Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9552
DC FieldValueLanguage
dc.contributor.authorallHigueras, P.; Departamento de Ingenierı´a Geolo´gica y Minera, Escuela Universitaria Polite´cnica de Almade´n, Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almade´n, Spainen
dc.contributor.authorallOyarzun, R.; Instituto de Geologı´a Aplicada (IGeA), Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almade´n, Spainen
dc.contributor.authorallKotnik, J.; Department of Environmental Sciences, Jozef Stefan Institute, Ljubljana, Sloveniaen
dc.contributor.authorallEsbrı´, J. M.; Instituto de Geologı´a Aplicada (IGeA), Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almade´n, Spainen
dc.contributor.authorallMartìnez-Coronado, A.; Instituto de Geologı´a Aplicada (IGeA), Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almade´n, Spainen
dc.contributor.authorallHorvat, M.; Department of Environmental Sciences, Jozef Stefan Institute, Ljubljana, Sloveniaen
dc.contributor.authorallLòpez-Berdonces, M. A.; Instituto de Geologı´a Aplicada (IGeA), Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almade´n, Spainen
dc.contributor.authorallLlanos, W.; Exploraciones Mineras S.A. (EM), Avenida Apoquindo 4775, Providencia, Santiago, Chileen
dc.contributor.authorallVaselli, O.; Dipartimento di Scienze della Terra, Unversita´ di Florence, Via G. Pira, 4, 50121 Florence, Italyen
dc.contributor.authorallNisi, B.; CNR-IGG Istituto di Geoscienze e Georisorse, Via Moruzzi 1, 56124 Pisa, Italyen
dc.contributor.authorallMashyanov, N.; Department of Geology, St. Petersburg State University, 7/9 Universitetskaya nab., St., Petersburg 199034, Russian Federationen
dc.contributor.authorallRyzov, V.; Department of Geology, St. Petersburg State University, 7/9 Universitetskaya nab., St., Petersburg 199034, Russian Federationen
dc.contributor.authorallSpiric, Z.; OIKON, Institute for Applied Ecology, Avenija Dubrovnik 6-8, 10 020 Zagreb, Croatiaen
dc.contributor.authorallPanichev, N.; Department of Chemistry, Tshwane University of Technology, P.O. Box 56208, Arcadia, Pretoria 0007, South Africaen
dc.contributor.authorallMcCrindle, R.; Department of Chemistry, Tshwane University of Technology, P.O. Box 56208, Arcadia, Pretoria 0007, South Africaen
dc.contributor.authorallFeng, X.; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, Chinaen
dc.contributor.authorallFu, X.; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, Chinaen
dc.contributor.authorallLillo, J.; Escuela Superior de Ciencias Experimentales y Tecnologý´a, Universidad Rey Juan Carlos, Tulipa´n s/n, 28933 Mo´stoles, Madrid, Spainen
dc.contributor.authorallLoredo, J.; Departamento de Explotacio´n y Prospeccio´n de Minas, E.T.S. Ingenieros de Minas, Universidad de Oviedo, C/ Independencia 13, 33004 Oviedo, Spainen
dc.contributor.authorallGarcìa, M. E.; Facultad de Ciencias Quý´micas, Universidad Mayor de San Andre´s, Campus de Cota-Cota, La Paz, Boliviaen
dc.contributor.authorallAlfonso, P.; Departament d’Enginyeria Minera i Recursos Minerals, Universitat Polite`cnica de Catalunya, Catalunya, Spainen
dc.contributor.authorallVillegas, K.; Departament d’Enginyeria Minera i Recursos Minerals, Universitat Polite`cnica de Catalunya, Catalunya, Spainen
dc.contributor.authorallPalacios, S.; Departament d’Enginyeria Minera i Recursos Minerals, Universitat Polite`cnica de Catalunya, Catalunya, Spainen
dc.contributor.authorallOyarzu´n, J.; Departamento de Ingenierý´a de Minas, Universidad de la Serena, La Serena, Chileen
dc.contributor.authorallMaturana, H.; Departamento de Ingenierı´a de Minas, Universidad de la Serena, La Serena, Chileen
dc.contributor.authorallContreras, F.; Facultad de Agronomı´a (Maracay), Universidad Central de Venezuela, Maracay, Venezuelaen
dc.contributor.authorallAdams, M.; Facultad de Agronomı´a (Maracay), Universidad Central de Venezuela, Maracay, Venezuelaen
dc.contributor.authorallRibeiro-Guevara, S.; Centro Atomico, Bariloche, Argentinaen
dc.contributor.authorallNiecenski, L. P.; Universidade Federal do Rio Grande, Porto Alegre, Brazilen
dc.contributor.authorallGiammanco, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallHuremovic´, J.; Prirodno matematicki fakultet, Sarajevo, Bosna and Herzegovinaen
dc.date.accessioned2015-04-20T08:45:03Zen
dc.date.available2015-04-20T08:45:03Zen
dc.date.issued2013-12-31en
dc.identifier.urihttp://hdl.handle.net/2122/9552en
dc.description.abstractMercury is transported globally in the atmosphere mostly in gaseous elemental form (GEM, Hg0 gas), but still few worldwide studies taking into account different and contrasted environmental settings are available in a single publication. This work presents and discusses data from Argentina, Bolivia, Bosnia and Herzegovina, Brazil, Chile, China, Croatia, Finland, Italy, Russia, South Africa, Spain, Slovenia and Venezuela. We classified the information in four groups: (1) mining districts where this contaminant poses or has posed a risk for human populations and/or ecosystems; (2) cities, where the concentration ofatmospheric mercury could be higher than normal due to the burning of fossil fuels and industrial activities; (3) areas with natural emissions from volcanoes; and (4) pristine areas where no anthropogenic influence was apparent. All the surveys were performed using portable LUMEX RA-915 series atomic absorption spectrometers. The results for cities fall within a low GEM concentration range that rarely exceeds 30 ng m-3, that is, 6.6 times lower than the restrictive ATSDR threshold (200 ng m-3) for chronic exposure to this pollutant. We also observed this behavior in the former mercury mining districts, where few data were above 200 ng m-3.We noted that high concentrations of GEM are localized phenomena that fade away in short distances. However, this does not imply that they do not pose a risk for those working in close proximity to the source. This is the case of the artisanal gold miners that heat the Au–Hg amalgam to vaporize mercury. In this respect, while GEM can be truly regarded as a hazard, because of possible physical–chemical transformations into other species, it is only under these localized conditions, implying exposure to high GEM concentrations, which it becomes a direct risk for humans.en
dc.description.sponsorshipGrants CGL2009-13171 and CTM2012-33918 from the Spanish Ministry of Economy and Competitiveness and PII1I09-0142- 4389 from theCastilla-LaMancha (Spain)RegionalGovernment.en
dc.language.isoEnglishen
dc.publisher.nameSpringer Science+Business Media B.V.en
dc.relation.ispartofEnvironmental Geochemistry and Healthen
dc.relation.ispartofseries4/36(2013)en
dc.subjectGaseous elemental mercuryen
dc.subjectAtmospheric pollutionen
dc.subjectMining districtsen
dc.subjectCitiesen
dc.subjectPristine locationsen
dc.subjectVolcanosen
dc.subjectHazardsen
dc.subjectRisksen
dc.titleA compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa and China: separating fads from factsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber713-734en
dc.subject.INGV05. General::05.08. Risk::05.08.01. Environmental risken
dc.identifier.doi10.1007/s10653-013-9591-2en
dc.relation.referencesAcosta, J. A., Martı´nez-Martı´nez, S., Faz, A., Milla´n, R., Mun ˜oz, M. A., Tera´n, T., et al. (2011). Characterization of the potential mercury contamination in the Apolobamba gold mining area, Bolivia. Spanish Journal of Soil Science, 1, 86–99. Aiuppa, A., Bagnato, E., Witt, M. L. I., Mather, T. A., Parello, F., Pyle, D. M., et al. (2007). Real-time simultaneous detection of volcanic Hg and SO2 at La Fossa Crater, Vulcano (Aeolian Islands, Sicily). Geophysical Research Letters, 34, L21307. Al-Batanony, M. A., Abdel-Rasul, G. M., Abu-Salem, M. A., Al-Dalatony, M. M., & Allam, H. K. (2013). Occupational exposure to mercury among workers in a fluorescent lamp factory, Quisna industrial zone, Egypt. International Journal of Occupational & Environmental Medicine, 4, 149–156. Almeida, M. D., Marins, R. V., Paraquettia, H. H. M., & Lacerda, L. D. (2008). Methodology optimization and application for measurement of gaseous elemental mercury in the Amazon atmosphere. Journal of the Brazilian Chemical Society, 19, 1290–1297. Amon, R. M. W., & Benner, R. (1996). Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system. Geochimica et Cosmochimica Acta, 60, 1783–1792. ATSDR/EPA National Mercury. Cleanup Policy Workgroup. Action Levels For Elemental Mercury Spills. March 22, 2012. http://www.atsdr.cdc.gov/emergency_response/Action_ Levels_for_Elemental_Mercury_Spills_2012.pdf. Accessed 28 June 2013. Aymaz, S., Gross, O., Krakamp, B., Ortmann, M., Dienes, H. P., & Weber, M. (2001). Membranous nephropathy from exposure to mercury in the fluorescent-tube-recycling industry. Nephrology, Dialysis, Transplantation, 16, 2253–2255. Berg, T.,Sekkesæter, S.,Steinnes, E.,Valdal, A. K.,&Wibetoe, G. (2008). Springtime depletion of mercury in the European Arctic as observed at Svalbard. Science of the Total Environment, 304, 43–51. Bernhoft, R. A. (2012). Mercury toxicity and treatment: A review of the literature. International Journal of Environmental and Public Health. Article no. 460508. Bose-O’Reilly, S., Drasch, G., Beinhoff, C., Rodrigues-Filho, S., Roider, G., Lettmeier, B., et al. (2010a). Health assessment of artisanal gold miners in Indonesia. Science of the Total Environment, 408, 713–725. Bose-O’Reilly, S., Drasch, G., Beinhoff, C., Tesha, A., Drasch, K., Roider, G., et al. (2010b). Health assessment of artisanal gold miners in Tanzania. Science of the Total Environment, 408, 796–805. Boudin, L. B. (1952). Seditious doctrines and the clear and present danger rule. Virginia Law Review, 38, 143–186. Brown, R. J. C., Pirrone, N., van Hoek, C., Horvat, M., Kotnik, J., Wangberg, I., et al. (2010a). Standardisation of a European measurement method for the determination of mercury in deposition: Results of the field trial campaign and determination of a measurement uncertainty and working range. Accreditation and Quality Assurance, 15, 359–366. Brown, R. J. C., Pirrone, N., Van Hoek, C., Sprovieri, F., Fernandez, R., & Tote´, K. (2010b). Standardisation of a European measurement method for the determination of total gaseous mercury: Results of the field trial campaign and determination of a measurement uncertainty and working range. Journal of Environmental Monitoring, 12(3), 689–695. Carpi, A. (1997). Mercury from combustion sources: A review of the chemical species emitted and their transport in the atmosphere. Water, Air, and Soil pollution, 98, 241–254. Chan, H. M., & Egeland, G. M. (2004). Fish consumption, mercury exposure, and heart diseases. Nutrition Reviews, 62, 68–72. Clark, S. (1986). Preservation of herbarium specimens: an archive conservators approach. Taxon, 35, 675–681. Clarkson, T. W., & Magos, L. (2006). The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicology, 36, 609–662. Cole, A. S., Steffen, A., Pfaffhuber, K. A., Berg, T., Pilote, M., Poissant, L., et al. (2013). Ten-year trends of atmospheric mercury in the high Arctic compared to Canadian sub- Arctic and mid-latitude sites. Atmospheric Chemistry and Physics, 13, 1535–1545. Dai, Z. H., Feng, X: B., Sommar, J., & Fu, X. W. (2012). Spatial distribution of mercury deposition fluxex in Wanshan Hg mining area, Guizhu province, China. Atmospheric Chemistry and Physics, 12, 6207–6218. DEFRA (2010). The mercury export and data (enforcement) regulations 2010: guidance notes, Department for Environment, Food and Rural Affairs (United Kingdom), http://archive.defra.gov.uk/environment/quality/chemicals/ documents/mercury-export-data-regs.pdf. Accessed 25 Feb 2013. Ebinghaus, R., Jennings, S. G., Kock, H. H., Derwent, R. G., Manning, A. J.,&Spain, T. G. (2011). Decreasing trends in total gaseous mercury observations in baseline air at Mace Head, Ireland from 1996 to 2009. Atmospheric Environment, 45, 3475–3480.Echeverria, D., Heyer, N. J., Martin, M. D., Naleway, C. A., Woods, J. S., & Bittner, A. C., Jr. (1995). Behavioral effects of low-level exposure to Hg among dentists. Neurotoxicology and Teratology, 17, 161–168. EN 15852. (2010). Ambient air quality—Standard method for the determination of total gaseous mercury. http://www.enstandard. eu/csn-en-15852-ambient-air-quality-standardmethod- for-the-determination-of-total-gaseous-mercury/. Accessed 28 June 2013. Engle, M. A., & Gustin, M. S. (2002). Scaling of atmospheric mercury emissions from three naturally enriched areas: Flowery Peak, Nevada; Peavine Peak, Nevada; and Long Valley Caldera, California. Science of the Total Environment, 290, 91–104. European Standards. (2013). CSN EN 15852—Ambient air quality— Standard method for the determination of total gaseous mercury. http://www.en-standard.eu/en-15852-ambientair- quality-standard-method-for-the-determination-of-totalgaseous- mercury. Accessed 25 Feb 2013. Feng, X., Foucher, D., Hintelmann, H., Yan, H., He, T., & Qiu, G. (2010). Tracing mercury contamination sources in sediments using mercury isotope compositions. Environmental Science and Technology, 44, 3363–3368. Feng, X., Shang, L.,Wang, S., Tang, S., Zheng, W. (2004). Temporal variation of total gaseous mercury in the air of Guiyang, China. Journal of Geophysical Research D: Atmospheres, 109(D03303), 1–9. Ferna´ndez-Patier, R., & Ramos-Dı´az, M. C. (2012). Informe del Ejercicio de lntercomparacio´n de Mercurio Gaseoso total en aire ambiente ‘‘IN SITU’’ (an˜o 2011). Ined. Repport, Instituto de Salud Carlos III, Centro Nacional de Sanidad Ambiental, A ´ rea de Contaminacio´n Atmosfe´rica. Ministerio de Economı´a y Competitividad, Espan˜a, 7 pp. In Spanish. Fu, X., Feng, X., Sommar, J., & Wang, S. (2012). A review of studies on atmospheric mercury in China. Science of the Total Environment, 421–422, 73–81. Fu, X. W., Feng, X. B., & Zhang, H. (2011). Atmospheric total gaseous mercury concentration in Guiyang: measurements intercomparison with Lumex RA-915AM and Tekran 2537A. Chinese Journal of Ecology, 30, 939–943. Garcia-Sanchez, A., Contreras, F., Adams, M., & Santos, F. (2006). Airborne total gaseous mercury and exposure in a Venezuelan mining area. International Journal of Environmental Health Research, 16, 361–373. Garcı´a-Sa´nchez, A., Contreras, F., Adams, M., & Santos, F. (2006). Atmospheric mercury emissions from polluted gold mining areas (Venezuela). Environmental Geochemistry and Health, 28, 529–540. Gosar, M., Pirc, S., Sajn, R., Bidovec, M., Mashyanov, N. R., & Sholupov, S. E. (1997). Distribution of mercury in atmosphere over Idrija, Slovenia. Environmental Geochemistry and Health, 19, 101–110. Grandjean, P., Satoh, H., Murata, K., & Eto, K. (2010). Adverse effects of methylmercury: Environmental health research implications. Environmental Health Perspectives, 118, 1137–1145. Gray, J. E., Hines, M. E., Higueras, P. L., Adatto, I., & Lasorsa, B. K. (2004). Mercury speciation and microbial transformations in mine wastes, stream sediments, and surface waters at the Almade´n Mining District, Spain. Environment Science and Technology, 38, 4285–4292. Gul Oz, S., Tozlu, M., Yalcin, S. S., Sozen, T.,&Sain Guven, G. (2012). Mercury vapor inhalation and poisoning of a family. Inhalation Toxicology, 24, 652–658. Gustin, M. S., Lindberg, S. E., Austin, K., Coolbaugh, M., Vette, A., & Zhang, H. (2000). Assessing the contribution of natural sources to regional atmospheric mercury budgets. Science of the Total Environment, 259, 61–71. Hamdy, M. K., & Noyes, R. (1975). Formation of methyl mercury by bacteria. Applied Microbiology, 30, 424–432. Harada, M. (1995). Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. CRC Critical Reviews in Toxicology, 25, 1–24. Health Canada (2009). Mercury. Environmental and Workplace Health, Health Canada Federal Department, http://www. hc-sc.gc.ca/ewh-semt/pubs/water-eau/mercury-mercure/ i-eng.php. Accessed 25 Feb 2013. HESIS (2008). Understanding toxic substances. Hazard Evaluation System and Information Service, California Department of Public Health, http://www.cdph.ca.gov/programs/ hesis/Documents/introtoxsubstances.pdf. Higueras, P., Esbrı´, J. M., Oyarzun, R., Llanos, W., Martı´nez- Coronado, A., Lillo, J., et al. (2013). Industrial and natural sources of gaseous elemental mercury in the Almade´n District (Spain): An updated report on this issue after the cease of mining and metallurgical activities in 2003 and major land reclamation works. Environmental Research, 125, 197–208. Higueras, P., Llanos, W., Garcı´a, M. E., Milla´n, R., & Serrano, C. (2012). Mercury vapours emissions from the Ingenios in Potosı´ (Bolivia). Journal of Geochemical Exploration, 116, 1–7. Higueras, P., Oyarzun, R., Lillo, J., Oyarzu´n, J., & Maturana, H. (2005). Atmospheric mercury data for the Coquimbo region, Chile: influence of mineral deposits and metal recovery practices. Atmospheric Environment, 39, 7587–7596. Higueras, P., Oyarzun, R., Lillo, J., Sa´nchez Herna´ndez, J. C., Molina, J. A., Esbrı´, J. M., et al. (2006). The Almade´n district (Spain): Anatomy of one of the world’s largest Hgcontaminated sites. Science of the Total Environment, 356, 112–124. Higueras, P., Oyarzun, R., Munha´, J., & Morata, D. (2000). Palaeozoic magmatic-related hydrothermal activity in the Almade´n syncline (Spain): a long-lasting Silurian to Devonian process? Trans. Instn. Min. Metall. Sect. B: Applied Earth Science, 109, 199–202. Higueras, P., Oyarzun, R., Oyarzu´n, J., Maturana,H., Lillo, J., & Morata, D. (2004). Environmental assessment of copper–gold–mercury mining in the Andacollo and Punitaqui districts, northern Chile. Applied Geochemistry, 19, 1855–1864. Holmes, C. D., Jacob, D. J., Corbitt, E. S., Mao, J., Yang, X., Talbot, R., et al. (2010). Global atmospheric model for mercury including oxidation by bromine atoms. Atmospheric Chemistry and Physics, 10, 12037–12057. Kasznia-Kocot, J., Dbkowska, B., Muszyn´ska-Graca, M., Brewczyn´ski, P. Z., & Złotkowska, R. (2008). Domestic accidental mercury vapor intoxication in families. Journal of Public Health, 30, 113.Kim, K.-H., Ebinghaus, R., Schroeder, W. H., Blanchard, P., Kock, H. H., Steffen, A., et al. (2005). Atmospheric mercury concentrations from several observatory sites in the Northern Hemisphere. Journal of Atmospheric Chemistry, 50, 1–24. Kim, K.-H., Mishra, V. K., & Hong, S. (2006). The rapid and continuous monitoring of gaseous elemental mercury (GEM) behavior in ambient air. Atmospheric Environment, 40, 3281–3293. Kock, H. H., Bieber, E., Ebinghaus, R., Thees, T. G.,&Spain, B. (2005). Comparison of long-term trends and seasonal variations of atmospheric mercury concentrations at the two European coastal monitoring stations Mace Head, Ireland, and Zingst, Germany. Atmospheric Environment, 39, 7549–7556. Kocman, D., Vrecˇa, P., Fajon, V., & Horvat, M. (2011). Atmospheric distribution and deposition of mercury in the Idrija Hg mine region, Slovenia. Environmental Research, 111, 1–9. Kotnik, J., Horvat, M., & Dizdarevicˇ, T. (2005). Current and past mercury distribution in air over the Idrija Hg mine region, Slovenia. Atmospheric Environment, 39, 7570–7579. Ladle, R. J., Jepson, P., Arau´jo, M. B., & Whittaker, R. J. (2004a). Dangers of crying wolf over risk of extinctions. Nature, 428, 799. Ladle, R.J., Jepson, P., Arau´jo, M.B.,& Whittaker, R.J. (2004b). Crying wolf on climate change and extinction. School of Geography and the Environment (Oxford University), Selected Publications and Output, Supplemental Publications, http://www.geog.ox.ac.uk/research/biodiversity/output. html#supplements. Accessed 25 Feb 2013. Lambertsson, L., & Matsnilsson, M. (2006). Organic Material: The primary control on mercury methylation and ambient methyl mercury concentrations in estuarine sediments. Environmental Science and Technology, 40, 1822–1829. Limpert, E., Stahel, W. A., & Abbot, M. (2001). Log-normal distributions across the sciences: keys and clues. BioScience, 51, 341–352. Lin, C.-J., & Pehkonen, S. O. (1999). The chemistry of atmospheric mercury: A review. Atmospheric Environment, 33, 2067–2079. Lindberg, S. E., & Stratton, W. J. (1998). Atmospheric mercury speciation: concentrations and behavior of reactive gaseous mercury in ambient air. Environmental Science & Technology, 32, 49–57. Lindqvist, O., & Rodhe, H. (1985). Atmosphere mercury: A review. TELLUS, 37 B, 136–159. Llanos, W., Higueras, P., Oyarzun, R., Esbrı´, J. M., Lo´pez Berdonces, E. M., Garcı´a Noguero, A., et al. (2010). The MERSADE (European Union) project: Testing procedures and environmental impact for the safe storage of liquid mercury in the Almade´n district, Spain. Science of the Total Environment, 408, 4901–4905. Loppi, S. (2001). Environmental distribution of mercury and other trace elements in the geothermal area of Bagnore (Mt. Amiata, Italy). Chemosphere, 45, 991–995. Loredo, J., Ordon˜ez, A., Gallego, J. R., Baldo, C., & Garcı´a- Iglesias, J. (1999). Geochemical characterisation of mercury mining spoil heaps in the area of Mieres (Asturias, northern Spain). Journal of Geochemical Exploration, 67, 377–390. Martı´nez-Coronado, A., Oyarzun, R., Esbrı´, J. M., Llanos, W., & Higueras, P. (2011). Sampling high to extremely high Hg concentrations at the Cerco de Almadenejos, Almade´n mining district (Spain): The old metallurgical precinct (1794 to 1861 AD) and surrounding areas. Journal of Geochemical Exploration, 109, 70–77. Mashyanov, N. R., & Reshetov, V. V. (1995). Geochemical ecological monitoring using remote sensing technique. Science of the Total Environment, 159, 169–175. Mercury Policy Project. (2008). U.S. joins EU in banning mercury exports; environmentalists applaud bi-partisan effort. Published on line: October 15th, 2008, http:// mercurypolicy.org/?p=489. Accessed 25 Feb 2013. Moreno, T., Querol, X., Alastuey, A., Garcı´a do Santos, S., Ferna´ndez Patier, R., Artin˜ano, B., et al. (2006). PM source apportionment and trace metallic aerosol affinities during atmospheric pollution episodes: a case study from Puertollano, Spain. Journal of Environmental Monitoring, 8, 1060–1068. Morteani, G., Ruggieri, G., Mo¨ller, P., & Preinfalk, Ch. (2011). Geothermal mineralized scales in the pipe system of the geothermal Piancastagnaio power plant (Mt. Amiata geothermal area): a key to understand the stibnite, cinnabarite and gold mineralization of Tuscany (central Italy). Mineralium Deposita, 46, 197–210. Myers, G. J., Davidson, P. W., Cox, C., Shamlaye, C., Cernichiari, E., & Clarkson, T. W. (2000). Twenty-seven years studying the human neurotoxicity of methylmercury exposure. Environmental Research, 83, 275–285. Ninomiya, T., Ohmori, H., Hashimoto, K., Tsuruta, K.,&Ekino, S. (1995). Expansion of methylmercury poisoning outside of Minamata: an epidemiological study on chronic methylmercury poisoning outside of Minamata. Environmental Research, 70, 47–50. Nriagu, J., & Becker, C. (2003). Volcanic emissions of mercury to the atmosphere: Global and regional inventories. Science of the Total Environment, 304, 3–12. O’Rourke, D., & Connolly, S. (2003). Just oil? The distribution of environmental and social impacts of oil production and consumption. Annual Review of Environment and Resources, 28, 587–617. Oyarzun, R., Higueras, P., Esbrı´, J. M., & Pizarro, J. (2007). Mercury in air and plant specimens in herbaria: A pilot study at the MAF Herbarium in Madrid (Spain). Science of the Total Environment, 387, 346–352. Oyarzun, R., Lillo, J., Sa´nchez Herna´ndez, J. C., & Higueras, P. (2005). Pre-industrial metal anomalies in ice cores: A simplified reassessment of windborne soil dust contribution and volcanic activity during the last glaciation. International Geology Review, 47, 1120–1130. Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., & Wilson, S. (2006). Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment 40,, 4048–4063. Pacyna, E. G., Pacyna, J. M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., et al. (2010). Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmospheric Environment, 44, 2487–2499.Palinkas, L. A., Mashyanov, N. R., Sholupov, S. E., Durn, G., Miko, S. (1990). Mercury in the atmosphere over rural, urban and industrial parts of Zagreb city. Rudarsko-geolosko- naftni zbornik, 2, 19–27. Pirrone, N., Aas, W., Cinnirella, S., Ebinghaus, R., Hedgecock, I. M., Pacyna, J., et al. (2013). Toward the next generation of air quality monitoring: Mercury. Atmospheric Environment, 80, 599–611. Pogarev, S. E., Ryzhov, V. V., Mashyanov, N. R., & Sobolev, M. B. (1997). Mercury values in urine from inhabitants of St. Petersburg. Water, Air, and Soil Pollution, 97, 193–198. Pyle, D. M.,&Mather, T. A. (2003). The importance of volcanic emissions for the global atmospheric mercury cycle. Atmospheric Environment, 37, 5115–5124. Richey, J. E., Devol, A. H., Wofsy, S. C., Victoria, R., & Riberio, M. N. G. (1988). Biogenic gases and the oxidation and reduction of carbon in Amazon River and floodplain waters. Limnology and Oceanography, 33, 551–561. Rossini Oliva, S., & Ferna´ndez Espinosa, A. J. (2007). Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources. Microchemical Journal, 86, 131–139. Saleem, M., Alfred, S., Bahnisch, R. A., Coates, P., & Kearney, D. J. (2013). Mercury poisoning from home gold amalgam extraction. The Medical Journal of Australia, 199, 125–127. Schuster, P. F., Krabbenhoft, D. P., Naftz, D. L., Cecil, L. D., Olson, M. L., Dewild, J. F., et al. (2002). Atmospheric mercury deposition during the last 270 years: a glacial ice core record of natural and anthropogenic sources. Environmental Science and Technology, 36, 2303–2310. Selin, N. E., et al. (2007). Chemical cycling and deposition of atmospheric mercury: Global constraints from observations. Journal of Geophysics Research D: Atmospheres, 112. Article no. D02308. Sholupov, S. E., & Ganeyev, A. A. (1995). Zeeman absorption spectrometry using high frequency modulated light polarization. Spectrochim Acta B, 50, 1227–1238. Sholupov, S., Pogarev, S., Ryzhov, V., Mashyanov, N., & Stroganov, A. (2004). Zeeman atomic absorption spectrometer RA-915? for direct determination of mercury in air and complex matrix samples. Fuel Processing Technology, 85, 473–485. Sigler, J. M., Mao, H., & Talbot, R. (2009). Gaseous elemental and reactive mercury in Southern New Hampshire. Atmospheric Chemistry and Physics, 9, 1929–1942. Sillman, S., Marsik, F., Al-Wali, K.I., Keeler, G.J., & Landis, M.S., (2005). Models for the formation and transport of reactive mercury: results for Florida, the Northeastern U.S. and the Atlantic Ocean. Fifth Air Quality Conference: Mercury, Trace Elements, SO3 and Particulate Matter, Arlington, VA., September 19–21, 2005, http://wwwpersonal. umich.edu/*sillman/web-publications/SillmanHg- AQV05.pdf. Slemr, F., Brunke, E. G., Ebinghaus, R., & Kuss, J. (2011). Worldwide trend of atmospheric mercury since 1995. Atmospheric Chemistry and Physics, 11, 4779–4787. Slemr, F., Brunke, E.-G., Ebinghaus, R., Temme, C., Munthe, J., Wangberg, I., et al. (2003). Worldwide trend of atmospheric mercury since 1977. Geophysical Research Letters, 30, 23–31. Smith, W. R., Montopoli, G., Byerly, A., Montopoli, M., Harlow, H., & Wheeler, A. R., I. I. I. (2013). Mercury toxicity in wildland firefighters. Wilderness & Environmental Medicine, 24, 141–145. Smith, R. G., Vorwald, A. J., Patil, L. S., & Mooney, T. F., Jr. (1970). Effects of exposure to mercury in the manufacture of chlorine. The American Industrial Hygiene Association Journal, 31, 687–700. Spiegel, S. J., & Veiga, M. M. (2005). Building capacity in small-scale mining communities: Health, ecosystem sustainability, and the Global Mercury Project. EcoHealth, 2, 361–369. Sprovieri, F., Pirrone, N., Ebinghaus, R., Kock, H., & Dommergue, A. (2010). A review of worldwide atmospheric mercury measurements. Atmospheric Chemistry and Physics, 10, 8245–8265. Sunderland, E. M., Krabbenhoft, D. P., Moreau, J. W., Strode, S. A., & Landing, W. M. (2009). Mercury sources, distribution, and bioavailability in the North Pacific Ocean: Insights from data and models. Global Biogeochem. Cy. 23. Article no. GB2010. US EPA. (2001). Environmental technology verification report: LUMEX Ltd. mercury continuous emission monitor. U.S. Environmental Protection Agency, http://www.epa.gov/ etv/pubs/01_vr_lumex_cem.pdf. US EPA. (2007). Mercury Response Guidebook—Section 3. http://www.epa.gov/epaoswer/hazwaste/mercury/pdf/ chapter3.pdf, May 2007. US OSHA (2007). Health and safety (Hg). Occupational Hazards, http://www.hgtech.com/HSE/HSE.htm. Acceded 25 Feb 2013. US EPA. (2012). What is a toxic substance? Learn About Chemicals Around Your House, US Environmental Protection Agency, http://www.epa.gov/kidshometour/toxic. htm. Acceded 25 Feb 2013. Varekamp, J. C., & Buseck, P. R. (1981). Mercury emissions from Mount St Helens during September 1980. Nature, 293, 555–556. Vaselli, O., Higueras, P., Nisi, B., Esbrı´, J. M., Cabassi, J., Martı´nez-Coronado, A., et al. (2013). Distribution of Gaseous Hg in the Mercury Mining District of Mt. Amiata (Central Italy): a Geochemical Survey Prior the Reclamation Project. Environmental Research, 125, 179–187. Veiga, M. M., Bermudez, D., Pacheco-Ferreira, H., Martins Pedroso, L. R., Gunson, A. J., Berrios, G., et al. (2005). Mercury pollution from artisanal gold mining in Block B, El Callao, Bolı´var State, Venezuela. In N. Pirrone & K. Mahaffey (Eds.), Dynamics of mercury pollution on regional and global scales: atmospheric processes. Human exposure around the world (pp. 421–450). Norwell, Massachusetts: Springer. WHO. (2000). Air quality guidelines for Europe.WHORegional Publications European Series 91, World Health Organization Regional Office for Europe, Copenhagen, 288 pp. WHO (2005). Mercury in drinking-water. Background document for development of WHO Guidelines for Drinkingwater Quality, World Health Organization, http://www. who.int/water_sanitation_health/dwq/chemicals/mercury/ en/. Acceded 25 Feb 2013. Yasutake, A., Cheng, J. P., Kiyono, M., Uraguchi, S., Liu, X., Miura, K., et al. (2011). Rapid monitoring of mercury in airfrom an organic chemical factory in China using a portable mercury analyzer. The Scientific World Journal, 11, 1630–1640. Yuen, E., Cortez, P. S., & Goebel, P. J. (2000). Family poisoned by mercury vapor inhalation. The American Journal of Emergency Medicine, 18, 599–602. Z ˇ agar, D., Knap, A., Warwick, J. J., Rajar, R., Horvat, M., & C ˇ etina, M. (2006). Modelling of mercury transport and transformation processes in the Idrijca and Socˇa river system. Science of the Total Environment, 368, 143–163.en
dc.description.obiettivoSpecifico6A. Monitoraggio ambientale, sicurezza e territorioen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0269-4042en
dc.relation.eissn1573-2983en
dc.contributor.authorHigueras, P.en
dc.contributor.authorOyarzun, R.en
dc.contributor.authorKotnik, J.en
dc.contributor.authorEsbrı´, J. M.en
dc.contributor.authorMartìnez-Coronado, A.en
dc.contributor.authorHorvat, M.en
dc.contributor.authorLòpez-Berdonces, M. A.en
dc.contributor.authorLlanos, W.en
dc.contributor.authorVaselli, O.en
dc.contributor.authorNisi, B.en
dc.contributor.authorMashyanov, N.en
dc.contributor.authorRyzov, V.en
dc.contributor.authorSpiric, Z.en
dc.contributor.authorPanichev, N.en
dc.contributor.authorMcCrindle, R.en
dc.contributor.authorFeng, X.en
dc.contributor.authorFu, X.en
dc.contributor.authorLillo, J.en
dc.contributor.authorLoredo, J.en
dc.contributor.authorGarcìa, M. E.en
dc.contributor.authorAlfonso, P.en
dc.contributor.authorVillegas, K.en
dc.contributor.authorPalacios, S.en
dc.contributor.authorOyarzu´n, J.en
dc.contributor.authorMaturana, H.en
dc.contributor.authorContreras, F.en
dc.contributor.authorAdams, M.en
dc.contributor.authorRibeiro-Guevara, S.en
dc.contributor.authorNiecenski, L. P.en
dc.contributor.authorGiammanco, S.en
dc.contributor.authorHuremovic´, J.en
dc.contributor.departmentDepartamento de Ingenierı´a Geolo´gica y Minera, Escuela Universitaria Polite´cnica de Almade´n, Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almade´n, Spainen
dc.contributor.departmentInstituto de Geologı´a Aplicada (IGeA), Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almade´n, Spainen
dc.contributor.departmentDepartment of Environmental Sciences, Jozef Stefan Institute, Ljubljana, Sloveniaen
dc.contributor.departmentInstituto de Geologı´a Aplicada (IGeA), Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almade´n, Spainen
dc.contributor.departmentInstituto de Geologı´a Aplicada (IGeA), Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almade´n, Spainen
dc.contributor.departmentDepartment of Environmental Sciences, Jozef Stefan Institute, Ljubljana, Sloveniaen
dc.contributor.departmentInstituto de Geologı´a Aplicada (IGeA), Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almade´n, Spainen
dc.contributor.departmentExploraciones Mineras S.A. (EM), Avenida Apoquindo 4775, Providencia, Santiago, Chileen
dc.contributor.departmentDipartimento di Scienze della Terra, Unversita´ di Florence, Via G. Pira, 4, 50121 Florence, Italyen
dc.contributor.departmentCNR-IGG Istituto di Geoscienze e Georisorse, Via Moruzzi 1, 56124 Pisa, Italyen
dc.contributor.departmentDepartment of Geology, St. Petersburg State University, 7/9 Universitetskaya nab., St., Petersburg 199034, Russian Federationen
dc.contributor.departmentDepartment of Geology, St. Petersburg State University, 7/9 Universitetskaya nab., St., Petersburg 199034, Russian Federationen
dc.contributor.departmentOIKON, Institute for Applied Ecology, Avenija Dubrovnik 6-8, 10 020 Zagreb, Croatiaen
dc.contributor.departmentDepartment of Chemistry, Tshwane University of Technology, P.O. Box 56208, Arcadia, Pretoria 0007, South Africaen
dc.contributor.departmentDepartment of Chemistry, Tshwane University of Technology, P.O. Box 56208, Arcadia, Pretoria 0007, South Africaen
dc.contributor.departmentState Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, Chinaen
dc.contributor.departmentState Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, Chinaen
dc.contributor.departmentEscuela Superior de Ciencias Experimentales y Tecnologý´a, Universidad Rey Juan Carlos, Tulipa´n s/n, 28933 Mo´stoles, Madrid, Spainen
dc.contributor.departmentDepartamento de Explotacio´n y Prospeccio´n de Minas, E.T.S. Ingenieros de Minas, Universidad de Oviedo, C/ Independencia 13, 33004 Oviedo, Spainen
dc.contributor.departmentFacultad de Ciencias Quý´micas, Universidad Mayor de San Andre´s, Campus de Cota-Cota, La Paz, Boliviaen
dc.contributor.departmentDepartament d’Enginyeria Minera i Recursos Minerals, Universitat Polite`cnica de Catalunya, Catalunya, Spainen
dc.contributor.departmentDepartament d’Enginyeria Minera i Recursos Minerals, Universitat Polite`cnica de Catalunya, Catalunya, Spainen
dc.contributor.departmentDepartament d’Enginyeria Minera i Recursos Minerals, Universitat Polite`cnica de Catalunya, Catalunya, Spainen
dc.contributor.departmentDepartamento de Ingenierý´a de Minas, Universidad de la Serena, La Serena, Chileen
dc.contributor.departmentDepartamento de Ingenierı´a de Minas, Universidad de la Serena, La Serena, Chileen
dc.contributor.departmentFacultad de Agronomı´a (Maracay), Universidad Central de Venezuela, Maracay, Venezuelaen
dc.contributor.departmentFacultad de Agronomı´a (Maracay), Universidad Central de Venezuela, Maracay, Venezuelaen
dc.contributor.departmentCentro Atomico, Bariloche, Argentinaen
dc.contributor.departmentUniversidade Federal do Rio Grande, Porto Alegre, Brazilen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentPrirodno matematicki fakultet, Sarajevo, Bosna and Herzegovinaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDepartamento de Ingenierı´a Geolo´gica y Minera, Escuela Universitaria Polite´cnica de Almade´n, Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almade´n, Spain-
crisitem.author.deptInstituto de Geologı´a Aplicada (IGeA), Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almade´n, Spain-
crisitem.author.deptJožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia-
crisitem.author.deptInstituto de Geologı´a Aplicada (IGeA), Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almade´n, Spain-
crisitem.author.deptInstituto de Geologı´a Aplicada (IGeA), Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almade´n, Spain-
crisitem.author.deptDepartment of Environmental Sc., Jozef Stefan Institute, Ljubljana, Slovenia-
crisitem.author.deptInstituto de Geologı´a Aplicada (IGeA), Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almade´n, Spain-
crisitem.author.deptExploraciones Mineras S.A. (EM), Avenida Apoquindo 4775, Providencia, Santiago, Chile-
crisitem.author.deptEarth Science Dept., University of Florence, Via La Pira 4, Florence, 50121, Italy; (3) CNR - IGG, Via La Pira 4, Florence, 50121, Italy-
crisitem.author.deptCNR-IGG Institute of Geosciences and Earth Resources, Via G. Moruzzi 1, 56124 Pisa, Italy-
crisitem.author.deptDepartment of Geology, St. Petersburg State University, 7/9 Universitetskaya nab., St., Petersburg 199034, Russian Federation-
crisitem.author.deptDepartment of Geology, St. Petersburg State University, 7/9 Universitetskaya nab., St., Petersburg 199034, Russian Federation-
crisitem.author.deptOIKON, Institute for Applied Ecology, Avenija Dubrovnik 6-8, 10 020 Zagreb, Croatia-
crisitem.author.deptDepartment of Chemistry, Tshwane University of Technology, P.O. Box 56208, Arcadia, Pretoria 0007, South Africa-
crisitem.author.deptDepartment of Chemistry, Tshwane University of Technology, P.O. Box 56208, Arcadia, Pretoria 0007, South Africa-
crisitem.author.deptInstitute of Geomechanics, Chinese Academy of Geological Sciences, Beijing, China-
crisitem.author.deptState Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China-
crisitem.author.deptEscuela Superior de Ciencias Experimentales y Tecnologý´a, Universidad Rey Juan Carlos, Tulipa´n s/n, 28933 Mo´stoles, Madrid, Spain-
crisitem.author.deptDepartamento de Explotacio´n y Prospeccio´n de Minas, E.T.S. Ingenieros de Minas, Universidad de Oviedo, C/ Independencia 13, 33004 Oviedo, Spain-
crisitem.author.deptFacultad de Ciencias Quý´micas, Universidad Mayor de San Andre´s, Campus de Cota-Cota, La Paz, Bolivia-
crisitem.author.deptDepartament d’Enginyeria Minera i Recursos Minerals, Universitat Polite`cnica de Catalunya, Catalunya, Spain-
crisitem.author.deptDepartament d’Enginyeria Minera i Recursos Minerals, Universitat Polite`cnica de Catalunya, Catalunya, Spain-
crisitem.author.deptDepartament d’Enginyeria Minera i Recursos Minerals, Universitat Polite`cnica de Catalunya, Catalunya, Spain-
crisitem.author.deptDepartamento de Ingenierý´a de Minas, Universidad de la Serena, La Serena, Chile-
crisitem.author.deptDepartamento de Ingenierı´a de Minas, Universidad de la Serena, La Serena, Chile-
crisitem.author.deptFacultad de Agronomı´a (Maracay), Universidad Central de Venezuela, Maracay, Venezuela-
crisitem.author.deptFacultad de Agronomı´a (Maracay), Universidad Central de Venezuela, Maracay, Venezuela-
crisitem.author.deptCentro Atomico, Bariloche, Argentina-
crisitem.author.deptUniversidade Federal do Rio Grande, Porto Alegre, Brazil-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptPrirodno matematicki fakultet, Sarajevo, Bosna and Herzegovina-
crisitem.author.orcid0000-0003-0853-8035-
crisitem.author.orcid0000-0003-2588-1441-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Higueras et al 2013.pdfMain article1.12 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

35
checked on Feb 10, 2021

Page view(s) 10

347
checked on Apr 20, 2024

Download(s) 50

77
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric