Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9853
DC FieldValueLanguage
dc.contributor.authorallPisciotta, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallCusimano, G.; Dipartimento di Geologia e Geodesia dell'Università di Palermo, Via Archirafi n. 22, 90123 Palermo, Italyen
dc.contributor.authorallFavara, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.date.accessioned2015-06-11T06:25:56Zen
dc.date.available2015-06-11T06:25:56Zen
dc.date.issued2015en
dc.identifier.urihttp://hdl.handle.net/2122/9853en
dc.description.abstractGroundwater contamination by nitrate and other nutrients is a major problem throughout the world, often occurring as the result of anthropogenic activities, lack of management, and over-exploitation of groundwater resources. In the last fewdecades in the majority of the Italian regions, the nitrate concentrations in groundwater have dramatically increased, mainly as a consequence of the large-scale agricultural application of manure and fertilizers. This excessive use of chemicals and fertilizers increases the risk of surface and groundwater pollution fromdiffuse sources, which have an important impact on human health and the environment. Sicily is located in the central Mediterranean, the total area of the island is 25,711 km2, with more than 5 million inhabitants. The terrain of inland Sicily is mostly hilly and intensively cultivated wherever it was possible, nitrate vulnerable zone about 40% of flat areas and 5.37% of total. The test site is located in Canicattì (central Sicily); the current land use (grape, olive and almond cultivation) constitutes the main source of groundwater pollution. In order to investigate the effect of over-farming on groundwater quality and to indentify an appropriate methodology for pollution risk management, we have carried out a comparative study on the potential risk of contamination from nitrate of agricultural origin, according to the conventional parametrical methods used in Europe; the IPNOA parametric model (agricultural nitrates hazard index) method combined with the SINTACS and DRASTIC intrinsic aquifer vulnerabilitymethods. All parameters used in this risk assessment were prepared, classified, weighed, and integrated in a GIS environment. For calibrating the models and optimizing and/or weighing the examined factors, the modeling results were validated by comparing them with groundwater quality data, in particular nitrate content, and with census data fromthe potential pollution sources. The criterion for checking this method was the correlation coefficient of each model with the nitrate concentration in the groundwater. A relative coincidence of a high nitrate concentration and risk mapping was observed, but this correlation was only significant using the SINTACS method. In fact, the final risk maps show significant differences in risk quality assessment; the DRASTIC model values show an over-evaluation of the real contest. In conclusion, the SINTACS parametric method appears to be the most suitable for constructing a relevant risk map of the contamination of these aquifers, which are considered to be typical of the Mediterranean region for their hydrogeological and hydrochemical featuresen
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofJournal of geochemical explorationen
dc.relation.ispartofseries/156 (2015)en
dc.subjectGroundwater vulnerability assessmenten
dc.subjectSINTACSen
dc.subjectDRASTICen
dc.subjectNitrate risk mapen
dc.titleGroundwater nitrate risk assessment using intrinsic vulnerability methods: A comparative study of environmental impact by intensive farming in the Mediterranean region of Sicily, Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber89–100en
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.03. Pollutionen
dc.identifier.doi10.1016/j.gexplo.2015.05.002en
dc.relation.referencesAddiscott, T.M., Whilmore, A.P., Powlson, D., 1991. Farming, Fertilizer and the Nitrate Problem. CAB International, Wallingford, UK. Agenzia per la protezione dell'ambiente e per i servizi tecnici (APAT), 2005. La realizzazione in Italia del progetto europeo Corine Land Cover 2000. APAT Report No. 36 Rome Italy. Al-Adamat, R.A.N., Foster, I.D.L., Baban, S.M.J., 2003. Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC. Appl. Geogr. 23, 303–324. Aller, L., Bennett, T., Lehr, J.H., Petty, R.J., Hackett, G., 1987. DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings. NWWA/EPA Series, EPA-600/2-87-035. Antonakos, A.K., Lambrakis, N.J., 2007. Development and testing of three hybrid methods for the assessment of aquifer vulnerability to nitrates, based on the drastic model, an example from NE Korinthia, Greece. J. Hydrol. 333, 288–304. APHA, AWWA, and WPCF, 1992. Standard Methods for the Examination of Water and Wastewater. 18th ed. American Public Health Association, Washington, D.C. USA. Baalousha, H., 2010. Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: a case study from Heretaunga Plains, New Zealand. Agric. Water Manag. 97, 240–246. Boeing, H., 1991. Epidemiological research in stomach cancer: progress over the last ten years. J. Cancer Res. Clin. Oncol. 117, 113–143. Bukowski, P., Bromek, T., Augustyniak, I., 2006. Using the DRASTIC system to assess the vulnerability of ground water to pollution in mined areas of the upper Silesian coal basin. Mine Water Environ. 25, 15–22. Burrough, P.A., McDonnell, R.A., 1998. Principles of Geographical Information Systems. Oxford University Press, Oxford (327 pp.). Butler, R.W.H., Lickorish, W.H., 1997. Using high resolution stratigraphy to date fold and thrust activity: examples from the Neogene of South-central Sicily. J. Geol. Soc. Lond. 154, 633–643. Butler, R.W.H., Lickorish,W.H., Grasso, M., Pedley, H.M., Ramberti, L., 1995. Tectonics and sequence stratigraphy in Messinian basins, Sicily; constraints on the initiation and termination of the Mediterranean salinity crisis. Geol. Soc. Am. Bull. 107, 425–439. Capri, E., Civita, M., Corniello, A., Cusimano, G., De Maio, M., Ducci, D., Fait, G., Fiorucci, A., Hauser, S., Pisciotta, A., Pranzini, G., Trevisan, M., Delgado Huertas, A., Ferrari, F., Frullini, R., Nisi, B., Offi, M., Vaselli, O., Vassallo, M., 2009. Assessment of nitrate contamination risk: the Italian experience. J. Geochem. Explor. 102, 71–86. Causape, J., Quilez, D., Aragues, R., 2006. Groundwater quality irrigation in CR-V irrigation district (Bardenas I Spain): alternative scenarios to reduce off-site salt and nitrate contamination. Agric. Water Manage. 84, 281–289. Ceplecha, Z.L.,Waskom, R.M., Bauder, T.A., Sharkoff, J.L., Khosla, R., 2004. Vulnerability assessments of Colorado ground water to nitrate contamination. Water Air Soil Pollut. 159, 373–394. Civita, M., 1994. Le carte della vulnerabilità degli acquiferi all'inquinamento: teoria e pratica. Quaderni di Tecniche di Protezione Ambientale, Sezione “Protezione delle Acque Sotterranee”. 31. Pitagora Editrice, Bologna, pp. 633–643. Civita, M., De Maio, M., 1997. SINTACS. Un sistema parametrico per la valutazione e la cartografia della vulnerabilita'degli acquiferi all'inquinamento. Metodologia and Automatizzazione. vol. 60. Pitagora Editrice, Bologna. Civita, M., De Maio, M., 2000. Valutazione e cartografia automatica della vulnerabilità degli acquiferi all'inquinamento con il sistema parametrico — SINTACS R5 — a new parametric system for the assessment and automatic mapping of ground water vulnerability to contamination. Quaderni e Tecniche di Protezione ambientale. 72. Pitagora, Bologna (226 pp.). Dinar, A., Aillery, M.P., Moore, M.R., 1993. A dynamic model of soil salinity and drainage generation in irrigated agriculture: a framework for policy analysis. Water Resour. Res. 29, 1527–1537. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Off. J. Eur. Communities (L327), 0001–0073. Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Off. J. Eur. Union L372 (19), 19–31. Directive 91/676/EEC, 1991. Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources. Off. J. Eur. Communities L375, 1–13. Draoui,M., Vias, J., Andreo, B., Targuisti, K., Stitou ElMessari, J., 2008. A comparative study of four vulnerability mapping methods in a detritic aquifer under Mediterranean climatic conditions. Environ. Geol. 54, 455–463. Einstein, H.H., 1998. Special lecture: landslide risk assessment procedure. 5th International Symposium on Landslide, Losanna, pp. 1075–1090. FAO, 1998.World Reference Base for Soil Resources. Food and Agriculture Organization of the United Nations, Rome. Fierotti, G., 1988. Carta dei Suoli della Sicilia — scala 1:250.000 — Regione Siciliana, Assessorato Territorio e Ambiente, Palermo. Ghiglieri, G., Barbieri, G., Vernier, A., Carletti, A., Demurtas, N., Pinna, R., Pittalis, D., 2009. Potential risks of nitrate pollution in aquifers from agricultural practices in the Nurra region, northwestern Sardinia, Italy. J. Hydrol. 379, 339–350. Gilli, G., Corrao, G., Favilli, S., 1984. Concentrations of nitrates in drinking water and incidence of gastric carcinomas: first descriptive study of the Piemonte Region, Italy. Sci. Total Environ. 34, 35–48. Grasso, M., Pedley, H., 1988. The sedimentology and development of Terravecchia Formation carbonates (Upper Miocene) in North-central Sicily: possible eustatic influence on facies development. Sediment. Geol. 57, 131–149. Gundogdu, K.S., Guney, I., 2007. Spatial analyses of groundwater level using universal kriging. J. Earth Syst. Sci. 116, 49–55. Holman, I.P., Palmer, R.C., Bellamy, P.H., Hollis, J.M., 2005. Validation of an intrinsic groundwater pollution vulnerability methodology using a national nitrate database. Hydrogeol. J. 13, 665–674. ISTAT (Istituto Nazionale di Statistica), 2010. http://dati.istat.it/Index.aspx? DataSetCode=DCCV_INDACQDOM. Italian Legislative Decree 152/06, 2006. (Italia, Decreto legislativo 3 Aprile 2006, n. 152) Norme in materia ambientale. Gazzetta Ufficiale n. 88 del 14 aprile 2006. Italian Legislative Decree 152/99, 1999. (Italia, Decreto Legislativo 11 Maggio 1999, n. 152) Norme e disposizioni sulla tutela delle acque dall'inquinamento. Gazzetta Ufficiale n. 246 del 20 ottobre 2000. Krijgsman, W., Zachariasse, W.J., 1994. The age of the Tortonian/Messinian boundary. Earth Planet. Sci. Lett. 121, 533–547. Kumar, V., 2007. Optimal contour mapping of groundwater levels using universal kriging — a case study. Hydrol. Sci. J. 52, 1038–1050. Lake, I.R., Lovett, A.A., Hiscock, K.M., Betson, M., Foley, A., Sünnenberg, G., Evers, S., Fletcher, S., 2003. Evaluating factors influencing groundwater vulnerability to nitrate pollution: developing the potential of GIS. J. Environ. Manag 68, 315–328. Pacheco, F., Sanches Fernandes, L.F., 2013. The multivariate statistical structure of DRASTIC model. J. Hydrol. 476, 442–459. Padovani, L., Trevisan, M., 2002. I nitrati di origine agricola nelle acque sotterranee. Un indice parametrico per l'individuazione di aree vulnerabili. Pitagora Ed, Bologna, p. 120. Pearson, K., 1896. Mathematical contributions to the theory of evolution, III: regression, heredity and panmixia. Philos. Trans. R. Soc. Lond. A 187, 253–318. Roelsma, J., Hendriks, R.F.A., 2014. Comparative study of nitrate leaching models on a regional scale. Sci. Total Environ. 499, 481–496. Saidi, S., Bouri, S., Ben Dhia, H., Anselme, B., 2011. Assessment of groundwater risk using intrinsic vulnerability and hazard mapping: application to Souassi aquifer, Tunisian Sahel. Agric. Water Manage. 98, 1671–1682. Schreiber, B.C., Friedman, G.M., Decima, A., Schreiber, E., 1976. The depositional environment of the upper Miocene (Messinian) deposits of the Sicilian Basin. Sedimentology 23, 729–760. Sener, E., Davraz, A., 2013. Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: the case of Egirdir Lake basin (Isparta, Turkey). Hydrogeol. J. 21, 701–714. Theodossiou, N., 1999. Evaluation of the distribution of hydraulic head in an aquifer using the kriging method. Sci. J. Hell. Hydrotech. Assoc. Hydrotech. 9, 3–14. Thirumalaivasan, D., Karmegam, M., Venugopal, K., 2003. AHPDRASTIC: software for specific aquifer vulnerability assessment using DRASTIC model and GIS. Environ. Model Softw. 18, 645–656. Turc, L., 1961. Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date. Annals of Agronomy 12, 13–49. U. S. Environmental Protection Agency, 1996. Environmental Indicators of Water Quality in the United States. Office of Water, Washington, D.C. (EPA 841-R-96-002). VanMaanen, J.M.S.,Welle, I.J., Hageman, G., Darllinga, J.W., Mertins, P.L.J.M., Klejans, J.C.S., 1996. Nitrate contamination of drinking water: relationship with lymphocyte DNA and urinary excretion of nitrosamine. Environ. Health Perspect. 104 (522-299). Vrba, J., Zaporozec, A., 1994. Guidebook on Mapping Groundwater Vulnerability. IAH, Int. Contrib. Hydrogeol., Heise, Hannover, p. 131. Wakida, F.T., Lerner,D.N., 2005. Non-agricultural sources of groundwater nitrate: a review and case study.Water Res. 39, 3–16.en
dc.description.obiettivoSpecifico6A. Monitoraggio ambientale, sicurezza e territorioen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0375-6742en
dc.contributor.authorPisciotta, A.en
dc.contributor.authorCusimano, G.en
dc.contributor.authorFavara, R.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentDipartimento di Geologia e Geodesia dell'Università di Palermo, Via Archirafi n. 22, 90123 Palermo, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.orcid0000-0002-2289-3028-
crisitem.author.orcid0000-0003-4588-2935-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Manuscript.pdf4.55 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

49
checked on Feb 10, 2021

Page view(s) 10

461
checked on Mar 27, 2024

Download(s) 50

117
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric