Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item:

Authors: Ripepe, M.*
Braun, T.*
Title: Air-wave phases in strombolian explosion quake seismograms: a possible indicator for the magma level?
Title of journal: Acta Vulcanologica
Series/Report no.: /05(1994)
Issue Date: 1994
Keywords: Stromboli
volcano seismology
seismic source
Abstract: Many explosion-quake seismograms recorded near the active craters at Stromboli are dominated by two distinct onsets: a first low-frequency phase and a second high-frequency one. Particle-motion diagrams show a P-wave characteristic for the low-frequency phase, whereas in the high-frequency onset the longitudinal polarization is lost and the pattern becomes chaotic in the horizontal as well as in the vertical plane. The air-pressure pulse generated by the volcanic explosion is detected by the seismometer as a high-frequency signal, and we assume as source mechanism an explosion at the top of the magma column, generated by rising gas bubbles. The different path lengths and velocities for the seismic wave and the air-wave are the reasons for the difference in arrival times Dt between the low-frequency and the high-frequency onset. We tried to deduce the magma level and gas velocity in the conduit, from observed Dt values. If the pressure pulse inside the consuit is assumed yo be lower (30-70 m/s) than the sound speed, the magma level remains reasonably stable, even for large changes of Dt.
Appears in Collections:04.06.08. Volcano seismology
Papers Published / Papers in press

Files in This Item:

File SizeFormatVisibility
1994AV_Ripepe&TB_Stromboli.pdf7.69 MBAdobe PDFonly authorized users View/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Share this record




Stumble it!



Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA