Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9665
DC FieldValueLanguage
dc.contributor.authorallValoroso, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallChiaraluce, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallPiccinini, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallDi Stefano, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallSchaff, D.en
dc.contributor.authorallWaldhauser, F.en
dc.date.accessioned2015-05-28T12:23:45Zen
dc.date.available2015-05-28T12:23:45Zen
dc.date.issued2013en
dc.identifier.urihttp://hdl.handle.net/2122/9665en
dc.description.abstractWe studied the anatomy of the fault system where the 2009 L’Aquila earthquake (MW 6.1) nucleated by means of ~64 k high-precision earthquake locations spanning 1 year. Data were analyzed by combining an automatic picking procedure for P and S waves, together with cross-correlation and double-difference location methods reaching a completeness magnitude for the catalogue equal to 0.7 including 425 clusters of similar earthquakes. The fault system is composed by two major faults: the high-angle L’Aquila fault and the listric Campotosto fault, both located in the first 10 km of the upper crust. We detect an extraordinary degree of detail in the anatomy of the single fault segments resembling the degree of complexity observed by field geologists on fault outcrops. We observe multiple antithetic and synthetic fault segments tens of meters long in both the hanging wall and footwall along with bends and cross fault intersections along the main fault and fault splays. The width of the L’Aquila fault zone varies along strike from 0.3 km where the fault exhibits the simplest geometry and experienced peaks in the slip distribution, up to 1.5 km at the fault tips with an increase in the geometrical complexity. These characteristics, similar to damage zone properties of natural faults, underline the key role of aftershocks in fault growth and co-seismic rupture propagation processes. Additionally, we interpret the persistent nucleation of similar events at the seismicity cutoff depth as the presence of a rheological (i.e., creeping) discontinuity explaining how normal faults detach at depth.en
dc.language.isoEnglishen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/118 (2013)en
dc.subjectseismic sequences; normal faults; high-resolution earthquake cataloguesen
dc.titleRadiography of a normal fault system by 64,000 high-precision earthquake locations: The 2009 L’Aquila (central Italy) case studyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1-21en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolutionen
dc.identifier.doi10.1002/jgrb.50130en
dc.relation.referencesAgosta, F., and A. Aydin (2006), Architecture and deformation mechanism of a basin-bounding normal fault in Mesozoic platform carbonates, Central Italy, J. Struc. Geol., 28, 1445–1467. Aki, K. (1979), Characterization of barriers on an earthquake fault, J. Geophys. Res., 84, 6140–6148. Aldersons, F., R. Di Stefano, L. Chiaraluce, D. Piccinini, and L. Valoroso (2009), Automatic detection, and P and S wave picking algorithm: An application to the 2009 L’Aquila (central Italy) earthquake sequence, Eos Trans. AGU, 90(52), Fall Meet. Suppl., Abstract U23B-0045. Amoruso, A., and L. Crescentini (2009), Slow diffusive fault slip propagation following the 6 April 2009 L’Aquila earthquake, Italy, Geophys. Res. Lett., 36, L24306, doi:10.1029/2009GL041503. Bakun, W. H., et al. (2005), Implications for prediction and hazard assessment from the 2004 Parkfield, California, earthquake, Nature, 437, 969–974. Beeler, N. M., S. H. Hickman, and T.-F. Wong (2001), Earthquake stress drop and laboratory-inferred interseismic strength recovery, J. Geophys. Res., 106 (B12), doi:10.1029/2000JB900242. Berg, S. S. and T. Skar (2005), Controls on damage zone asymmetry of a normal fault zone: Outcrop analyses of a segment of the Moab fault, SE Utah, J. Struct. Geol., (27), 1803–1822, doi:10.1016/j.jsg.2005.04.012. Boatwright, J. and M. Cocco (1996), Frictional constraints on crustal faulting, J. Geophys. Res. 101(B6): doi: 10.1029/96JB00405. Boncio, P., A. Pizzi, F. Brozzetti, G. Pomposo, G. Lavecchia, D. Di Naccio, and F. Ferrarini (2010), Coseismic ground deformation of the 6 April 2009 L’Aquila earthquake (central Italy, MW 6.3), Geophys. Res. Lett., 37, L06308, doi:10.1029/2010GL042807. Calderoni, G., A. Rovelli, and R. Di Giovambattista (2010), Large amplitude variations recorded by an on-fault seismological station during the L’Aquila earthquakes: Evidence for a complex fault-induced site effect, Geophys. Res. Lett., 37, L24305, doi:10.1029/2010GL045697. Chen, K. H., R. Burgmann, R. M. Nadeau, T. Chen, and N. Lapusta (2010), Postseismic variations in seismic moment and recurrence interval of repeating earthquakes, Earth Planet. Sci. Lett., 299, doi:10.1016/j. epsl.2010.08.027. Chiarabba, C., et al. (2009), The 2009 L’Aquila (central Italy) MW 6.3 earthquake: Main shock and aftershocks, Geophys. Res. Lett., 36, L18308, doi:10.1029/2009GL039627. Chiaraluce, L. (2012), Unravelling the complexity of Apenninic extensional fault systems: A review of the 2009 L’Aquila earthquake (Central Apennines, Italy), J. Struct. Geol., 42, 2–18, doi:10.1016/j.jsg.2012.06.007. Chiaraluce, L., W. L. Ellsworth, C. Chiarabba, and M. Cocco (2003), Imaging the complexity of an active normal fault system: The 1997 Colfiorito (central Italy) case study, J. Geophys. Res., 108(B6), 2294, doi:10.1029/ 2002JB002166.Chiaraluce, L., L. Valoroso, M. Anselmi, S. Bagh, and C. Chiarabba (2009), A decade of passive seismic monitoring experiments with local networks in four Italian regions, Tectonophysics, 476, 85–98, doi:10.1016/j. tecto.2009.02.013. Chiaraluce, L., L. Valoroso, D. Piccinini, R. Di Stefano, and P. De Gori (2011a), The anatomy of the 2009 L’Aquila normal fault system (central Italy) imaged by high resolution foreshock and aftershock locations, J. Geophys. Res., 116, B12311, doi:10.1029/2011JB008352. Chiaraluce, L., C. Chiarabba, P. De Gori, R. Di Stefano, L. Improta, D. Piccinini, A. Schlagenhauf, P. Traversa, L. Valoroso, and C. Voisin (2011b). The 2009 L’Aquila (central Italy) seismic sequence, Boll. Geofis. Teor. Appl., 52(3), 367–387, doi:10.4430/bgta0019. Cirella, A., A. Piatanesi, E. Tinti, M. Chini and M. Cocco (2012), Complexity of the rupture process during the 2009 L’Aquila, Italy, earthquake, Geophys. J. Int., 190, 607–621, doi:10.1111/j.1365-246X.2012.05505.x. Collettini C., M. R. Barchi, L. Chiaraluce, F. Mirabella, and S. Pucci (2003), The Gubbio fault: Can different methods give pictures of the same object?, J. Geody., (36), 51–66, ISSN: 0264–3707 Cowie, P. A., and C. H. Scholz (1992), Growth of faults by accumulation of seismic slip, J. Geophys. Res., 97, doi:10.1029/92JB00586. D’Agostino, N., A. Avallone, D. Cheloni, E. D’Anastasio, S. Mantenuto, and G. Selvaggi (2008), Active tectonics of the Adriatic region from GPS and earthquake slip vectors, J. Geophys. Res., 113, B12413, doi:10.1029/2008JB005860. D’Agostino, N., D. Cheloni, G. Fornaro, R. Giuliani, and D. Reale (2012), Space-time distribution of afterslip following the 2009 L’Aquila earthquake, J. Geophys. Res., 117, B02402, doi:10.1029/2011JB008523. D’Agostino, N., R. Giuliani, M. Mattone, and L. Bonci (2001), Active crustal extension in the central Apennines (Italy) inferred from GPS measurements in the interval 1994–1999, Geophys. Res. Lett., 28, 2121–2124, doi:10.1029/2000GL012462. De Paola N., C. Collettini, D. R. Faulkner and F. Trippetta (2008), Fault zone architecture and deformation processes within evaporitic rocks in the upper crust, Tectonics, 27, ISSN: 0278–7407, doi: 10.1029/ 2007TC002230. Di Luccio, F., G. Ventura, R. Di Giovambattista, A. Piscini, and F. R. Cinti (2010), Normal faults and thrusts reactivated by deep fluids: The 6 April 2009 MW 6.3 L’Aquila earthquake, central Italy, J. Geophys. Res., 115, B06315, doi:10.1029/2009JB007190. Di Stefano, R., F. Aldersons, E. Kissling, P. Baccheschi, C. Chiarabba, and D. Giardini (2006), Automatic seismic phase picking and consistent observation error assessment: Application to the Italian seismicity, Geophys. J. Int., 165, 121–134. Di Stefano, R., C. Chiarabba, L. Chiaraluce, M. Cocco, P. De Gori, D. Piccinini, and L. Valoroso (2011), Fault zone properties affecting the rupture evolution of the 2009 (MW 6.1) L’Aquila earthquake (central Italy): Insights from seismic tomography, Geophys. Res. Lett., 38, L10310, doi:10.1029/2011GL047365. Diehl, T., N. Deichmann, E. Kissling, and E. Husen (2009), Automatic S-wave picker for local earthquake tomography, Bull. Seism. Soc. Am., 99, 3, 1906–1920, doi: 10.1785/0120080019. EMERGEO Working Group (2009), Evidence for surface rupture associated with the MW 6.3 L’Aquila earthquake sequence of April 2009 (central Italy), Terra Nova, 22, 43–51, doi:10.1111/j.1365-3121.2009.00915.x. Felzer, K. R., and E. E. Brodsky (2005), Testing the stress shadow hypothesis, J. Geophys. Res., 110, B05S09, doi:10.1029/2004JB003277. Fréchet, J. (1985), Sismogenése et doublets sismiques, thése d’Etat, 206 pp., Univ. é Sci. et Méd. de Grenoble, Grenoble, France. Galadini, F., and P. Galli (2000), Active tectonics in the central Apennines (Italy)—Input data for seismic hazard assessment, Nat. Hazards, 22, 225–268, doi:10.1023/A:1008149531980. Galli, P., B. Giaccio, and P. Messina (2010), The 2009 central Italy earthquake seen through 0.5 Myr-long tectonic history of the L’Aquila faults system, Quat. Sci. Rev., 29, 3768–3789. Galli, P., B. Giaccio, P. Messina, E. Peronace and G. M. Zuppi (2011), Palaeoseismology of the L’Aquila faults (central Italy, 2009, MW 6.3 earthquake): Implications for active fault linkage, Geophys. J. Int., 187, 1119–1134, doi: 10.1111/j.1365-246X.2011.05233.x. Geller, R. J., and C. S. Mueller (1980), Four similar earthquakes in central California, Geophys. Res. Lett., 7, 821–824, doi:10.1029/ GL007i010p00821. Herrmann, R. B., L. Malagnini, and I. Munafò (2011), Regional moment tensors of the 2009 L’Aquila earthquake sequence, Bull. Seismol. Soc. Am., 101, 975–993, doi:10.1785/0120100184. Hunstad, I., G. Selvaggi, N. D’Agostino, P. England, P. Clarke, and M. Pierozzi (2003), Geodetic strain in peninsular Italy between 1875 and 2001, Geophys. Res. Lett., 30(4), 1181, doi:10.1029/2002GL016447. Johanson, I. A., E. J. Fielding, R. Rolandone and R. Bürgmann (2006), Coseismic and postseismic slip of the 2004 Parkfield earthquake from space-geodetic data, Bull. Seism. Soc. Am., 96, S269–S282.Kato A., K. Obara, T. Igarashi, H. Tsuruoka, S. Nakagawa, and N. Hirata (2012), Propagation of slow slip leading up to the 2011 MW 9.0 TohokuOki earthquake, Science, 335, 705, DOI:10.1126/science.1215141 Lahr, J. C. (1989), HYPOELLIPSE/version 2.00: A computer program for determining local earthquakes hypocentral parameters, magnitude and first motion pattern, U.S. Geol. Surv., Open File Rep., 89–116, 162. Lucente, F. P., P. De Gori, L. Margheriti, D. Piccinini, M. Di Bona, C. Chiarabba, and N. P. Agostinetti (2010), Temporal variation of seismic velocity and anisotropy before the 2009 MW 6.3 L’Aquila earthquake, Italy, Geology, 38, 1015–1018, doi:10.1130/G31463.1. Malagnini, L., F. P. Lucente, P. De Gori, A. Akinci, and I. Munafo’ (2012), Control of pore fluid pressure diffusion on fault failure mode: Insights from the 2009 L’Aquila seismic sequence, J. Geophys. Res., 117, B05302, doi:10.1029/2011JB008911. Malinverno, A., W. B. F. Ryan (1986), Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere, Tectonics, 5, 227–245. Margheriti, L., et al. (2011), Rapid response seismic networks in Europe: Lessons learnt from the L’Aquila earthquake emergency, Ann. Of Geoph. 54, 4, 2011; doi: 10.4401/ag-4953. Marone, C., J. E. Vidale, and W. Ellsworth (1995), Fault healing inferred from time dependent variations in source properties of repeating earthquake, Geophys. Res. Lett., 22, 3095–3098. Marsan, D. (2005), The role of small earthquakes in redistributing crustal elastic stress, Geophys. J. Int., 163, 141–151, doi:10.1111/j.1365-246X. 2005.02700.x Marzocchi, W., and A. M. Lombardi (2009), Real-time forecasting following a damaging earthquake, Geophys. Res. Lett., 36, L21302, doi:10.1029/ 2009GL040233. Micarelli, L., I. Moretti, and J. M. Daniel (2003), Structural properties of rift-related normal faults: The case study of the Gulf of Corinth, Greece, J. Geodyn., 36(1–2), 275–303, doi:10.1016/S0264-3707(03)00051-6. Mitchell T. and D. R. Faulkner (2009). The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile. J. Struct. Geol., 31, 802–816, doi:10.1016/j.jsg.2009.05.002. Montone, P., M. T. Mariucci, S. Pondrelli, and A. Amato (2004), An improved stress map for Italy and surrounding regions (central Mediterranean), J. Geophys. Res., 109, B10410, doi:10.1029/2003JB002703. Nadeau, R. M. and T. V. McEvilly (1999), Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718–721. Paige, C. C., and M. A. Saunders (1982), LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Softw., 8, 43–71. Parotto, M., and A. Praturlon (1975), Geological summary of the central Apennines, in Structural Model of Italy, Quad. Ric. Sci., 90, 257–311, Cons. Naz. delle Ric., Rome. Patacca, E., P. Scandone, E. Di Luzio, G. P. Cavinato, and M. Parotto (2008), Structural architecture of the central Apennines: Interpretation of the CROP 11 seismic profile from the Adriatic coast to the orographic divide, Tectonics, 27, TC3006, doi:10.1029/2005TC001917. Peng, Z., J. E. Vidale, C. Marone, and A. Rubin (2005), Systematic variations in recurrence interval and moment of repeating aftershocks, Geophys. Res. Lett., 32, L15301, doi:10.1029/2005GL022626. Pino, N. A., and F. Di Luccio (2009), Source complexity of the 6 April 2009 L’Aquila (central Italy) earthquake and its strongest aftershock revealed by elementary seismological analysis, Geophys. Res. Lett., 36, L23305, doi:10.1029/2009GL041331. Pondrelli, S., S. Salimbeni, A. Morelli, G. Ekstrom, M. Olivieri, and E. Boschi (2010), Seismic moment tensors of the April 2009, L’Aquila (Central Italy), earthquake sequence, Geophys. J. Int. (2010) 180, 238–242 doi: 10.1111/j.1365-246X.2009.04418.x Poupinet, G., W. L. Ellsworth, and J. Frechet (1984), Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras Fault, California, J. Geophys. Res., 89, 5719–5731, doi:10.1029/JB089iB07p05719. Rice, J. R., C. Sammis, and R. Parsons (2005), Off-fault secondary failure induced by a dynamic slip pulse, Bull. Seismol. Soc. Am., 95(1), 109–134, doi:10.1785/0120030166. Rowe, C. A., R. C. Aster, B. Borchers, and C. J. Young (2002), An automatic, adaptive algorithm for refining phase picks in large seismic data sets, Bull. seism. Soc. Am., 92(5), 1660–1674. Sammis, C. G., and J. R. Rice (2001), Repeating earthquakes as lowstressdrop events at a border between locked and creeping fault patches, Bull. Seismol. Soc. Am., 91, 532–537. Savage, H. M., and E. E. Brodsky (2011), Collateral damage: Evolution with displacement of fracture distribution and secondary fault strands in fault damage zones, J. Geophys. Res., 116, B03405, doi:10.1029/2010JB007665. Schaff, D. P., and G. C. Beroza (2004), Coseismic and postseismic velocity changes measured by repeating earthquakes, J. Geophys. Res., 109, B10302, doi:10.1029/2004JB003011.Schaff, D. P., and F. Waldhauser (2005). Waveform cross-correlation-based differential travel-time measurements at the Northern California Seismic Network, Bull. Seismol. Soc. Am. 95, 2446–2461, doi 10.1785/0120040221. Schaff, D. P., G. H. R. Bokelmann, G. C. Beroza, F. Waldhauser, and W. L. Ellsworth (2002), High resolution image of Calaveras Fault seismicity, J. Geophys. Res., 107(B9), 2186, doi:10.1029/2001JB000633. Schaff, D. P., G. Bokelmann, W. L. Ellsworth, E. Zanzerkia, F. Waldhauser, and G. C. Beroza (2004), Optimizing correlation techniques for improved earthquake location, Bull. Seismol. Soc. Am., 94, 705–721, doi:10.1785/ 0120020238. Scholz, C. H. (2002), The Mechanics of Earthquakes and Faulting, Cambridge Univ. Press, Cambridge, U. K. Schorlemmer, D., F. Mele, and W. Marzocchi (2010), A completeness analysis of the National Seismic Network of Italy, J. Geophys. Res., 115, B04308, doi:10.1029/2008JB006097. Scognamiglio, L., E. Tinti, A. Michelini, D. S. Dreger, A. Cirella, M. Cocco, S. Mazza, and A. Piatanesi (2010), Fast determination of moment tensors and rupture history: What has been learned from the 6 April 2009 L’Aquila earthquake sequence, Seismol. Res. Lett., 81, 892–906, doi:10.1785/gssrl.81.6.892. Uchida, N., J. Nakajima, A. Hasegawa, and T. Matsuzawa (2009), What controls interplate coupling?: Evidence for abrupt change in coupling across a border between two overlying plates in the NE Japan subduction zone, Earth Planet. Sci. Lett., 283, 111–121. Valoroso, L., L. Improta, L. Chiaraluce, R. Di Stefano, L. Ferranti, A. Govoni, and C. Chiarabba (2009), Active faults and induced seismicity in the Val d’Agri region (southern Apennines, Italy), Geophys. J. Int., 178, 488–502, doi:10.1111/j.1365-246X.2009.04166.x. Vermilye, J. M., and C. H. Scholz (1998), The process zone: A microstructural view of fault growth, J. Geophys. Res., 103(B6), 12,223–12,237, doi:10.1029/98JB00957. Vidale, J. E., W. L. Ellsworth, A. Cole, and C. Marone (1994), Variations in rupture process with recurrence interval in a repeated small earthquake, Nature, 368, 624–626. Waldhauser, F. (2001), hypoDD: A program to compute double-difference hypocenter locations, U.S. Geol. Surv. Open File Rep., 01–113. Waldhauser, F. (2009), Near-real-time double-difference event location using long-term seismic archives, with application to Northern California, Bull. Seism. Soc. Am., 99, 5, 2736–2748, doi: 10.1785/ 0120080294 Waldhauser, F., and W. L. Ellsworth (2000), A double-difference earthquake location algorithm: Method and application to the northern Hayward Fault, California, Bull. Seismol. Soc. Am., 90, 1353–1368, doi:10.1785/0120000006. Waldhauser, F., and D. P. Schaff (2008), Large-scale relocation of two decades of Northern California seismicity using cross-correlation and double-difference methods, J. Geophys. Res., 113, B08311, doi:10.1029/2007JB005479. Wiemer, S. (2001), A software package to analyze seismicity: ZMAP, Seismol. Res. Lett. 72, 2. Wiemer, S., and M. Wyss (2000), Minimum magnitude of complete reporting in earthquake catalogs: Examples from Alaska, the Western United States, and Japan, Bull. Seismol. Soc. Am., 90, 859–869. Wilkinson, M., et al. (2010), Partitioned postseismic deformation associated with the 2009 MW 6.3 L’Aquila earthquake surface rupture measured using a terrestrial laser scanner, Geophys. Res. Lett., 37, L10309, doi:10.1029/2010GL043099.en
dc.description.obiettivoSpecifico4T. Fisica dei terremoti e scenari cosismicien
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorValoroso, L.en
dc.contributor.authorChiaraluce, L.en
dc.contributor.authorPiccinini, D.en
dc.contributor.authorDi Stefano, R.en
dc.contributor.authorSchaff, D.en
dc.contributor.authorWaldhauser, F.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptLDEO-Columbia University NY-
crisitem.author.deptColumbia University, USA-
crisitem.author.orcid0000-0001-5014-0958-
crisitem.author.orcid0000-0002-9697-6504-
crisitem.author.orcid0000-0002-1826-646X-
crisitem.author.orcid0000-0003-3489-7453-
crisitem.author.orcid0000-0002-1286-9737-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Valoroso_EtAl_JGR_2013.pdfMain article9.01 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

129
checked on Feb 10, 2021

Page view(s)

306
checked on Apr 17, 2024

Download(s) 50

285
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric