Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9588
AuthorsGaeta, M.* 
Giuliani, A.* 
Perilla, S.* 
Misiti, V.* 
TitleReddish Metagranites from the Gennargentu Igneous Complex (Sardinia, Italy): insight into metasomatism induced by magma mingling
Issue Date2013
Series/Report no.5/54 (2013)
DOI10.1093/petrology/egs008
URIhttp://hdl.handle.net/2122/9588
Keywordscontact metamorphism
metasomatism
red metagranites
oxygen isotopes
Gennargentu Igneous Complex
Subject Classification04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology 
AbstractThe mineralogy of thermometamorphic granites is relatively simple, making it possible to track the spatial distribution of chemical and mineralogical variations in these rocks and investigate the processes that underpin these metamorphic reactions.We have undertaken a detailed investigation of metagranites from the contact aureole that fringes a quartz diorite intrusion of Late Permian age, emplaced into Carboniferous peraluminous granites of the Gennargentu Igneous Complex (Sardinia, Italy). New data are presented including the petrography of metagranites within a 500 m zone adjacent to the quartz diorite intrusion, the compositions of minerals and bulk-rocks, and the oxygen isotope compositions of separated minerals. We have used these data to assess the mobility of elements, expressed as oxide, in the aureole, and the physical conditions of fluid-assisted thermometamorphism. Modal variations and the oscillatory zoning of plagioclase demonstrate that the shallow (P 200MPa) quartz diorite intrusion was emplaced through a number of magmatic injections.The border zone of the quartz diorite intrusion presents evidence of two main processes: hybridization between andesite and rhyolite magmas and volatile saturation of the mingled magma. Modal differences in the contact zone with respect to the protolith (i.e. peraluminous granite), variations in mineral composition, temperature constraints and K2O, Na2O, SiO2 and Al2O3 indicate that a relatively large volume of the host granite (up to 400 m from the contact) was metasomatized by high-temperature (650^3508C) fluids derived from the mingled zone of the quartz diorite intrusion. In detail, the metasomatic K2O-rich fluid reacted with albite to form K-feldspar, and triggered the recrystallization of quartz and plagioclase to higher calcium concentrations. The progressive increase in the MgO/(MgOþFeO) of chlorite closer to the contact indicates that this phase also recrystallized. The iron released during chlorite recrystallization was buffered by hematite formation in the pores of metasomatic K-feldspar. The Gennargentu metagranites provide evidence that metasomatic fluids can play a major role in driving metamorphic reactions in contact aureoles. For instance, the expected increase of Ca in plagioclase owing to thermal equilibration was not achieved in the high-T zone of the aureole because of fluid-assisted removal of cations.We conclude that caution should be taken when interpreting the processes that underpin contact metamorphism in terms of thermally driven, ionic diffusion alone, because the role of fluids may be significant, if not overwhelming, in the domains closest to the magmatic source.
Appears in Collections:Papers Published / Papers in press

Files in This Item:
File Description SizeFormat 
gaeta et al. JP 2013.pdf2.52 MBAdobe PDFView/Open
Show full item record

Page view(s)

63
Last Week
0
Last month
checked on Jun 23, 2017

Download(s)

16
checked on Jun 23, 2017

Google ScholarTM

Check

Altmetric