Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9626
DC FieldValueLanguage
dc.contributor.authorallDe Martino, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallGuardato, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallTammaro, U.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallVassallo, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallIannaccone, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2015-05-27T13:04:59Zen
dc.date.available2015-05-27T13:04:59Zen
dc.date.issued2014-03-22en
dc.identifier.urihttp://hdl.handle.net/2122/9626en
dc.description.abstractThis study shows how the GPS technique can be utilized for seafloor displacement measurements and improved the survey control infrastructure in Campi Flegrei caldera, two thirds of which is submerged under the sea. In the Gulf of Pozzuoli, about 2.5 km from the coast where the sea depth is 97 m, a continuous GPS station (CFB1) has been installed since the end of 2011 on the top of a elastic-beacon buoy, rigidly connected by a steel cable to the ballast on the sea bottom. We investigate the use of GPS data to estimate the vertical displacement of the seafloor under the buoy. The GPS data were processed in kinematic mode and the vertical component of the measure- ments was corrected for the errors due to the horizontal motion of the buoy induced by wind and sea currents. We report here the results for approximately 17 months of continuous GPS data acquisition, and we show, for the first time, a measure of vertical displacement of the seabed in the Gulf of Pozzuoli. From January 2012 to May 2013, the seafloor uplifted by about 3–4 cm. The similarity of the pattern of the CFB1 time-series compared to the permanent GPS stations of the NeVoCGPS network located onshore is remarkable, evaluation of the Pearson's correlation coefficient between these stations and CFB1 indicates that the stations are measuring the same phe- nomenon. This result is important, because all models of evolution of bradyseism in the Campi Flegrei caldera are based on the interpretation of measures only on the emerged part of the caldera, without use of any measures to date in the Gulf of Pozzuoli. The methodology shown in this paper is reliable over time and economical, compared to other systems of measurement of marine geodesy. The major limitation is the depth of the sea, confining this technique to the shallow water, up to 100 m depth. However, a large part of the submerged Campi Flegrei caldera is shallower than 100 m, so geodetic monitoring by means of GPS buoys at several sites in the Gulf of Pozzuoli would allow to extend interpretative models to the entire caldera, submerged and emerged.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofJournal of volcanology and geothermal researchen
dc.relation.ispartofseries/276 (2014)en
dc.subjectSeafloor displacement, Campi Flegrei caldera, monitoring GPS, Buoyen
dc.titleA first GPS measurement of vertical seafloor displacement in the Campi Flegrei caldera (Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber145-151en
dc.identifier.URLhttp://dx.doi.org/10.1016/j.jvolgeores.2014.03.003en
dc.subject.INGV05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneousen
dc.identifier.doi10.1016/j.jvolgeores.2014.03.003en
dc.relation.referencesBallu, V., Bouin, M.-N., Calmant, S., Folcher, E., Bore, J.-M., Ammann, J., Pot, O., Diament, M., Pelletier, B., 2010. Absolute seafloor vertical positioning using combined pressure gauge and kinematic GPS data. J. Geod. 84, 65–67. http://dx.doi.org/10.1007/ s00190-009-0345-y. Bottiglieri, M., Falanga, M., Tammaro, U., De Martino, P., Obrizzo, F., Godano, C., Pingue, F., 2010. Characterization of GPS time series at the Neapolitan volcanic area by statistical analysis. J. Geophys. Res. 115, B10416. http://dx.doi.org/10.1029/2009JB006594. Bourne, S., Hatchell, P., Leaf, C., 2009. An autonomous seafloor system for monitoring reservoir deformation. 71 EAGE Conference, Amsterdam 8–11 June. Capuano, P., Russo, G., Civetta, L., Orsi, G., D'Antonio, M., Moretti, R., 2013. The active portion of the Campi Flegrei caldera structure imaged by 3-D inversion of gravity data. Geochem. Geophys. Geosyst. 14 (10), 4681–4697. http://dx.doi.org/10.1002/ ggge.20276. Chadwell, C., Spiess, N., 2008. Plate motion at the ridge-transform boundary of the south Cleft segment of the Juan de Fuca Ridge from GPS-Acoustic data. J. Geophys. Res. 113, B4. http://dx.doi.org/10.1029/2007JB004936. Chadwick Jr., W.W., Nooner, S.L., Zumberge, M., Embley, R., Fox, C., 2006. Vertical deformation monitoring at Axial Seamount since its 1998 eruption using deep-sea pressure sensors. J. Volcanol. Geotherm. Res. 150, 313–327. Chang, X.W., Yang, X., Zhou, T., 2005. MLAMBDA: a modified LAMBDA method for integer least-squares estimation. J. Geod. 79 (9), 552–565. http://dx.doi.org/10.1007/s00190- 005-0004-x. Chiodini, G., Caliro, S., Cardellini, C., Granieri, D., Avino, R., Baldini, A., Donnini, M., Minopoli, C., 2010. Long-term variations of the Campi Flegrei, Italy, volcanic system as revealed by the monitoring of hydrothermal activity. J. Geophys. Res. 115, B03205. http://dx.doi.org/10.1029/2008JB006258. Chiodini, G., Caliro, S., De Martino, P., Avino, R., Gherardi, F., 2012. Early signals of new vol- canic unrest at Campi Flegrei caldera? Insights from geochemical data and physical simulations. Geology 40, 943–946. D'Auria, L., Giudicepietro, F., Aquino, I., Borriello, G., Del Gaudio, C., Lo, Bascio D., Martini, M., Ricciardi, G.P., Ricciolino, P., Ricco, C., 2011. Repeated fluid transfer episodes as a mechanism for the recent dynamics of Campi Flegrei caldera (1989–2010). J. Geophys. Res. 116, B04313. http://dx.doi.org/10.1029/2010JB007837. D'Auria, L., Giudicepietro, F., Martini, M., Lanari, R., 2012. The 4D imaging of the source of ground deformation at Campi Flegrei caldera (southern Italy). J. Geophys. Res. (ISSN: 0148-0227) 117. http://dx.doi.org/10.1029/2012JB009181. De Martino, P., Tammaro, U., Obrizzo, F., 2014. GPS time series at Campi Flegrei caldera (2000–2013). Ann. Geophys. in press. Del Gaudio, C., Aquino, I., Ricciardi, G.P., Ricco, C., Scandone, R., 2010. Unrest episodes at Campi Flegrei: a reconstruction of vertical ground movements during 1905–2009. J. Volcanol. Geotherm. Res. 195 (1), 48–56. http://dx.doi.org/10.1016/j.jvolgeores. 2010.05.014. Dello Iacono, D., Zollo, A., Vassallo, M., Vanorio, T., Judenherc, S., 2009. Seismic images and rock properties of the very shallow structure of Campi Flegrei caldera (southern Italy). Bull. Volcanol. 71 (3). http://dx.doi.org/10.1007/s00445-008-0222-1. Dziak, R.P., Haxel, J.H., Bohnenstiehl, D.R., Chadwick Jr., W.W., Nooner, S.L., Fowler, M.J., Matsumoto, H., Butterfield, D.A., 2012. Seismic precursors and magma ascent before the April 2011 eruption at Axial Seamount. Nat. Geosci. 5, 478–482. http://dx.doi. org/10.1038/ngeo1490. Fox, C., Chadwick Jr., W.W., Embley, R., 2001. Direct observation of a submarine volcanic eruption from a sea-floor instrument caught in a lava flow. Nature 412, 727–729. http://dx.doi.org/10.1038/35089066. Iannaccone, G., Guardato, S., Vassallo, M., Elia, L., Beranzoli, L., 2009. A new multidisciplin- ary marine monitoring system for the surveillance of volcanic and seismic areas. Seismol. Res. Lett. 80, 208–218. http://dx.doi.org/10.1785/gssrl.80.2.208. Iannaccone, G., Vassallo, M., Elia, L., Guardato, S., Stabile, T.A., Satriano, C., Beranzoli, L., 2010. Long-term seafloor experiment with the CUMAS module: performance, noise analysis of geophysical signals, and suggestions about the design of a permanent net- work. Seismol. Res. Lett. 81, 916–927. http://dx.doi.org/10.1785/gssrl.81.6.916. Ikuta, R., Tadokoro, K., Ando, M., Okuda, T., Sugimoto, S., Takatani, K., Yada, K., Besana, G. M., 2008. A new GPS acoustic method for measuring ocean floor crustal deformation: application to the Nankai Trough. J. Geophys. Res. 113. http://dx.doi.org/10.1029/ 2006JB004875. Larson, K.M., Poland, M., Miklius, A., 2010. Volcano monitoring using GPS: developing data analysis strategies based on the June 2007 Kīlauea Volcano intrusion and eruption. J. Geophys. Res. 115, B07406. http://dx.doi.org/10.1029/2009JB007022. Mattia, M., Palano, M., Aloisi, M., Bruno, V., Bock, Y., 2008. High rate GPS data on active volcanoes: an application to the 2005–2006 Mt. Augustine (Alaska, USA) eruption. Terra Nova 20 (2), 134–140. http://dx.doi.org/10.1111/j.1365-3121.2008.00798.x. Mogi, O., 1958. Relations between the eruptions of various volcanoes and the deformations of the ground surface around them. Bull. Earthquake Res. Inst. 36, 209–225. Nooner, S.L., Chadwick Jr., W.W., 2009. Volcanic inflation measured in the caldera of Axial Seamount: implications for magma supply and future eruptions. Geochem. Geophys. Geosyst. 10, Q02002. Polster, A., Fabian, M., Villinger, H., 2009. Effective resolution and drift of Paroscientific pressure sensors derived from long-term seafloor measurements. Geochem. Geophys. Geosyst. 10, 8. http://dx.doi.org/10.1029/2009GC002532. Stabile, T., Zollo, A., Vassallo, M., Iannaccone, G., 2007. Underwater acoustic channel properties in the Gulf of Naples and their effects on digital data transmission. Ann. Geophys. 50 (3). Takasu, T., 2009. RTKLIB: Open Source Program Package for RTK-GPS, FOSS4G 2009 Tokyo, Japan (November 2). Takasu, T., Yasuda, A., 2009. Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. International Symposium on GPS/GNSS, Interna- tional Convention Center Jeju, Korea, November 4–6. Tammaro, U., De Martino, P., Obrizzo, F., Brandi, G., D'Alessandro, A., Dolce, M., Malaspina, S., Serio, C., Pingue, F., 2013. Somma Vesuvius volcano: ground deformations from CGPS observations (2001–2012). Ann. Geophys. 56. Teunissen, P.J.G., 1995. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J. Geod. 70 (1-2), 65–82. http://dx.doi. org/10.1007/BF00863419. Troise, C., De Natale, G., Pingue, F., Obrizzo, F., De Martino, P., Tammaro, U., Boschi, E., 2007. Renewed ground uplift at Campi Flegrei caldera (Italy): new insight on magmatic processes and forecast. Geophys. Res. Lett. (ISSN: 0094-8276) 34, L03301. http://dx.doi.org/10.1029/2006GL028545. Wessel, P., Smith, W.H., 1998. New, improved version of generic mapping tools released. EOS Trans. Am. Geophys. Union 79 (47), 579. Zollo, A., Judenherc, S., Auger, E., D'Auria, L., Virieux, J., Capuano, P., Chiarabba, C., de Franco, R., Makris, J., Michelini, A., Musacchio, G., 2003. Evidence for the buried rim of Campi Flegrei caldera from 3-D active seismic imaging. Geophys. Res. Lett. 30 (19). http://dx.doi.org/10.1029/2003GL018173.en
dc.description.obiettivoSpecifico5V. Sorveglianza vulcanica ed emergenzeen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.relation.issn0377-0273en
dc.relation.eissn1872-6097en
dc.contributor.authorDe Martino, P.en
dc.contributor.authorGuardato, S.en
dc.contributor.authorTammaro, U.en
dc.contributor.authorVassallo, M.en
dc.contributor.authorIannaccone, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextreserved-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-9584-3347-
crisitem.author.orcid0000-0002-6942-8270-
crisitem.author.orcid0000-0002-2685-6064-
crisitem.author.orcid0000-0001-8552-6965-
crisitem.author.orcid0000-0002-1323-9016-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Lavoro_JVGR.pdfNew Measurements Method2.78 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

12
checked on Feb 10, 2021

Page view(s) 20

549
checked on Apr 20, 2024

Download(s)

35
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric