.W., 2000. Transition from calcalkaline to potassium-rich magmatism in subduction environments: geochemical and Sr, Nd, Pb isotopic constraints from the Island of Volcano (Aeolian arc). Contrib. Miner. Petrol. 139, 684–703. Dekov, V.M., Kamenov, G.D., Abrasheva, M.D., Capaccioni, B., Munnik, F., 2013. Mineralogical and geochemical investigation of seafloormassive sulfides fromPanarea Platform (Aeolian Arc, Tyrrhenian Sea). Chem. Geol. 335, 136–148. Delalande, M., Bergonzini, L., Gherardi, F., Guidi, M., Andre, L., Abdallah, I., Williamson, D., 2011. Fluid geochemistry of natural manifestations from the Southern Poroto-Rungwe hydrothermal system (Tanzania): Preliminary conceptualmodel. J. Volcanol. Geotherm. Res. 199, 127–141. Edmonds, H., Edmonds, J.M., 1995. A three-component mixing model for ridge–crest hydrothermal fluids. Earth Planet. Sci. Lett. 14, 53–67. Ellam, R.H., Hawkesworth, C.J.,Menzies, M.A., Rogers, N.W., 1989. The volcanismof Southern Italy: role of subduction and relationship between potassic and sodic alkaline magmatism. J. Geophys. Res. 94, 4589–4601. Felbeck, H., Somero, G.N., 1982. Primary production in deep-sea hydrothermal vent organisms: roles of sulfide-oxidizing bacteria. Trends Biochem. Sci. 7 (6), 201–204. Fitzsimons, M.F., Dando, P.R., Huges, J.A., Thiermann, F., Akoumianaki, I., Pratt, S.M., 1997. Submarine hydrothermal brine seeps off Milos. Greece: Observations and geochemistry. Marine Chemistry 57, 325–340. Flores, G.E., Campbell, J.H., Kirshtein, J.D., Meneghin, J., Podar, M., Steinberg, J.I., Seewald, J.S., Tivey, M.K., Voytek, M.A., Yang, Z.K., Reysenbach, A.L., 2011. Microbial community structure of hydrothermal deposits fromgeochemically different vent fields along the Mid-Atlantic Ridge. Environ. Microbiol 13, 2158–2171. Fournier, R.O., 2007. Hydrothermal systems and volcano geochemistry. In: D, D. (Ed.), Volcano Deformation. Praxis Publishing Ltd., Chichester, UK, pp. 323–341. Foustoukos, D.I., Seyfried, W.E., 2007. Fluid phase separation processes in submarine hydrothermal systems. Rev. Mineral. Geochem. 65, 213–239. Foustoukos, D.I., Houghton, J.L., Seyfried, W.E., Sievert, S.M., Cody, G.D., 2011. Kinetics of H2–O2–H2O redox equilibria and formation of metastable H2O2 under low temperature hydrothermal conditions. Geochim. Cosmochim. Acta 75, 1594–1607. Francalanci, L., Taylor, S.R., McCulloch, M.T.,Woodhead, J., 1993. Geochemical and isotopic variations in the calc-alkaline rocks of the Aeolian Arc (Southern Italy): constraints on the magma genesis. Contrib. Miner. Petrol. 113, 300–313. Gallant, R.M., Von Damm, K.L., 2006. Geochemical controls on hydrothermal fluids from the Kairei and Edmond vent fields, 23°–25° S, Central Indian Ridge. Geochem. Geophys. Geosyst. 7 (6), 1–24. Gamo, T., Okamura, K., Charlou, J.-L., Urabe, T., Auzende, J.-M., Ishibashi, J., Shitashima, K., Chiba, H., 1997. Acidic and sulfate-rich hydrothermal fluids from the Manus back-arc basin. Papua New Guinea. Geology 25, 139–142. German, C.R., Von Damm, K.L., 2003. Hydrothermal processes. In: Turekian, K.K., Holland, H.D. (Eds.), Treatise on Geochemistry. Elsevier, pp. 145–180. Grasshoff, K., Ehrhardt, M., Kremling, K., 1983. Methods of Seawater Analysis. Verlag Chemie, Weinheim. Gugliandolo, C., Italiano, F., Maugeri, T.L., Inguaggiato, S., Caccamo, D., Amend, J., 1999. Submarine hydrothermal vents of the Aeolian Islands: Relationship betweenmicrobial communities and thermal fluids. Geomicrobiol. j. 16, 105–117. Gugliandolo, C., Italiano, F., Maugeri, T.L., 2006. The submarine hydrothermal system of Panarea (Southern Italy): biogeochemical processes at the thermal fluids–sea bottom interface. Ann. Geophys. 49 (2/3), 783–792. Gunnarsson, I., Arnorsson, S., 2000. Amorphous silica solubility and the thermodynamic properties of H3SiO4 in the range of 0° to 350° at Psat. Geochim. Cosmochim. Acta 64 (13), 2295–2307. Haeckel, M., Boudreau, B.P.,Wallmann, K., 2007. Bubble-induced porewatermixing: a 3-D model for deep porewater irrigation. Geochim. Cosmochim. Acta 71, 5135–5154. Hanningtion, M., De Ronde, C.E.J., Petersen, S., 2005. Sea-floor tectonics and submarine hydrothermal systems. Economic Geology 111–141 (100th Anniversary Volume). Haymon, R.M., 1983. Growth history of hydrothermal black smoker chimneys. Nature 301, 695–698. Hedenquist, J.W., Lowenstern, J.B., 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature 370, 519–527. Heinrich, C.A., Driesner, T., Stefánsson, A., Seward, T.M., 2004. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits. Geology 32 (9), 761–764. Helgeson, H.C., 1969. Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am. J. Sci. 267, 729–804. Helgeson, H.C., Kirkham, D.H., Flowers, G.C., 1981. Theoretical prediction of thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: 4. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 °C and 5 kb. Am. J. Sci. 281 (10), 1249–1516.Hernandez-Sanchez, M.T., et al., 2014. Further insights into how sediment redox status controls the preservation and composition of sedimentary organic biomarkers. Org. Geochem. 76, 220–234. Houghton, J.L., Seyfried Jr., W.E., 2010. An experimental and theoretical approach to determine linkages between geochemical variability and microbial biodiversity in seafloor hydrothermal chimneys. Geobiology 8, 457–470. Huang, C.I., 2012. Molecular Ecology of Free-living Chemoautotrophic Microbial Communities at a Shallow-sea Hydrothermal Vent. University of Bremen, Bremen, Germany. Imhoff, I., Hügler, M., 2009. Life at deep sea hydrothermal vents — oases under water. Int. J. Mar. Coast. Law 24 (2), 201–208. Inskeep, W.P., McDermott, T.R., 2005. Geomicrobiology of acid–sulfate–chloride springs in Yellowstone National Park. In: Inskeep, W.P., McDermott, T.R. (Eds.), Geothermal Biology and Geochemistry in Yellowstone National Park. Thermal Biology Institute, Montana State University, pp. 143–162. Inskeep, W., Ackerman, G.G., Taylor, W.P., Kozubal, M., Korf, S., Macur, R.E., 2005. On the energetics of chemolithotrophy in nonequilibrium systems: case studies of geothermal springs in Yellowstone National Park. Geobiol 3, 297–317. Ishibashi, J., 1995. Geochemistry of phase-separated hydrothermal fluids of the North Fiji Basin, Southwest Pacific. In: Sakai, H., Nozaki, Y. (Eds.), Biogeochemical Processes and Ocean Flux in the Western Pacific. Terrapub, Tokyo, pp. 453–467. Italiano, F., Nuccio, F., 1991. Geochemical investigations of submarine volcanic exhalations to the east of Panarea, Aeolian Islands, Italy. J. Volcanol. Geotherm. Res. 46, 125–141. Johnson, J.W., Oelkers, E.H., Helgeson, H.C., 1992. SUPCRT92 — a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 bar to 5000 bar and 0 °C to 1000 °C. Comput. Geosci. 18 (7), 899–947. Kenig, E., Górak, A., 2005. Reactive absorption. In: Sundmacher, K., Seidel-Morgenstern (Eds.), Integrated Chemical Processes: Synthesis, Operation, Analysis and Control. John Wiley & Sons. Klinkhammer, G., Rona, P., Greaves, M., Elderfield, H., 1985. Hydrothermal manganese plumes in the Mid-Atlantic Ridge rift valley. Nature 314, 727–731. Lan, C.-R., Alfassi, Z.B., 1994. Direct determination of manganese in seawater by electrothermal atomic absorption spectrometry with sodium hydroxide as chemicalmodifier for interference removal. Analyst 119, 1033–1035. LaRowe, D.E., Amend, J.P., 2014. Energetic constraints on life in marine deep sediments. In: Kallmeyer, J., Wagner, K. (Eds.), Life in Extreme Environments: Microbial Life in the Deep Biosphere. De Gruyter, pp. 279–302. LaRowe, D.E., Van Cappellen, P., 2011. Degradation of natural organicmatter: a thermodynamic analysis. Geochim. Cosmochim. Acta 75, 2030–2042. LaRowe, D.E., Dale, A.W., Regnier, P., 2008. A thermodynamic analysis of the anaerobic oxidation of methane in marine sediments. Geobiology 6, 436–449. Lowell, J.D., Guilbert, J.M., 1970. Lateral and vertical alteration–mineralization zoning in porphyry ore deposits. Econ. Geol. 65, 373–408. Lupton, J., Lilley, M.D., Butterfield, D.A., Evans, L., Embley, R., Massoth, G.J., Christenson, B., Nakamura, K.-I., Schmidt, M., 2008. Venting of a separate CO2-rich gas phase from submarine arc volcanoes: Examples from the Mariana and Tonga-Kermadec arcs. J. Geophys. Res. 113, 1–21. Luther, G.W., Tsamakis, E., 1989. Concentration and form of dissolved sulfide in the oxic water column of the ocean. Mar. Chem. 27 (3–4), 165–177. Lutz, R.A., Kennish, M., 1993. Ecology of deep-sea hydrothermal vent communities: a review. Rev. Geophys. 31 (3), 211–242. Martin, J.B., 1999. Nonconservative behavior of Br/Cl ratios during alteration of volcaniclastic sediments. Geochim. Cosmochim. Acta 63, 383–391. Martin, J.B., Gieskes, J.M., Torres, M., Kastner,M., 1993. Bromine and iodine in Perumargin sediments and pore fluids: implications for fluid origins. Geochim. Cosmochim. Acta 57 (18), 4377–4389. Maugeri, T.L., Lentini, V., Gugliandolo, C., Italiano, F., Cousin, S., Stackebrandt, E., 2009. Bacterial and archaeal populations at two shallow hydrothermal vents off Panarea Island (Eolian Islands, Italy). Extremophiles 13, 199–212. McArthur, J.M., Donovan, D.T., Thirlwall, M.F., Fouke, B.W., Mattey, D., 2000. Strontium isotope profile of the early Toarcian (Jurassic) oceanic anoxic event, the duration of ammionite biozones, and belemnite palaeotemperatures. Earth Planet. Sci. Lett. 179, 269–285. McCollom, T.M., 2000. Geochemical constraints on primary productivity in submarine hydrothermal vent plumes. Deep-Sea Res. I Oceanogr. Res. Pap. 47 (1), 85–101. McCollom, T.M., 2007. Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems. Astrobiology 7, 933–950. McCollom, T.M., Shock, E.L., 1997. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochim. Cosmochim. Acta 61 (20), 4375–4391. Meyer-Dombard, D.R., Price, R.E., Pichler, T., Amend, J.P., 2012. Prokaryotic populations in arsenic-rich shallow-sea hydrothermal sediments of Ambitle Island, Papua New Guinea. Geomicrobiol. J. 29 (1), 1–17. Moest, R., 1975. Hydrogen sulfide determination by the methylene blue method. Anal. Chem. 47 (7), 1204–1205. Mottl, M.J., 1983. Metabasalts, axial hot springs, and the structure of hydrothermal systems at mid-ocean ridges. Geol. Soc. Am. Bull. 94, 161–180. Mottl,M.J., Corr, R.F., Holland, H.D., 1974. Chemical exchange between seawater andmidocean ridge basalt during hydrothermal alteration: an experimental study. GSA Annual Meeting. Müller, C., 2011. Geothermal State of Shallow Submarine Geothermal Systems and Isotopic Signatures of Panarea, Aeolian Islands (Italy). Technische Universität Bergakademie Freiberg, Freiberg, Germany (141 pp.).Nakagawa, S., Takai, K., Inagaki, F., Chiba, H., Ishibashi, J.-I., Kataoka, S., Hirayama, H., Nonoura, T., Horikoshi, K., Sako, Y., 2005. Variability in microbial community and venting chemistry in a sediment-hosted backarc hydrothermal system: Impacts of subseafloor phase-separation. FEMS Microbiol. Ecol. 54, 141–155. Nehlig, P., 1993. Interactions betweenmagma chambers and hydrothermal systems: oceanic and ophiolitic constraints. J. Geophys. Res. 98 (19), 621–633. Neri, G., Barberi, G., Orecchio, B., Aloisi, M., 2002. Seismotomography of the crust in the transition zone between the southern Tyrrhenian and Sicilian tectonic domains. Geophys. Res. Lett. 29 (23), 50-1–50-4. Nunoura, T., Takai, K., 2009. Comparison ofmicrobial communities associatedwith phaseseparation- induced hydrothermal fluids at the Yonaguni Knoll IV hydrothermal field, the Southern Okinawa Trough. FEMS Microbial. Ecol. 67, 351–370. Oosting, S.E., Von Damm, K.L., 1996. Bromide/chloride fractionation in seafloor hydrothermal fluids from 9–10°N East Pacific Rise. Earth Planet. Sci. Lett. 144, 133–145. Osburn, G.R., LaRowe, D.E., Momper, L., Amend, J.P., 2014. Chemolithotrophy in the continental deep subsurface: Sanford Underground Research Facility (SURF), USA. Front. Microbiol. 5 (Article 610). Peccerillo, A., 2001. Geochemical similarities between Vesuvius, Phlegraean Fields and Stromboli volcanoes: petrogenetic, geodynamic and volcanological implications. Miner. Petrol. 73, 93–105. Peccerillo, A., Panza, G., 1999. Upper mantle domains beneath central-southern Italy: petrological, geochemical and geophysical constraints. Pure Appl. Geophys. 156, 421–443. Peters, M., Strauss, H., Peterson, S., Kummer, N.-A., Tomazo, C., 2011. Hydrothermalism in the Tyrrhenian Sea: inorganic and microbial sulfur cycling as revealed by geochemical and multiple sulfur isotope data. Chem. Geol. 280, 217–231. Petersen, S., Augustin, N., De Benedetti, A., Esposito, A., Gartner, A., Gardeler, A., Gemmell, J.B., Gibson, H., He, G., Hugler, M., Kayser, A., Keleeberg, R., Kuver, J., Kummer, N., Lackschewitz, K., Lappe, F., Monecke, T., Perrin, K., Peters, M., Sharpe, R., Simpson, K., Wan, B., 2007. Drilling submarine hydrothermal sites in the Tyrrhenian Sea, Italy, during Meteor cruise M73/2. University of Hamburg Institute of Oceanography. Pichler, T., 2005. Stable and radiogenic isotopes as tracers for the origin, mixing and subsurface history of fluids in submarine shallow-water hydrothermal systems. J. Volcanol. Geotherm. Res. 139, 211–226. Pichler, T., Veizer, J., Hall, G.E.M., 1999. The chemical composition of shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea and their effect on ambient seawater. Mar. Chem. 64, 229–252. Pichler, T., Amend, J.P., Garey, J., Hallock, P., Hsia, N.P., Karlen, D.J., Meyer-Dombard, D.R., McCloskey, B.J., Price, R.E., 2006.Anatural laboratory to study arsenic geobiocomplexity. EOS 87, 221–225. Pirajno, F., 2009. Hydrothermal Processes and Mineral Systems. Springer (1, 1250 pp.). Prautsch, A., Stanulla, R., Pohl, T., Merkel, B., 2013. Geochemical–mineralogical investigation of degassing structures caused by recent volcanic hydrothermalism — case study: La Calcara, Isle of Panarea (Italy). In: Pichler, T., Häusler, S., Tsounis, G. (Eds.), Research in Shallow Marine and Fresh Water Systems, 3rd International Workshop. MARUM, Bremen, Germany, pp. 41–44. Price, R.E., Pichler, T., 2005. Distribution, speciation and bioavailability of arsenic in a shallow-water submarine hydrothermal system, Tutum Bay, Ambitle Island, PNG. Chem. Geol. 224, 122–135. Price, R.E., Savov, I., Planer-Friedrich, B., Bühring, S., Amend, J.P., Pichler, T., 2013a. Processes influencing extreme As enrichment in shallow-sea hydrothermal fluids of Milos Island. Greece. Chemical Geology 348, 15–26. Price, R.E., Lesniewski, R., Nitzsche, K., Meyerdierks, A., Saltikov, C., Pichler, T., Amend, J., 2013b. Archaeal and bacterial diversity in an arsenic-rich shallow-sea hydrothermal system undergoing phase separation. Front. Extreme Microbiol. 4 (Article 158). Reeves, E.P., Seewald, J.S., Saccocia, P., Bach, W., Craddock, P.R., Shanks, W.C., Sylva, S.P., Walsh, E., Pichler, T., Rosner, M., 2011. Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Paul and Vienna Woods hydrothermal fields, Manus Basin. Papua New Guinea. Geochim. Cosmochim. Acta 75, 1088–1123. Resing, J.A., Lebon, G., Baker, E.T., Lupton, J., Embley, R.,Massoth, G.J., Chadwick,W.W.J., De Ronde, C.E.J., 2007. Venting of acid-sulfate fluids in a high-sulfidation setting at NW Rota-1 submarine volcano on the Mariana Arc. Econ. Geol. 102, 1047–1061. Rogers, K.L., Amend, J.P., 2005. Archaeal diversity and geochemical energy yields in a geothermal well on Vulcano Island, Italy. Geobiology 3, 319–332. Rogers, K.L., Amend, J.P., 2006. Energetics of potential heterotrophic metabolisms in the marine hydrothermal system of Vulcano Island, Italy. Geochim. Cosmochim. Acta 70, 610–6200. Rogers, K.L., Amend, J.P., Gurrieri, S., 2007. Temporal changes in fluid chemistry and energy profiles in the Vulcano island hydrothermal system. Astrobiology 7, 905–932. Rouwet, D., Tassi, F., 2011. Geochemical monitoring of volcanic lakes. A generalized box model for active crater lakes. Ann. Geophys. 54, 161–173. Schroedinger, E., 1944. What is Life? Cambridge University Press (194 pp.) Schulte, M.D., Shock, E.L., Wood, R., 2001. The temperature dependence of the standardstate thermodynamic properties of aqueous nonelectrolytes. Geochim. Cosmochim. Acta 65 (21), 3919–3930. Seeberg-Elverfeldt, J., Schlüter, M., Feseker, T., Kölling, M., 2005. Rhizon sampling of pore waters near the sediment/water interface of aquatic systems. Limnol. Oceanogr. Methods 3, 361–371. Seyfried,W.E.,Mottl, M.J., 1982. Hydrothermal alteration of basalt by seawater under seawater dominated conditions. Geochim. Cosmochim. Acta 46, 985–1002. Seyfried, W.E., Berndt,M.E., Seewald, J.S., 1988. Hydrothermal alteration processes atmidocean ridges: constraints from diabase alteration experiments, hot-spring fluids, and composition of the oceanic crust. Can. Mineral. 26, 787–804. Seyfried, W.E., Ding, K., Berndt, M.E., 1991. Phase equilibria constraints on the chemistry of hot spring fluids at mid-ocean ridges. Geochim. Cosmochim. Acta 55, 3559–3580. Seyfried, W.E., Seewald, J.S., Berndt, M.E., Ding, K., Foustoukos, D.I., 2003. Chemistry of hydrothermal vent fluids from the Main Endeavour Field, northern Juan de FucaRidge: geochemical controls in the aftermath of the June 1999 seismic events. J. Geophys. Res. 108 (B9), 2429. Shanks III, W.C., 2012. Hydrothermal Alteration in Volcanogenic Massive Sulfide Occurrence Model. Shock, E.L., Helgeson, H.C., 1988. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures — correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000 °C. Geochim. Cosmochim. Acta 52 (8), 2009–2036. Shock, E.L., Helgeson, H.C., 1990. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures — standard partial molal properties of organic species. Geochim. Cosmochim. Acta 54 (4), 915–945. Shock, E.L., Holland, M.E., 2004. Geochemical energy sources that support the subseafloor biosphere. In: Wilcock, W.S.D., DeLong, E.F., Kelley, D.S., Baross, J.A., Cary, S.C. (Eds.), The Subseafloor Biosphere at Mid-ocean Ridges. Geophysical Monograph 144. American Geophysical Union, pp. 153–165. Shock, E.L., Helgeson, H.C., Sverjensky, D., 1989. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures — standard partial molal properties of inorganic neutral species. Geochim. Cosmochim. Acta 53 (9), 2157–2183. Shock, E.L., Oelkers, E., Johnson, J.W., Sverjensky, D., Helgeson, H.C., 1992. Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures — effective electrostatic radii, dissociation constants and standard partial molal properties to 1000 °C and 5 kbar. J. Chem. Soc. Faraday Trans. 88, 803–826. Shock, E.L., McCollom, T.M., Schulte, M.D., 1995. Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems. Origins Life Evol. Biosphere 25 (1–3), 141–159. Shock, E.L., Holland, M., Meyer-Dombard, D., Amend, J.P., 2005. Geochemical sources of energy for microbial metabolism in hydrothermal ecosystems: Obsidian Pool, Yellowstone National Park, USA. In: Inskeep, W.P., McDermott, T.R. (Eds.), Geothermal Biology and Geochemistry in Yellowstone National Park Thermal Biology Institute. Montana State University, pp. 95–112. Shock, E.L., Holland, M., Meyer-Dombard, D., Amend, J.P., Osburn, G.R., Fischer, T.P., 2010. Quantifying inorganic sources of geochemical energy in hydrothermal ecosystems, Yellowstone National Park. USA. Geochim. Cosmochim. Acta 74, 4005–4043. Sieland, R., 2009. Chemical and Isotopic Investigations of Submarine Hydrothermal Fluid Discharges From Panarea, Italy. Technische Universität Bergakademie Freiberg, Freiberg, Germany (180 pp.).Spear, J.R., Walker, J.J., McCollom, T.M., Pace, N.R., 2005. Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. PNAS 102 (7), 2555–2560. Sverjensky, D., Shock, E.L., Helgeson, H.C., 1997. Prediction of the thermodynamic properties of aqueous metal complexes to 1000 °C and 5 kb. Geochim. Cosmochim. Acta 61 (7), 1359–1412. Tanger, J.C., Helgeson, H.C., 1988. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures — revised equations of state for the standard partial molal properties of ions and electrolytes. Am. J. Sci. 288 (1), 19–98. Tarasov, V.G., Gebruk, A.V., Mironov, A.N., Moskalev, L.I., 2005. Deep-sea and shallowwater hydrothermal vent communities: two different phenomena? Chem. Geol. 224, 5–39. Tassi, F., Capaccioni, B., Caramanna, G., Cinti, D., Montegrossi, G., Pizzino, L., Quattrocchi, F., Vaselli, O., 2009. Low-pH waters discharging from submarine vents at Panarea Island (Aeolian Islands, southern Italy) after the 2002 gas blast: Origin of hydrothermal fluids and implications for volcanic surveillance. Appl. Geochem. 24, 246–254. Teske, A.P., Callaghan, A.V., LaRowe, D.E., 2014. Biosphere Frontiers of subsurface life in the sedimented hydrothermal system of Guaymas Basin. Front. Microbiol. 5, 1–11. Tivey,M.K., 2007. Generation of seafloor hydrothermal vent fluids and associatedmineral deposits. Oceanography 20 (1), 50–65. Vick, T.J., Dodsworth, J.A., Costa, K.C., Shock, E.L., Hedlund, B.P., 2010. Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera. Geobiology 8, 140–154. Von Damm, K.L., 2000. Chemistry of hydrothermal vent fluids from 9–10 N, Ease Pacific Rise; “time zero,” the immediate posteruptive period. J. Geophys. Res. 105, 11203–11222. Von Damm, K.L., Lilley, M.D., Shanks, W.C., Brockington, M., Bray, A.M., O'Grady, K.M., Olson, E., Graham, A., Proskurowski, G., 2003. Extraordinary phase separation and segregation in vent fluids from the southern East Pacific Rise. Earth Planet. Sci. Lett. 206, 365–378. Windman, T., 2010. Organic Compounds in Hydrothermal Systems. Arizona State University, Tempe, Arizona, USA. Wolery, T.J., Sleep, N.H., 1976. Hydrothermal circulation and geochemical flux at midocean ridges. J. Geol. 84 (3), 249–275. Yang, K., Scott, S.D., 1996. Possible contribution of a metal-rich magmatic fluid to a seafloor hydrothermal system. Nature 383 (6599), 420–423.en
dc.description.obiettivoSpecifico4A. Clima e Oceanien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0009-2541en
dc.relation.eissn1872-6836en
dc.contributor.authorPrice, R.en
dc.contributor.authorLaRowe, D.en
dc.contributor.authorItaliano, F.en
dc.contributor.authorSavov, I.en
dc.contributor.authorPichler, T.en
dc.contributor.authorAmend, J.en
dc.contributor.departmentDept. of Earth Sciences, University of Southern California, Los Angeles, CA, USAen
dc.contributor.departmentDept. of Earth Sciences, University of Southern California, Los Angeles, CA, USAen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentSchool of Earth and Environment, University of Leeds, Leeds, United Kingdomen
dc.contributor.departmentGeochemistry Department, University of Bremen, Germanyen
dc.contributor.departmentDept. of Biological Sciences, University of Southern California, Los Angeles, CA, USAen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDept. of Earth Sciences, University of Southern California, Los Angeles, CA, USA-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptDepartment of Terrestrial Magnetism, Carnegie Institution of-
crisitem.author.deptGeochemistry Department, University of Bremen, Germany-
crisitem.author.deptDept. of Biological Sciences, University of Southern California, Los Angeles, CA, USA-
crisitem.author.orcid0000-0002-9465-6398-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
panarea2015_chemgeol.pdf3.97 MBAdobe PDF
S0009254115001990.pdfOpen Access7.36 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

17
checked on Feb 10, 2021

Page view(s)

126
checked on Mar 27, 2024

Download(s)

57
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric