Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9523
DC FieldValueLanguage
dc.contributor.authorallCherchi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallAnnamalai, H.; University Hawaii Manoa, Int Pacific Res Ctr, Honolulu, HI 96822 USAen
dc.contributor.authorallMasina, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallNavarra, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.date.accessioned2015-04-16T09:01:43Zen
dc.date.available2015-04-16T09:01:43Zen
dc.date.issued2014-09en
dc.identifier.urihttp://hdl.handle.net/2122/9523en
dc.descriptionWe acknowledge the World Climate Research Programme's Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model outputs. For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. The financial support of the Italian Ministry of Education, University and Research, and Ministry for Environment, Land and Sea through the project GEMINA and that of INDO-MARECLIM (Project 295092) is gratefully acknowledged. A. Cherchi thankfully acknowledges the generous hospitality of the International Pacific Research Center at UH Manoa, Honolulu. Jan Hafner is thanked for providing the moist static energy budget code used here and Matthew Windlansky is thanked for comments and proof reading. H. Annamalai acknowledges the partial support by the Office of Science (BER) U.S. Department of Energy, Grant DE-FG02-07ER6445, and also by the three institutional grants (JAMSTEC, NASA, NOAA) of the IPRC. Dr. Chen and an anonymous reviewer are acknowledged for the instructive and helpful comments given.en
dc.description.abstractDry summers over the eastern Mediterranean are characterized by strong descent anchored by long Rossby waves, which are forced by diabatic heating associated with summer monsoon rainfall over South Asia. The large-scale teleconnection between rising and subsiding air masses is referred to as the "monsoon-desert mechanism.'' This study evaluates the ability of the phase 5 of the Coupled Model Intercomparison Project (CMIP5) models in representing the physical processes involved in this mechanism. An evaluation of statistics between summer climatologies of monsoon diabatic heating and that of vertical velocity over the eastern Mediterranean suggests a linear relationship. Despite large spatial diversity in monsoon heating, descent over the Mediterranean is coherently located and realistic in intensity. To measure the sensitivity of descent to the diversity in the horizontal and vertical distribution of monsoon heating, a series of linear atmosphere model experiments are performed. It is shown that column-integrated heating over both the Bay of Bengal and the Arabian Sea provides the largest descent with a more realistic spatial pattern. In the vertical, CMIP5 models underestimate the diabatic heating at upper levels, while they overestimate it at lower levels, resulting in a weaker forced response and weaker associated descent over the Mediterranean. A moist static energy budget analysis applied to CMIP5 suggests that most models capture the dominant role of horizontal temperature advection and radiative fluxes in balancing descent over the Mediterranean. Based on the objective analysis herein, a subset of models is identified that captures the teleconnection for reasons consistent with observations. The recognized processes vary at interannual time scales as well, with imprints of severe weak/strong monsoons noticeable over the Mediterranean.en
dc.description.sponsorshipItalian Ministry of Education, University and Research Ministry for Environment, Land and Sea through the project GEMINA INDO-MARECLIM 295092 Office of Science (BER) U.S. Department of Energy DE-FG02-07ER6445 (JAMSTEC) of the IPRC (NASA) of the IPRC (NOAA) of the IPRCen
dc.language.isoEnglishen
dc.publisher.nameAmerican Meteorological Societyen
dc.relation.ispartofJournal of climateen
dc.relation.ispartofseries18/27(2014)en
dc.relation.isversionofhttp://journals.ametsoc.org/doi/full/10.1175/JCLI-D-13-00530.1en
dc.subjectRossby wavesen
dc.subjectTeleconnectionsen
dc.subjectDiabatic heatingen
dc.subjectCoupled modelsen
dc.subjectModel evaluation/performanceen
dc.subjectInterannual variabilityen
dc.titleSouth Asian summer monsoon and the eastern Mediterranean climate: the monsoon-desert mechanism in CMIP5 simulationsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber6877-6903en
dc.subject.INGV03. Hydrosphere::03.01. General::03.01.03. Global climate modelsen
dc.identifier.doi10.1175/JCLI-D-13-00530.1.en
dc.relation.referencesAdler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 1147–1167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2. [Abstract] Ananthakrishnan, R., J. Pathan, and S. Aralikati, 1983: The onset phase of the southwest monsoon. Curr. Sci., 52, 755–764. Anderson, J., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 4641–4673, doi:10.1175/JCLI-3223.1. [Abstract] Annamalai, H., 2010: Moist dynamical linkage between the equatorial Indian Ocean and the South Asian monsoon trough. J. Atmos. Sci., 67, 589–610, doi:10.1175/2009JAS2991.1. [Abstract] Annamalai, H., and K. Sperber, 2005: Regional heat sources and the active and break phases of boreal summer intraseasonal (30–50 day) variability. J. Atmos. Sci., 62, 2726–2748, doi:10.1175/JAS3504.1. [Abstract] Annamalai, H., J. Hafner, K. Sooraj, and P. Pillai, 2013: Global warming shifts the monsoon circulation, drying South Asia. J. Climate, 26, 2701–2718, doi:10.1175/JCLI-D-12-00208.1. [Abstract] Back, L., and C. Bretherton, 2005: The relationship between wind speed and precipitation in the Pacific ITCZ. J. Climate, 18, 4317–4328, doi:10.1175/JCLI3519.1. [Abstract] Ben-Gai, T., A. Bitan, A. Manes, P. Alpert, and Y. Kushnir, 2001: Temperature and surface pressure anomalies in Israel and the North Atlantic Oscillation. Theor. Appl. Climatol., 69, 171–177, doi:10.1007/s007040170023. [CrossRef] Blackburn, M., B. Hoskins, P. Inness, and J. Slingo, 2003: 2002—A summer of floods and drought. Planet Earth, summer 2003 issue, Natural Environment Research Council, Swindon, United Kingdom, 23. Bladé, I., B. Liebmann, D. Fortuny, and G. van Oldenborgh, 2012: Observed and simulated impact of the summer NAO in Europe: Implications for projected drying in the Mediterranean region. Climate Dyn., 39, 709–727, doi:10.1007/s00382-011-1195-x. [CrossRef] Boos, W., and J. Hurley, 2013: Thermodynamic bias in the multimodel mean boreal summer monsoon. J. Climate, 26, 2279–2287, doi:10.1175/JCLI-D-12-00493.1. [Abstract] Charney, J., 1975: Dynamics of deserts and drought in the Sahel. Quart. J. Roy. Meteor. Soc., 101, 193–202, doi:10.1002/qj.49710142802. [CrossRef] Chen, J., and S. Bordoni, 2014a: Orographic effects of the Tibetan Plateau on the East Asian summer monsoon: An energetic perspective. J. Climate, 27, 3052–3072, doi:10.1175/JCLI-D-13-00479.1. [Abstract] Chen, J., and S. Bordoni, 2014b: Intermodel spread of East Asian summer monsoon simulations in CMIP5. Geophys. Res. Lett., 41, 1314–1321, doi:10.1002/2013GL058981. [CrossRef] Chen, P., M. Hoerling, and R. Dole, 2001: The origin of the subtropical anticyclones. J. Atmos. Sci., 58, 1827–1835, doi:10.1175/1520-0469(2001)058<1827:TOOTSA>2.0.CO;2. [Abstract] Cherchi, A., and A. Navarra, 2013: Influence of ENSO and of the Indian Ocean dipole on the Indian summer monsoon variability. Climate Dyn., 41, 81–103, doi:10.1007/s00382-012-1602-y. [CrossRef] Cherchi, A., A. Carril, C. Menéndez, and L. Zamboni, 2014: La Plata Basin precipitation variability in spring: Role of remote SST forcing as simulated by GCM experiments. Climate Dyn., 42, 219–236, doi:10.1007/s00382-013-1768-y. [CrossRef] Chou, C., and J. Neelin, 2003: Mechanisms limiting the northward extent of the northern summer monsoons over North America, Asia and Africa. J. Climate, 16, 406–425, doi:10.1175/1520-0442(2003)016<0406:MLTNEO>2.0.CO;2. [Abstract] Chronis, T., D. Raitsos, D. Kassis, and A. Sarantopoulos, 2011: The summer North Atlantic Oscillation influence on the eastern Mediterranean. J. Climate, 24, 5584–5596, doi:10.1175/2011JCLI3839.1. [Abstract] Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 4605–4630, doi:10.1175/JCLI3884.1. [Abstract] Delworth, T., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643–674, doi:10.1175/JCLI3629.1. [Abstract] Gaetani, M., B. Pohl, H. Douville, and B. Fontaine, 2011: West African monsoon influence on the summer Euro-Atlantic circulation. Geophys. Res. Lett.,38, L09705, doi:10.1029/2011GL047150. Giorgi, F., and P. Lionello, 2008: Climate change projections for the Mediterranean region. Global Planet. Change, 63, 90–104, doi:10.1016/j.gloplacha.2007.09.005. [CrossRef] Hoskins, B., 1996: On the existence and strength of the summer subtropical anticyclones – Bernhard Haurwitz Memorial. Bull. Amer. Meteor. Soc., 77, 1287–1292. Hoskins, B., and B. Wang, 2006: Large-scale atmospheric dynamics. The Asian Monsoon, B. Wang, Ed., Springer, 357–415. Hoskins, B., H. Hsu, I. James, M. Masutani, P. Sardeshmukh, and G. White, 1989: Diagnostics of the global atmospheric circulation based on ECMWF analysis 1979–1989. WCRP-27, WMO/TD-326, 217 pp. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2. [Abstract] Kiranmayi, L. and E. Maloney, 2011: Intraseasonal moist static energy budget in reanalysis data. J. Geophys. Res.,116, D21117, doi:10.1029/2011JD016031. Lionello, P., and Coauthors, 2006: Cyclones in the Mediterranean region: Climatology and effects on the environment. Mediterranean Climate Variability, P. Lionello, P. Malanotte-Rizzoli, and R. Boscolo, Eds., Elsevier, 27–148. Liu, Y., G. Wu, and R. Ren, 2004: Relationship between the subtropical anticyclone and diabatic heating. J. Climate, 17, 682–698, doi:10.1175/1520-0442(2004)017<0682:RBTSAA>2.0.CO;2. [Abstract] Mariotti, A., M. Struglia, N. Zeng, and K.-M. Lau, 2002: The hydrological cycle in the Mediterranean region and implications for the water budget of the Mediterranean Sea. J. Climate, 15, 1674–1690, doi:10.1175/1520-0442(2002)015<1674:THCITM>2.0.CO;2. [Abstract] Mitchell, T., and P. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693–712, doi:10.1002/joc.1181. [CrossRef] Nakamura, H., and T. Miyasaka, 2004: Formation of summertime subtropical highs. Bull. Amer. Meteor. Soc., 85, 1062–1064. Neelin, J., 2007: Moist dynamics of tropical convection zones in monsoons, teleconnections, and global warming. The Global Circulation of the Atmosphere, T. Schneider and A. Sobel, Eds., Princeton University Press, 267–301. Nigam, S., C. Chung, and E. DeWeaver, 2000: ENSO diabatic heating in ECMWF and NCEP–NCAR reanalyses, and NCAR CCM3 simulation. J. Climate, 13, 3152–3171, doi:10.1175/1520-0442(2000)013<3152:EDHIEA>2.0.CO;2. [Abstract] Parthasarathy, B., A. Munot, and D. Kothwale, 1992: Indian summer monsoon rainfall indices: 1871–1990. Meteor. Mag., 121, 174–186. Pillai, P., and H. Annamalai, 2012: Moist dynamics of severe monsoons over South Asia: Role of the tropical SST. J. Atmos. Sci., 69, 97–115, doi:10.1175/JAS-D-11-056.1. [Abstract] Prasanna, V., and H. Annamalai, 2012: Moist dynamics of extended monsoon breaks over South Asia. J. Climate, 25, 3810–3831, doi:10.1175/JCLI-D-11-00459.1. [Abstract] Raicich, F., N. Pinardi, and A. Navarra, 2003: Teleconnections between Indian monsoon and Sahel rainfall and the Mediterranean. Int. J. Climatol., 23, 173–186, doi:10.1002/joc.862. [CrossRef] Rodwell, M., and B. Hoskins, 1996: Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc., 122, 1385–1404, doi:10.1002/qj.49712253408. [CrossRef] Rodwell, M., and B. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 3192–3211, doi:10.1175/1520-0442(2001)014<3192:SAASM>2.0.CO;2. [Abstract] Schumacher, C., R. A. Houze Jr., and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM precipitation radar. J. Atmos. Sci., 61, 1341–1358, doi:10.1175/1520-0469(2004)061<1341:TTDRTL>2.0.CO;2. [Abstract] Seager, R., R. Murtugudde, N. Naik, A. Clement, N. Gordon, and J. Miller, 2003: Air–sea interaction and the seasonal cycle of the subtropical anticyclones. J. Climate, 16, 1948–1966, doi:10.1175/1520-0442(2003)016<1948:AIATSC>2.0.CO;2. [Abstract] Sperber, K., H. Annamalai, I. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs CMIP3 simulations of the late 20th century. Climate Dyn., 41, 2711–2744, doi:10.1007/s00382-012-1607-6. [CrossRef] Su, H., and J. Neelin, 2002: Teleconnection mechanisms for tropical Pacific descent anomalies during El Niño. J. Atmos. Sci., 59, 2694–2712, doi:10.1175/1520-0469(2002)059<2694:TMFTPD>2.0.CO;2. [Abstract] Taylor, K., R. Stouffer, and G. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, doi:10.1175/BAMS-D-11-00094.1. [Abstract] Tyrlis, E., J. Lelieveld, and B. Steil, 2013: The summer circulation over the eastern Mediterranean and the Middle East: Influence of the South Asian monsoon. Climate Dyn., 40, 1103–1123, doi:10.1007/s00382-012-1528-4. [CrossRef] Uppala, S., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012, doi:10.1256/qj.04.176. [CrossRef] Walker, G., and E. Bliss, 1932: World Weather V. Mem. Roy. Meteor. Soc., 4, 53–84. Watanabe, M., and M. Kimoto, 2000: Atmosphere–ocean thermal coupling in the North Atlantic: A positive feedback. Quart. J. Roy. Meteor. Soc., 126, 3343–3369, doi:10.1002/qj.49712657017; Corrigendum, 127, 733–734, doi:10.1002/qj.49712757223. [CrossRef] Watanabe, M., and F. Jin, 2002: Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO. Geophys. Res. Lett., 29, doi:10.1029/2001GL014318. Wu, Z., E. Sarachik, and D. Battisti, 2000: Vertical structure of convective heating and the three-dimensional structure of the forced circulation on an equatorial beta plane. J. Atmos. Sci., 57, 2169–2187, doi:10.1175/1520-0469(2000)057<2169:VSOCHA>2.0.CO;2. [Abstract] Xie, P., J. Janowiak, P. Arkin, R. Adler, A. Gruber, R. Ferraro, G. Huffmann, and S. Curtis, 2003: GPCP pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. J. Climate, 16, 2197–2214, doi:10.1175/2769.1. [Abstract] Ziv, B., H. Saaroni, and P. Alpert, 2004: The factors governing the summer regime of the eastern Mediterranean. Int. J. Climatol., 24, 1859–1871, doi:10.1002/joc.1113. [CrossRef]en
dc.description.obiettivoSpecifico4A. Clima e Oceanien
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.relation.issn0894-8755en
dc.relation.eissn1520-0442en
dc.contributor.authorCherchi, A.en
dc.contributor.authorAnnamalai, H.en
dc.contributor.authorMasina, S.en
dc.contributor.authorNavarra, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentUniversity Hawaii Manoa, Int Pacific Res Ctr, Honolulu, HI 96822 USAen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptUniversity Hawaii Manoa, Int Pacific Res Ctr, Honolulu, HI 96822 USA-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptCMCC, Italy-
crisitem.author.orcid0000-0002-0178-9264-
crisitem.author.orcid0000-0001-6273-7065-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Cherchi_annamalai_et_al_2014.pdfPost-print article2.39 MBAdobe PDFView/Open
Show simple item record

Page view(s) 20

264
checked on Apr 17, 2024

Download(s) 50

213
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric