Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9522
DC FieldValueLanguage
dc.contributor.authorallColleoni, F.; Ctr Euromediterraneo Cambiamenti Climat, Bologna, Italyen
dc.contributor.authorallMasina, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallCherchi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallIovino, D.; Ctr Euromediterraneo Cambiamenti Climat, Bologna, Italyen
dc.date.accessioned2015-04-16T08:56:30Zen
dc.date.available2015-04-16T08:56:30Zen
dc.date.issued2014-12en
dc.identifier.urihttp://hdl.handle.net/2122/9522en
dc.description.abstractThis work explores the impact of orbital parameters and greenhouse gas concentrations on the climate of marine isotope stage (MIS) 7 glacial inception and compares it to that of MIS 5. The authors use a coupled atmosphere-ocean general circulation model to simulate the mean climate state of six time slices at 115, 122, 125, 229, 236, and 239 kyr, representative of a climate evolution from interglacial to glacial inception conditions. The simulations are designed to separate the effects of orbital parameters from those of greenhouse gas (GHG). Their results show that, in all the time slices considered, MIS 7 boreal lands mean annual climate is colder than the MIS 5 one. This difference is explained at 70% by the impact of the MIS 7 GHG. While the impact of GHG over Northern Hemisphere is homogeneous, the difference in temperature between MIS 7 and MIS 5 due to orbital parameters differs regionally and is linked with the Arctic Oscillation. The perennial snow cover is larger in all the MIS 7 experiments compared to MIS 5, as a result of MIS 7 orbital parameters, strengthened by GHG. At regional scale, Eurasia exhibits the strongest response to MIS 7 cold climate with a perennial snow area 3 times larger than in MIS 5 experiments. This suggests that MIS 7 glacial inception is more favorable over this area than over North America. Furthermore, at 239 kyr, the perennial snow covers an area equivalent to that of MIS 5 glacial inception (115 kyr). The authors suggest that MIS 7 glacial inception is more extensive than MIS 5 glacial inception over the high latitudes.en
dc.description.sponsorshipItalian Ministry of Education, University and Research Ministry for Environment, Land and Sea through the project GEMINAen
dc.language.isoEnglishen
dc.publisher.nameAmerican Meteorological Societyen
dc.relation.ispartofJournal of climateen
dc.relation.ispartofseries23/27(2014)en
dc.subjectArctic Oscillationen
dc.subjectTeleconnectionsen
dc.subjectGreenhouse gasesen
dc.subjectGlaciationen
dc.subjectPaleoclimateen
dc.titleImpact of Orbital Parameters and Greenhouse Gas on the Climate of MIS 7 and MIS 5 Glacial Inceptionsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber8918-8933en
dc.identifier.URLhttp://journals.ametsoc.org/doi/full/10.1175/JCLI-D-13-00754.1en
dc.subject.INGV02. Cryosphere::02.03. Ice cores::02.03.05. Paleoclimateen
dc.identifier.doi10.1175/JCLI-D-13-00754.1en
dc.relation.referencesBerger, A., 1978: Long-term variations of daily insolation and quaternary climatic changes. J. Atmos. Sci., 35, 2362–2367, doi:10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2. [Abstract] Bintanja, R., R. S. van de Wal, and J. Oerlemans, 2005: Modelled atmospheric temperatures and global sea levels over the past million years. Nature, 437, 125–128, doi:10.1038/nature03975. [CrossRef] Bonelli, S., S. Charbit, M. Kageyama, M.-N. Woillez, G. Ramstein, C. Dumas, and A. Quiquet, 2009: Investigating the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle. Climate Past, 5, 329–345, doi:10.5194/cp-5-329-2009. [CrossRef] Calov, R., A. Ganopolsi, V. Petoukhov, M. Claussen, V. Brovkin, and C. Kutbatzki, 2005: Transient simulation of the last glacial inception. Part II: Sensitivity and feedback analysis. Climate Dyn., 24, 563–576, doi:10.1007/s00382-005-0008-5. [CrossRef] Colleoni, F., S. Masina, A. Cherchi, A. Navarra, C. Ritz, V. Peyaud, and B. Otto-Bliesner, 2014: Modeling Northern Hemisphere ice-sheet distribution during MIS 5 and MIS 7 glacial inceptions. Climate Past, 10, 269–291, doi:10.5194/cp-10-269-2014. [CrossRef] Dahl-Jensen, D., and Coauthors, 2013: Eemian interglacial reconstructed from a Greenland folded ice core. Nature, 493, 489–494, doi:10.1038/nature11789. [CrossRef] Dutton, A., E. Bard, F. Antonioli, T. M. Esat, K. Lambeck, and M. T. McCulloch, 2009: Phasing and amplitude of sea-level and climate change during the penultimate interglacial. Nat. Geosci., 2, 355–359, doi:10.1038/ngeo470. [CrossRef] Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 4973–4991, doi:10.1175/2011JCLI4083.1. [Abstract] Groll, N., and M. Widmann, 2006: Sensitivity of temperature teleconnections to orbital changes in AO-GCM simulations. Geophys. Res. Lett., 33, L12705, doi:10.1029/2005GL025578. Groll, N., M. Widmann, J. M. Jones, F. Kaspar, and S. J. Lorenz, 2005: Simulated relationships between regional temperatures and large-scale circulation: 125 kyr BP (Eemian) and the preindustrial period. J. Climate, 18, 4032–4045, doi:10.1175/JCLI3469.1. [Abstract] Haug, G. H., and Coauthors, 2005: North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature, 433, 821–825, doi:10.1038/nature03332. [CrossRef] Helmke, J. P., H. A. Bauch, and H. Erlenkeuser, 2003: Development of glacial and interglacial conditions in the Nordic Seas between 1.5 and 0.35 Ma. Quat. Sci. Rev., 22, 1717–1728, doi:10.1016/S0277-3791(03)00126-4. [CrossRef] Jansen, J., A. Kuijpers, and S. Troelstra, 1986: A mid-Brunhes climatic event: Long-term changes in global atmosphere and ocean circulation. Science, 232, 619–622, doi:10.1126/science.232.4750.619. [CrossRef] Jochum, M., A. Jahn, S. Peacock, D. A. Bailey, J. Fasullo, J. Kay, S. Levis, and B. Otto-Bliesner, 2012: True to Milankovitch: Glacial inception in the new Community Climate System Model. J. Climate, 25, 2226–2239, doi:10.1175/JCLI-D-11-00044.1. [Abstract] Johnsen, S., and Coauthors, 2001: Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J. Quat. Sci., 16, 299–307, doi:10.1002/jqs.622. [CrossRef] Jouzel, J., and Coauthors, 2007: Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317, 793–797, doi:10.1126/science.1141038. [CrossRef] Kageyama, M., S. Charbit, C. Ritz, M. Khodri, and G. Ramstein, 2004: Quantifying ice-sheet feedbacks during the last glacial inception. Geophys. Res. Lett.,31, L24203, doi:10.1029/2004GL021339. Kawamura, K., and Coauthors, 2007: Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature, 448, 912–916, doi:10.1038/nature06015. [CrossRef] Kubatzki, C., M. Claussen, R. Calov, and A. Ganopolski, 2006: Sensitivity of the last glacial inception to initial and surface conditions. Climate Dyn., 27, 333–344, doi:10.1007/s00382-006-0136-6. [CrossRef] Lang, N., and E. W. Wolff, 2011: Interglacial and glacial variability from the last 800 ka in marine, ice and terrestrial archives. Climate Past, 7, 361–380, doi:10.5194/cp-7-361-2011. [CrossRef] Lisiecki, L., and M. Raymo, 2005: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, PA1003, doi:10.1029/2004PA001071. Lisiecki, L., and M. Raymo, 2007: Pliopleistocene climate evolution: Trends and transitions in glacial cycle dynamics. Quat. Sci. Rev., 26, 56–69, doi:10.1016/j.quascirev.2006.09.005. [CrossRef] Loulergue, L., and Coauthors, 2008: Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature, 453, 383–386, doi:10.1038/nature06950. [CrossRef] Luthi, D., and Coauthors, 2008: High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 453, 379–382, doi:10.1038/nature06949. [CrossRef] Milankovitch, M., 1941: Kanon der Erdbestrahlung und seine Andwendung auf das Eiszeitenproblem. Royal Serbian Academy, 633 pp. Mudelsee, M., and M. E. Raymo, 2005: Slow dynamics of the Northern Hemisphere glaciations. Paleoceanography, 20, PA4022, doi:10.1029/2005PA001153. [CrossRef] Rohling, E., K. Grant, M. Bolshaw, A. Roberts, M. Siddall, C. Hemleben, and M. Kucera, 2009: Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nat. Geosci., 2, 500–504, doi:10.1038/ngeo557. [CrossRef] Schilt, A., M. Baumgartner, T. Blunier, J. Schwander, R. Spahni, H. Fischer, and T. Stocker, 2010: Glacial-interglacial and millennial scale variations in the atmospheric nitrous oxide concentration during the last 800,000 years. Quat. Sci. Rev., 29, 182–192, doi:10.1016/j.quascirev.2009.03.011. [CrossRef] Shields, C. A., D. A. Bailey, G. Danabasoglu, M. Jochum, J. T. Kiehl, S. Levis, and S. Park, 2012: The low-resolution CCSM4. J. Climate, 25, 3993–4014, doi:10.1175/JCLI-D-11-00260.1. [Abstract] Siddall, M., E. Bard, E. J. Rohling, and C. Hemleben, 2006: Sea-level reversal during termination II. Geology, 34, 817–820, doi:10.1130/G22705.1. [CrossRef] Thompson, D. W., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300, doi:10.1029/98GL00950. [CrossRef] Tzedakis, P., J. Channell, D. Hodell, H. Kleiven, and L. Skinner, 2012: Determining the natural length of the current interglacial. Nat. Geosci., 5, 138–141, doi:10.1038/ngeo1358. [CrossRef] Vettoretti, G., and W. R. Peltier, 2003: Post-Eemian glacial inception. Part I: The impact of summer seasonal temperature bias. J. Climate, 16, 889–911, doi:10.1175/1520-0442(2003)016<0889:PEGIPI>2.0.CO;2. [Abstract] Wang, Z., and L. Mysak, 2002: Simulation of the last glacial inception and rapid ice sheet growth in the McGill paleoclimate model. Geophys. Res. Lett., 29, 2102, doi:10.1029/2002GL015120. [CrossRef] Yeager, S. G., C. A. Shields, W. G. Large, and J. J. Hack, 2006: The low-resolution CCSM3. J. Climate, 19, 2545–2566, doi:10.1175/JCLI3744.1. [Abstract] Yin, Q., and A. Berger, 2012: Individual contribution of insolation and CO2 to the interglacial climates of the past 800,000 years. Climate Dyn., 38, 709–724, doi:10.1007/s00382-011-1013-5. [CrossRef]en
dc.description.obiettivoSpecifico4A. Clima e Oceanien
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.relation.issn0894-8755en
dc.relation.eissn1520-0442en
dc.contributor.authorColleoni, F.en
dc.contributor.authorMasina, S.en
dc.contributor.authorCherchi, A.en
dc.contributor.authorIovino, D.en
dc.contributor.departmentCtr Euromediterraneo Cambiamenti Climat, Bologna, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentCtr Euromediterraneo Cambiamenti Climat, Bologna, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptCMCC, Italy-
crisitem.author.orcid0000-0003-4582-812X-
crisitem.author.orcid0000-0001-6273-7065-
crisitem.author.orcid0000-0002-0178-9264-
crisitem.author.orcid0000-0001-5132-7255-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent02. Cryosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Colleoni_masina_cherchi_iovino_2014.pdfPost-print article5.3 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

5
checked on Feb 10, 2021

Page view(s) 50

174
checked on Mar 27, 2024

Download(s) 20

384
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric