Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9573
DC FieldValueLanguage
dc.contributor.authorallPiccinini, Davide; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallZaccarelli, Lucia; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallPastori, Marina; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallMargheriti, Lucia; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallLucente, Francesco Pio; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallDe Gori, Pasquale; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallFaenza, Licia; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallSoldati, Gaia; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.date.accessioned2015-04-22T14:05:36Zen
dc.date.available2015-04-22T14:05:36Zen
dc.date.issued2012-11-20en
dc.identifier.urihttp://hdl.handle.net/2122/9573en
dc.description.abstractVariations in seismic velocity, ratio of P -to S-wave speed (Vp/Vs), and seismic anisotropy were heralded in the 1970s and 1980s as proxies to examine the buildup of stress preceding large earthquakes. The idea is that high pressures could cause rocks to “dilate,” changing the elastic properties of the crust by increasing crack numbers and/or dimensions, thus affecting the seismic waves propagation velocities. Rock dilatancy causes the rock to undersaturate, which will strongly reduce Vp. but will have little effect on Vs. resulting in the drop of the Vp/Vs ratio (Sholz et al., 1973). Furthermore, the formation and propagation of cracks within the rock affects its anisotropic characteristic. Several studies reported changes between properties recorded before and after mainshock occurrences. A recent example is provided by Lucente et al. (2010), who reported some clear variations in the seismic wave propagation characteristics approaching a mainshock: the elastic properties of the crustal rocks in the fault region underwent a sharp change about a week before the 6 April 2009, Mw 6.3 l’Aquila earthquake. Back in the seventies, it was hoped that these kinds of studies would allow earthquake prediction to be “just around the corner” (Savage, 2010). Over the subsequent decades, this “corner” is progressively drifted away, nevertheless for seismologists, the understanding of the processes that preside over the earthquakes nucleation and the mechanics of faulting, represents a big step toward the ability to predict earthquakes. In this regard, the integration of the monitoring of the crustal proprieties variations into middle and long term forecasting tools could help in the definition of priority areas where risk reduction interventions are more urgent, with a consequent improvement in the emergency preparedness. In the framework of the guidelines defined in the general agreement DPC-INGV for the period 2012-2022, we formed a Research Unit (UR) with the aim to study the seismic property changes occurring around the fault zones to better understand the physics of the earthquake. Our final goal is to eventually provide effective, practical tools to be applied for monitoring purposes and decision making. The UR includes two Working Packages (WP) that will investigate the variation of seismic wave velocities through different approaches. The first WP will analyze the ambient seismic noise cross-correlations to estimate the relative velocity variations occurred in the Po Plain before and after the 2012 seismic sequence, and in the Pollino region (southern Apennines) shaken by multiple seismic sequences during the last years. The second WP will focus on the shear wave seismic anisotropy temporal fluctuation, through the application of a systematic study to all events recorded during the ongoing seismic sequence in the Pollino area.en
dc.language.isoEnglishen
dc.relation.ispartofGNGTS - Gruppo Nazionale di Geofisica della Terra Solidaen
dc.subjectShear Wave Velocities, earthquakes precursor, crustal deformation, cross correlation, shear wave splittingen
dc.titleSPATIO-TEMPORAL MONITORING OF SEISMIC WAVE VELOCITIES IN THE UPPER CRUSTen
dc.typeOral presentationen
dc.description.statusPublisheden
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.11. Seismic risken
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.05. Stressen
dc.description.ConferenceLocationPotenzaen
dc.relation.referencesAntonioli A., D. Piccinini, L. Chiaraluce e M. Cocco, 2005 . Fluid flow and seismicity pattern: evidence from the 1997 Colfiorito (central Italy) seismic sequence. Geophys. Res. Lett., 32, L10311. DOI: 10.1029/2004GL022256. Brenguier, F., M. Campillo, C. Hadziioannou, N. M. Shapiro, R. M. Nadeau, and E. Larose, 2008. Postseismic relaxation along the San Andreas fault at Parkfield from continuous seismological observations, Science, 321, 1478–1481. Chen, J. H., B. Froment, Q. Y. Liu, and M. Campillo, 2010. Distribution of seismic wave speed changes associated with the 12 May 2008 Mw 7.9 Wenchuan earthquake, Geophys. Res. Lett., 37, L18302, doi:10.1029/ 2010GL044582. Cirella, A., A. Piatanesi, M. Cocco, E. Tinti, L. Scognamiglio, A. Michelini, A. Lomax, and E. Boschi (2009). Rupture history of the 2009 L’Aquila (Italy) earthquake from nonlinear joint inversion of strong motion and GPS data. Geophys. Res. Lett. 36, L19304, doi:10.1029/2009GL039795. Crampin, S., 1978. Seismic wave propagation through a cracked solid: polarization as a possible dilatancy diagnostic, Geophys. J. R. Astron. Soc., 53, 467-496. Crampin, S., 1981. A review of wave motion in anisotropic and cracked elastic-media, Wave Motion, 3, 343–391. Crampin, S., Gao, Y., 2010. Earthquakes can be stress-forecast. Geophys. J. Int. 180, 1124-1127. Hadziioannou C., Larose E., Coutant O., Roux P., Campillo M., 2009. Stability of monitoring weak changes in multiply scattering media with ambient noise correlation: laboratory experiment. J. Acoust. Soc. Am., 125, 6, 3688-3695. Lucente, F. P., P. De Gori, L. Margheriti, D. Piccinini, M. Di Bona , C. Chiarabba, N. Piana Agostinetti, 2010. Temporal variation of seismic velocity and anisotropy before the 2009 MW 6.3 L'Aquila earthquake, Italy , Geology, 38, 1015-1018. Malagnini, L., F. P. Lucente, P. De Gori, A. Akinci, and I. Munafo’ (2012), Control of pore fluid pressure diffusion on fault failure mode: Insights from the 2009 L’Aquila seismic sequence, J. Geophys. Res., 117, B05302, doi:10.1029/2011JB008911. Nur, A., 1972. Dilatancy, pore fluids, and premonitory variations of tS/tP travel-times, Bull. Seismol. Soc. Am., 62, 1972, pp. 1217- 1222. Pastori, M., Piccinini, D., Margheriti, L., Improta, L., Valoroso, L., Chiaraluce, L. and Chiarabba, C., 2009. Stress aligned cracks in the upper crust of the Val d'Agri region as revealed by shear wave splitting. Geophys. J. Int., 179: 601–614. doi:10.1111/j.1365-246X.2009.04302.x Pastori, M., Piccinini, D., Valoroso, L., Wuestefeld, A., Zaccarelli, L., Bianco, F., Kendall, M., Di Bucci, D., Margheriti, L., Barchi, M.R., 2012. Crustal fracturing field and presence of fluid as revealed by seismic anisotropy: case histories from seismogenic areas in the Apennines (Italy). Bollettino di Geofisica Applicata e Teorica, in press. Piccinini, D., Margheriti, L., Chiaraluce, L. & Cocco, M., 2006. Space and time variations of crustal anisotropy during the 1997 Umbria-Marche, central Italy, seismic sequence. Geophys. J. Int.,167, 15, 1482-1490. Piccinini D., Pastori M., Margheriti L. (2012) ANISOMAT+: an automatic tool to retrieve seismic anisotropy from local earthquakes. Computer and Geoscience (Under revision) Sánchez-Sesma A., Campillo M., (2006). Retrieval of the Green’s function from cross-correlation: the canonical elastic problem. Bull. Seismol. Soc. Am., 96,3, 1182-1191. Savage M. K., 2010. The role of fluids in earthquake generation in the 2009 Mw 6.3 L'Aquila, Italy, earthquake and its foreshocks, Geology 38, 1055-1056, doi:10.1130/focus112010.1 Scholz, H. C., Lynn R. S., Aggarwal Y. P., 1973. Earthquake Prediction: A Physical Basis. Science 181, 4102, 803- 810.DOI:10.1126/science.181.4102.803 Shapiro N.M., Campillo M., 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys. Res. Lett. 31, L07614, doi:10.1029/2004GL019491. Zaccarelli, L., N. M. Shapiro, L. Faenza, G. Soldati, and A. Michelini, 2011. Variations of crustal elastic properties during the 2009 L’Aquila earthquake inferred from cross-correlations of ambient seismic noise, Geophys. Res. Lett., 38, L24304, doi:10.1029/2011GL049750. Zatsepin, S.V. & Crampin, S., 1997. Modelling the compliance of crustal rock: I - response of shear-wave splitting to differential stress. Geophys. J. Int., 129, 477-494.en
dc.description.obiettivoSpecifico2T. Tettonica attivaen
dc.description.obiettivoSpecifico3T. Pericolosità sismica e contributo alla definizione del rischioen
dc.description.fulltextopenen
dc.contributor.authorPiccinini, Davideen
dc.contributor.authorZaccarelli, Luciaen
dc.contributor.authorPastori, Marinaen
dc.contributor.authorMargheriti, Luciaen
dc.contributor.authorLucente, Francesco Pioen
dc.contributor.authorDe Gori, Pasqualeen
dc.contributor.authorFaenza, Liciaen
dc.contributor.authorSoldati, Gaiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
item.openairetypeOral presentation-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-1826-646X-
crisitem.author.orcid0000-0002-4053-7625-
crisitem.author.orcid0000-0002-8354-6978-
crisitem.author.orcid0000-0003-3853-254X-
crisitem.author.orcid0000-0002-8717-1720-
crisitem.author.orcid0000-0001-8160-0849-
crisitem.author.orcid0000-0002-6135-1141-
crisitem.author.orcid0000-0002-9048-201X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Conference materials
Files in This Item:
File Description SizeFormat
2.3_Piccinini_GNGTS2012.pdfExtended abstract1.5 MBAdobe PDFView/Open
Show simple item record

Page view(s) 20

287
checked on Apr 17, 2024

Download(s)

109
checked on Apr 17, 2024

Google ScholarTM

Check