Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9482

Authors: Cesca, S.*
Braun, T.*
Maccaferri, F.*
Passarelli, L.*
Rivalta, E.*
Title: Source modelling of the M5-6 Emilia-Romagna, Italy, earthquakes (May 20-29, 2012)
Title of journal: Geophysical Journal International
Series/Report no.: /193(2013)
Publisher: Wiley-Blackwell
Issue Date: 28-Mar-2013
DOI: 10.1093/gji/ggt069
Keywords: Earthquake dynamics
Earthquake source observations
Abstract: On 2012 May 20 and 29, two damaging earthquakes with magnitudes Mw 6.1 and 5.9, respectively, struck the Emilia-Romagna region in the sedimentary Po Plain, Northern Italy, causing 26 fatalities, significant damage to historical buildings and substantial impact to the economy of the region. The earthquake sequence included four more aftershocks with Mw ? 5.0, all at shallow depths (about 7–9 km), with similar WNW–ESE striking reverse mechanism. The timeline of the sequence suggests significant static stress interaction between the largest events. We perform here a detailed source inversion, first adopting a point source approximation and considering pure double couple and full moment tensor source models. We compare different extended source inversion approaches for the two largest events, and find that the rupture occurred in both cases along a subhorizontal plane, dipping towards SSW. Directivity is well detected for the May 20 main shock, indicating that the rupture propagated unilaterally towards SE. Based on the focal mechanism solution, we further estimate the co-seismic static stress change induced by the May 20 event. By using the rate-and-state model and a Poissonian earthquake occurrence, we infer that the second largest event of May 29 was induced with a probability in the range 0.2–0.4. This suggests that the segment of fault was already prone to rupture. Finally, we estimate peak ground accelerations for the two main events as occurred separately or simultaneously. For the scenario involving hypothetical rupture areas of both main events, we estimate Mw = 6.3 and an increase of ground acceleration by 50 per cent. The approach we propose may help to quantify rapidly which regions are invested by a significant increase of the hazard, bearing the potential for large aftershocks or even a second main shock.
Appears in Collections:04.06.03. Earthquake source and dynamics
Papers Published / Papers in press

Files in This Item:

File SizeFormatVisibility
Geophys. J. Int.-2013-Cesca-gji_ggt069.pdf1.71 MBAdobe PDFonly authorized users View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Share this record
Del.icio.us

Citeulike

Connotea

Facebook

Stumble it!

reddit


 

Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA