Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9857
DC FieldValueLanguage
dc.contributor.authorallDe Santis, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallQamili, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallWu, L.en
dc.date.accessioned2015-06-11T06:36:34Zen
dc.date.available2015-06-11T06:36:34Zen
dc.date.issued2013-11-28en
dc.identifier.urihttp://hdl.handle.net/2122/9857en
dc.description.abstractThe geomagnetic field is subject to possible reversals or excursions of polarity during its temporal evolution. Considering that: (a) in the last 83 million yr the typical average time between one reversal and the next (the so-called chron) is around 400 000 yr, (b) the last reversal occurred around 780 000 yr ago, (c) more excursions (rapid changes in polarity) can occur within the same chron and (d) the geomagnetic field dipole is currently decreasing, a possible imminent geomagnetic reversal or excursion would not be completely unexpected. In that case, such a phenomenon would represent one of the very few natural hazards that are really global. The South Atlantic Anomaly (SAA) is a great depression of the geomagnetic field strength at the Earth’s surface, caused by a reverse magnetic flux in the terrestrial outer core. In analogy with critical point phenomena characterized by some cumulative quantity, we fit the surface extent of this anomaly over the last 400 yr with power law or logarithmic functions in reverse time, also decorated by logperiodic oscillations, whose final singularity (a critical point tc) reveals a great change in the near future (2034±3 yr), when the SAA area reaches almost a hemisphere. An interesting aspect that has recently been found is the possible direct connection between the SAA and the global mean sea level (GSL). That the GSL is somehow connected with SAA is also confirmed by the similar result when an analogous critical-like fit is performed over GSL: the corresponding critical point (2033±11 yr) agrees, within the estimated errors, with the value found for the SAA. From this result, we point out the intriguing conjecture that tc would be the time of no return, after which the geomagnetic field could fall into an irreversible process of a global geomagnetic transition that could be a reversal or excursion of polarity.en
dc.language.isoEnglishen
dc.publisher.nameEGUen
dc.relation.ispartofNatural Hazards and Earth System Sciences (NHESS)en
dc.relation.ispartofseries/13(2013)en
dc.subjectgeomagnetic transitionsen
dc.subjectgeomagnetic reversalsen
dc.titleToward a possible next geomagnetic transition ?en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber3395-3403en
dc.identifier.URLwww.nat-hazards-earth-syst-sci.net/13/3395/2013/en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversalsen
dc.identifier.doi10.5194/nhess-13-3395-2013en
dc.relation.referencesAmit, H., Leonhardt, R., and Wicht, J.: Polarity reversals from paleomagnetic observations and numerical dynamo simulations, Space Sci. Rev., 155, 293–335, 2010. Aubert, J., Aurnou, J., and J. Wicht, J.: The magnetic structure of convection-driven numerical dynamos, Geophys. J. Int., 172, 945–956, 2008. Bowman, D. D., Ouillon, G., Sammis, C. G., Sornette, A., and Sornette, D.: An observational test of the critical earthquake concept, J. Geophys. Res., 103, 24359–24372, 1998. Brée, D. S. and Joseph, N. L.: Testing for financial crashes using the log periodic power law model, International Review Financial Analysis, 30, 287–297, 2013. Bufe, C. G. and Varnes, D. J.: Predictive modelling of the seismic cycle of the Greater San Francisco Bay region, J. Geophys. Res., 98, 9871–9883, 1993. Bunde, A., Kropp, J., and Schellnhuber, H. J.: The Science of Disasters. Climate disruptions, heart attacks, and market crashes, Springer Berlin, 2002. Cande, S. C. and Ken, D. V.: Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic, J. Geophys. Res., 100, 6093–6095, 1995. Christensen, U. R.: Geodynamo models: Tools for understanding properties of the Earth’s magnetic field, Phys. Earth Planet. Int., 187, 157–169, 2011. Church, J. A. and White, N. J.: Sea-level rise from the late 19th to the early 21st century, Surv. Geophys., 32, 585–602, 2011.Constable, C. G.: Modelling the geomagnetic field from syntheses of paleomagnetic data, Phys. Earth Planet. Int., 187, 109–117, 2011. Constable, C. G. and Korte, M.: Is Earth’s magnetic field reversing?, Earth Planet. Sci. Lett., 246, 1–16, 2006. Courtillot V. and Besse J.: Magnetic Field Reversals, PolarWander, and Core-Mantle Coupling, Science, 237, 1140–1145, 1987. Dakos, V., Carpenter, S. R., Brock,W. A., Ellison, A. M., Guttal, V., Ives, A. R., Kéfi, S., Livina, V., Seekell, D. A., van Nes, E. H., and Scheffer, M.: Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data, PLoS One, 7, e41010, doi:10.1371/journal.pone.0041010, 2012. De Santis, A.: How persistent is the present trend of the geomagnetic field to decay and, possibly, to reverse?, Phys. Earth Planet. Int., 162, 217–226, 2007. De Santis, A.: Erratum to “How persistent is the present trend of the geomagnetic field to decay and, possibly, to reverse?”, Phys. Earth Plan. Int., 170, p. 149, 2008. De Santis, A. and Qamili, E.: Are we going towards a global planetary magnetic change? 1st WSEAS International Conference on Environmental and Geological Science and Engineering (EG’08), 149–152, 2008. De Santis, A. and Qamili, E.: Shannon information of the geomagnetic field of the past 7000 years, Nonlin. Proc. Geophys., 17, 77–84, 2010a. De Santis, A. and Qamili, E.: Equivalent monopole source of the geomagnetic South Atlantic Anomaly, Pure Appl. Geophys., 167, 339–347, 2010b. De Santis, A., Tozzi, R., and Gaya-Piqué, L.R.: Information content and K-Entropy of the present geomagnetic field, Earth Planet. Sci. Lett., 218, 269–275, 2004. De Santis, A., Cianchini, G., Qamili, E., and Frepoli, A.: The 2009 L’Aquila (Central Italy) seismic sequence as a chaotic process, Tectonophysics, 496, 44–52, 2010. De Santis, A., Qamili, E., Spada, G., and Gasperini, P.: Geomagnetic South Atlantic Anomaly and global sea level rise: a direct connection?, J. Atmos. Sol. Terr. Phys., 74, 129–135, 2012. Finlay, C. C.: Historical variation of the geomagnetic axial dipole, Phys. Earth Planet. Int., 170, 1–14, 2008. Finlay, C. C., Maus, S., Beggan, C. D., Hamoudi, M., Lowes, F. J., Olsen, N., and Thebault, E.: Evaluation of candidate geomagnetic field models for IGRF-11, Earth Planets Space, 62, 787– 804, 2010. Glatzmaier, G. A. and Roberts, P. H.: A three-dimensional selfconsistent computer simulation of a geomagnetic field reversal, Nature, 377, 203–209, 1995. Gross, S. and Rundle, J.: A systematic test of time-to-failure analysis, Geophys. J. Int., 133, 57–64, 1998. Gubbins, D.: Mechanism for geomagnetic polarity reversals, Nature, 326, 167–169, 1987. Gubbins, D., Jones, A. L., and Finlay, C. C.: Fall in Earth’s Magnetic Field is erratic, Science, 312, 900–902, 2006. Hulot, G., Eymin, C., Langlais, B., Mandea, M., and Olsen, N.: Small-scale structure of the geodynamo inferred from Øersted and Magsat satellite data, Nature, 416, 620–623, 2002. Hulot, G., Lhuillier, F., and Aubert, J.: Earth’s dynamo limit of predictability, Geophys. Res. Lett., 37, L06305, doi:10.1029/2009GL041869, 2010.Jackson, A., Jonkers, A. R. T., and Walker, M. R.: Four centuries of geomagnetic secular variation from historical records, Philos. Trans. R. Soc. Lond. A, 358, 957–990, 2000. Jacobs, J. A.: Reversals of the Earth’s magnetic field, 2nd Edition, Cambridge University Press, Cambridge, UK, 346 pp., 1994. Jevrejeva, S., Moore, J. C., Grinsted, A., andWoodworth, P. L.: Recent global sea level acceleration started over 200 years ago?, Geophys. Res. Lett., 35, L08715, doi:10.1029/2008GL033611, 2008. Leonhardt, R. and Fabian, K.: Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama/Brunhes transition: iterative Bayesian inversion and independent verification, Earth Planet. Sci. Lett., 253, 172–195, 2007. Leonhardt, R., Fabian, K. Winklhofer, M. Ferk, A. Kissel, C., and Laj, C.: Geomagnetic field evolution during the Laschamp excursion, Earth Planet. Sci. Lett., 278, 87–95, 2009. Lowes, F. J.: Spatial power spectrum of the main geomagnetic field, and extrapolation to the core, Geoph. J. R. Astr. Soc., 36, 717– 730, 1974. Malin, S. R. C.: Sesquicentenary of Gauss’s first measurement of the absolute value of magnetic intensity, Philos. Trans. R. Soc. Lond. A, 306, 5–8, 1982. May, R. M., Levin, S. A., and Sugihara, G.: Ecology for bankers, Nature, 451, 893–895, 2008. Merrill, R. T. and McElhinny, M. W.: The Earth’s Magnetic Field (Its History, Origin and Planetary Perspective), Academic Press, San Diego, 1983. Mignan, A.: Retrospective on the Accelerating Seismic Release (ASR) hypothesis: controversy and new horizons, Tectonophysics, 505, 1–16, 2011. Mörner, N.-A.: Estimating future sea level changes from past records, Global Planet. Change, 40, 49–54, 2004. Mörner, N.-A.: Some problems in reconstruction of mean sea and its changes with time, Quatern. Int., 221, 3–8, 2010. Nowaczyk, N. R., Arz, H. W., Frank, H. W., Kind, J., and Plessen, B.: Dynamics of the Laschamp geomagnetic excursion from Black Sea sediments, Earth Planet. Sci. Lett., 351, 54–69, 2012. Olson, P. and Amit, H.: Changes in earth’s dipole, Naturwissenschaften, 93, 519–542, 2006. Olson, P., Driscoll, P., and Amit, H.: Dipole collapse and reversal precursors in a numerical dynamo, Phys. Earth Planet. Int., 173, 121–140, 2009. Raup D. M.: Magnetic Reversals and Mass extinctions, Nature, 314, 341–343, 1985. Scheffer, M.: Critical Transitions in Nature and Society. Princeton Univ. Press, 2009. Scheffer, M., Bascompte, J., Brock, W., Brokvin, V., Carpenter, S. R., Dakos, V., Held, H., van Nes, E. H., Rietkerk, M., and Sugihara, G.: Early-warning signals for critical transitions, Nature, 461, 53–59, 2009. Scheffer, M., Carpenter, S. R., Lenton, T. M., Bascompte, J., Brock, W., Dakos, V., van de Koppel, J., van de Leemput, I. A., Levin, S. A., van Nes, E. H., Pascual, M., and Vandermeer, J., Anticipating critical transitions, Science, 338, 344–348, 2012. Sornette, D.: Why stock markets crash. Critical events in complex financial systems, Princeton Univ. Press, Oxford, 2003. Sornette, D.: Critical Phenomena in Natural Sciences, Second Ed. Springer, Berlin, 2006.Sornette, D. and Sammis, C.: Complex critical exponents from renormalization group theory of earthquakes: implications for earthquake predictions, J. Phys. I France, 5, 607–619, 1995. Stanley, H. E.: Phase transition and critical phenomena, Clarendon Press, New York, 1971. Takahashi, F., Matsushima, M., and Honkura, Y.: Simulations of a quasi-Taylor state geomagnetic field including polarity reversals on the Earth simulator, Science, 309, 459–461, 2005. Vandewalle, N., Ausolos, M., Boveraus, P., and Minguet, A.: How the financial crash of October 1997 could have been predicted, Eur. Phys. J. B., 4, 139–141, 1998.Wicht, J. and Christensen, U. R.: Torsional oscillations in dynamo simulations, Geophys. J. Int., 181, 1367–1380, 2010. Wicht, J. and Olson P.: A detailed study of the polarity reversal mechanism in a numerical dynamo model, Geochem. Geophys. Geosyst., 5, Q03H10, doi:10.1029/2003GC000602, 2004. Wicht, J., Stellmach, S., and Harder, H.: Numerical models of the geodynamo: from fundamental Cartesian models to 3-D simulations of field reversals, edited by: Glassmeier, K. H., Soffel, H., and Negendank, J. F.W., Geomagnetic field variations. Springer, Berlin, 107–158, 2009. Woo, G.: Calculating Catastrophe, Imperial College Press, 355 pp., 2011.en
dc.description.obiettivoSpecifico1A. Geomagnetismo e Paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.relation.issn1561-8633en
dc.relation.eissn1684-9981en
dc.contributor.authorDe Santis, A.en
dc.contributor.authorQamili, E.en
dc.contributor.authorWu, L.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptChina University of Mining and Technology, School of Environment Science and Spatial Informatics, Xuzhou, China-
crisitem.author.orcid0000-0002-3941-656X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
ADS_Toward_a geomagnetic transition_nhess_2013.pdfarticle and appendix656.76 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

11
checked on Feb 10, 2021

Page view(s) 10

638
checked on Apr 20, 2024

Download(s) 50

1,281
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric