Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9327
DC FieldValueLanguage
dc.contributor.authorallPalano, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2015-02-16T10:47:14Zen
dc.date.available2015-02-16T10:47:14Zen
dc.date.issued2015-02-01en
dc.identifier.urihttp://hdl.handle.net/2122/9327en
dc.description.abstractWe present an up-to-date high resolution picture of the ongoing crustal deformation field of Italy, based on an extensive combination of permanent and non-permanent GPS observations carried out since 1994. In addition, we present an updated map of contemporary SHmax orientations computed by a multidisciplinary data set of well-constrained stress indicators, including both published results and novel analyses. The comparison of stress and geodetic strain-rates directions reveals that both patterns are near-parallel over a large part of the investigated area, highlighting that crustal stress and surface deformation are driven by the same mechanism. The comparison of the azimuthal patterns of surface strain and mantle deformation shows a modest correlation on the Alps and a low correlation along the Apennines chain and the Calabro-Peloritan Arc. Along the Apennines chain, this feature suggests the occurrence of significant strain partitioning and crust–mantle mechanical decoupling. Along the Calabro-Peloritan Arc, the apparent low correlation reflects a different mantle–crust mechanism of deformation to the ongoing subduction and rollback of the Ionian slab. In addition, the superposition of regional/local effects related to second-order sources (crustal lateral density changes, strength contrasts), which at regional/local scale modulate the crustal stress/strain-rate pattern, cannot be ruled out.en
dc.language.isoEnglishen
dc.publisher.nameWiley-Blackwellen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries/200(2015)en
dc.subjectPlate motionsen
dc.subjectSeismic anisotropyen
dc.subjectKinematics of crustal and mantle deformationen
dc.titleOn the present-day crustal stress, strain-rate fields and mantle anisotropy pattern of Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber969-985en
dc.identifier.URLhttp://gji.oxfordjournals.org/content/200/2/969.full.pdf+htmlen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformationsen
dc.identifier.doi10.1093/gji/ggu451en
dc.relation.referencesAki, K., Richards, P. G., 1980. Quantitative Seismology, W. H. Freeman, New York. Alsina, D., & Snieder, R., 1995. Small-scale sublithospheric continental mantle deformation: Constraints from SKS splitting observations, Geophys. J. Int., 123, 431-448, doi:10.1111/j.1365-246X.1995.tb06864.x. Altamimi, Z., Métivier, L., & Collilieux, X., 2012. ITRF2008 plate motion model, J. geophys. Res., 117, B07402, doi:10.1029/2011JB008930. Amato, A., & Montone, P., 1997. Present-day stress field and active tectonics in southern peninsular Italy. Geophys. J. Int., 130, 519-534, doi:10.1111/j.1365-246X.1997.tb05666.x. Anderson, H.J., Jackson, J.A., 1987. The deep seismicity of the Tyrrhenian sea, Geophys. J. Int., 91, 613-637, doi:10.1111/j.1365-246X.1987.tb01661.x. Avallone, A., Selvaggi, G., D’Anastasio, E., D’Agostino, N., Pietrantonio, G., Riguzzi, F., Serpelloni, E., Anzidei, M., Casula, G., Cecere, G., D’Ambrosio, C., De Martino, P., Devoti, R., Falco, L., Mattia, M., Rossi, M., Obrizzo, F., Tammaro, U., & Zarrilli, L., 2010. The RING network: improvement of a GPS velocity field in the central Mediterranean, Ann. Geofis., 53 (2), 39-54. doi:10.4401/ag-4549. Baccheschi, P., Margheriti, L., Steckler, M.S., & Boschi, E., 2011. Anisotropy patterns in the subducting lithosphere and in the mantle wedge: A case study - The southern Italy subduction system, J. geophys. Res., 116, B08306, doi:10.1029/2010JB007961. Barba, S., Carafa, M. M.C., Mariucci, M. T., Montone, P., & Pierdominici, S., 2010. Present-day stress-field modelling of southern Italy constrained by stress and GPS data, Tectonophysics, 482, 193-204, doi:10.1016/j.tecto.2009.10.017. Bassi, G., Sabadini, R., & Rebaī, S., 1997. Modern tectonic regime in the Tyrrhenian area: observations and models, Geophys. J. Int., 129, 330-346, doi:10.1111/j.1365-246X.1997.tb01586.x. Becker, T. W., Lebedev, S., & Long, M.D., 2012. On the relationship between azimuthal anisotropy from shear wave splitting and surface wave tomography, J. geophys. Res., 117, B01306, doi:10.1029/2011JB008705. Bennett, R. A., Serpelloni, E., Hreinsdóttir, S., Brandon, M. T., Buble, G., Basic, T., Casale, G., Cavaliere, A., Anzidei, M., Marjonovic, M., Minelli, G., & Molli, G., 2012. Syn-convergent extension observed using the RETREAT GPS network, northern Apennines, Italy, J. geophys. Res., 117, B04408, doi:10.1029/2011JB008744. Beutler, G., Moore, A.W., & Mueller, I.I., 2008. The International Global Navigation Satellite Systems (GNSS) Service: developments and achievements, J. of Geodesy, 83 (3-4), 297-307, doi:10.1007/s00190-008-0268-z. Böhm J., Niell, A., Tregoning, P., & Schuh, H., 2006. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data, Geophys. Res. Lett., 33, L07304, doi:10.1029/2005GL02554. Boncio, P., & Bracone V., 2009. Active stress from earthquake focal mechanisms along the Padan-Adriatic side of the Northern Apennines (Italy), with considerations on stress magnitudes and pore-fluid pressures, Tectonophysics, 476 (1-2), 180-194, doi:10.1016/j.tecto.2008.09.018. Bott, M.H.P., 1959. The mechanisms of oblique slip faulting, Geological Magazine, 96, 109-117. Cadet, J.-P., & Funiciello R. (Eds.), 2004. Geodynamic map of the Mediterranean. Sheet 2 – Seismicity and Tectonics. Commission for the Geological Map of the World, Centre Impression, Limoges, France. Caporali, A., Barba, S., Carafa, M. M. C., Devoti, R., Pietrantonio, G., & Riguzzi, F., 2011. Static stress drop as determined from geodetic strain rates and statistical seismicity, J. geophys. Res., 116, B02410, doi:10.1029/2010JB007671. Carafa, M.M.C., & Barba, S., 2013. The stress field in Europe: optimal orientations with confidence limits, Geophys. J. Int., 193 (2), 531-548, doi:10.1093/gji/ggt024. Chang, C.-P., Chang, T.-Y., Angelier, J., Kao, H., Lee, J.-C., & Yu, S.-B., 2003. Strain and stress field in Taiwan oblique convergent system: constraints from GPS observation and tectonic data, Earth planet. Sci. Lett., 214 (1-2), 115-127, doi:10.1016/S0012-821X(03)00360-1. Chiarabba, C., Chiodini G., 2013. Continental delamination and mantle dynamics drive topography, extension and fluid discharge in the Apennines, Geology, 41 (6), 715-718 doi:10.1130/G33992.1. D’Agostino, N., D’Anastasio, E., Gervasi, A., Guerra, I., Nedimović, M. R., Seeber, L., & Steckler, M., 2011. Forearc extension and slow rollback of the Calabrian Arc from GPS measurements, Geophys. Res. Lett., 38, L17304, doi:10.1029/2011GL048270. D’Agostino, N., & Selvaggi, G., 2004. Crustal motion along the Eurasia-Nubia plate boundary in the Calabrian Arc and Sicily and active extension in the Messina Straits from GPS measurements, J. geophys. Res., 109, B11402, doi:10.1029/2004JB002998. De Guidi, G., Lanzafame, G., Palano, M., Puglisi, G., Scaltrito, A., & Scarfì, L., 2013. Multidisciplinary study of the Tindari Fault (Sicily, Italy) separating ongoing contractional and extensional compartments along the active Africa-Eurasia convergent boundary, Tectonophysics, 588, 1-17, doi:10.1016/j.tecto.2012.11.021. Del Gaudio, V., Pierri, P., Frepoli, V., Calcagnile, G., Venisti, N., & Cimini, G. B., 2007. A critical revision of the seismicity of the Northen Apulia (Adriatic microplate? Southern Italy) and implications for the identification of seismogenic structures, Tectonophysics, 436, 9-35, doi:10.1016/j.tecto.2007.02.013. Delvaux, D., & Barth, A., 2010. African stress pattern from formal inversion of focal mechanism data, Tectonophysics, 482 (1-4), 105-128, doi:10.1016/j.tecto.2009.05.009. Delvaux, D., & Sperner, B., 2003. Stress tensor inversion from fault kinematic indicators and focal mechanism data: the TENSOR program, in: Nieuwland, D. (ed.), New Insights into Structural Interpretation and Modelling, Geol. Soc., London, Spec. Publ., 212, 75-100. Devoti, R., Esposito, A., Pietrantonio, G., Pisani, A. R., & Riguzzi, F., 2011. Evidence of large scale deformation patterns from GPS data in the Italian subduction boundary, Earth planet. Sci. Lett., 311, 230-241, doi:10.1016/j.epsl.2011.09.034. Dewey, J.F., Helman, M.L., Turco, E., Hutton, D.H.W., & Knott, S.D., 1989. Kinematics of the western Mediterranean Alpine Tectonics, Geol. Soc. Spec. Publ., 45, 265-283, doi:10.1144/GSL.SP.1989.045.01.15. Di Stefano, R., Kissling, E., Chiarabba, C., Amato, A., & Giardini, D., 2009. Shallow subduction beneath Italy: Three-dimensional images of the Adriatic-European-Tyrrhenian lithosphere system based on high-quality P wave arrival times, J. geophys. Res., 114, B05305, doi:10.1029/2008JB005641. Díaz, J., Gil, A., & Gallart, J., 2013. Uppermost mantle seismic velocity and anisotropy in the Euro-Mediterranean region from Pn and Sn tomography, Geophys. J. Int., 192 (1), 310-325, doi:10.1093/gji/ggs016. Doglioni, C., 1991. A proposal for the kinematic modelling of W-dipping subductions - possible applications to the Tyrrenian-Apennines system, Terra Nova, 3, 423-434, doi:10.1111/j.1365-3121. Doglioni, C., 1993. Geological evidence for a global tectonic polarity, J. Geol. Soc. London, 150, 991-1002, doi:10.1144/gsjgs.150.5.0991. Dow, J.M., Neilan, R.E., & Rizos, C., 2009. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems, J. of Geodesy, 83(3-4), 191-198. doi:10.1007/s00190-008-0300-3. Dziewonski, A.M., & Woodhouse, J.H., 1983. An experiment in the systematic study of global seismicity: Centroid moment-tensor solutions for 201 moderate and large earthquakes of 1981, J. geophys. Res., 88, 3247-3271, doi:10.1029/JB088iB04p03247. Endrun, B., Lebedev, S., Meier, T., Tirel, C., & Friederich, W., 2011. Complex layered deformation within the Aegean crust and mantle revealed by seismic anisotropy, Nature Geoscience, 4, 203-207, doi:10.1038/ngeo1065. England, P., Molnar, P., 1997. Active deformation of Asia: from kinematics to dynamics, Science, 278, 647-650, doi:10.1126/science.278.5338.647. Faccenna, C., Mattel, M., Funiciello, R., & Jolivet, L., 1997. Styles of back-arc extension in the central Mediterranean, Terra Nova, 9, 126-130, doi:10.1046/j.1365-3121.1997.d01-12.x. Ferranti, L., Oldow, J.S., 1999. History and tectonic implications of low-angle detachment faults and orogen-parallel extension, Picentini Mountains, southern Apennines fold and thrust belt, Italy, Tectonics, 18 (3), 498-526, doi:10.1029/1998TC900024. Frepoli, A., & Amato, A., 2000. Fault plane solutions of crustal earthquakes in Southern Italy (1988-1995): seismotectonic implications, Ann. Geofis., 43 (3), 437-467. Frepoli, A., Maggi, C., Cimini, G.B., Marchetti, A., & Chiappini, M., 2011. Seismotectonic of Southern Apennines from recent passive seismic experiments, J. Geodyn., 51 (1-2), 110-124, doi:10.1016/j.jog.2010.02.007. Gambino, S., Milluzzo V., Scaltrito A., & Scarfì L., 2012. Relocation and focal mechanisms of earthquakes in the south-central sector of the Aeolian Archipelago: New structural and volcanological insights, Tectonophysics, 524-525, 108-115, doi:10.1016/j.tecto.2011.12.024. Giammanco, S., Palano, M., Scaltrito, A., Scarfì, L., & Sortino, F., 2008. Possible role of fluid overpressure in the generation of earthquake swarms in active tectonic areas: The case of the Peloritani Mts. (Sicily, Italy), J. Volc. Geotherm. Res., 178, 795-806, doi:10.1016/j.jvolgeores.2008.09.005. Giampiccolo, E., Musumeci, C., Falà, F., & Gresta, S., 2008. Seismological investigations in the Gioia Tauro Basin (southern Calabria, Italy), Ann. Geofis., 51 (5/6), 769-799. Giuliani, R., D’Agostino, N., D’Anastasio, E., Mattone, M., Bonci, L., Calcaterra, S., Gambino, P., & Merli, K., 2009. Active crustal extension and strain accumulation from GPS data in the Molise region (central-southern Apennines, Italy), Boll. Geofis. Teor. Appl., 50 (2), 145-156. Goes, S., Giardini, D., Jenny, S., Hollenstein, C., Kahle, H.-G., & Geiger, A. 2004. A recent reorganization in the south-central Mediterranean, Earth planet. Sci. Lett., 226, 335-345, doi:10.1016/j.epsl.2004.07.038. Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D., & Müller, B., 2008. The World Stress Map database release 2008, doi:10.1594/GFZ.WSM.Rel2008. Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D., & Müller, B., 2008. Global crustal stress pattern based on the World Stress Map database release 2008, Tectonophysics, 482, 3-15, doi:10.1016/j.tecto.2009.07.023. Herring, T.A., 2003. MATLAB Tools for viewing GPS velocities and time series, GPS Solutions, 7 (3), 194-199, doi:10.1007/s10291-003-0068-0. Herring, T.A., King, R.W., & McClusky, S.C., 2010. Introduction to GAMIT/GLOBK, Release 10.4. Massachusetts Institute of Technology, Cambridge MA, 1-48. Hillis, R. R, & Reynolds, S. D., 2003. In situ stress field of Australia, Geol. Soc. Am. Sp. P., 372, 49-58. Hurd, O., & Zoback, M., 2012. Regional stress orientations and slip compatibility of earthquake focal planes in the New Madrid seismic zone, Seism. Res. Lett., 83, 672-679, doi:10.1785/0220110122. Hyppolite, J.C., Angelier, J., & Roure, F., 1994. A major geodynamic change revealed by quaternary stress patterns in the Southern Apennines (Italy), Tectonophysics, 230, 199-210, doi:10.1016/0040-1951(94)90135-X. Jolivet, L., Faccenna C., Goffè, B., Mattei, M., Rossetti, F., Brunet, C., Storti, F., Funiciello, R., Cadet, J. P., D’Agostino, N., & Parra, T., 1998. Midcrustal shear zones in postorogenic extension: Example from the northern Tyrrhenian Sea, J. geophys. Res., 103, 12123-12160, doi:10.1029/97JB03616. Jolivet, L., Faccenna, C., & Piromallo C., 2009. From mantle to crust: Stretching the Mediterranean, Earth planet. Sci. Lett., 285, 198-209, doi:10.1016/j.epsl.2009.06.017. Kastrup, U., Zoback, M. L., Deichmann, N., Evans, K. F., Giardini, D., & Michael, A. J., 2004. Stress field variations in the Swiss Alps and the northern Alpine foreland derived from inversion of fault plane solutions, J. geophys. Res., 109, B01402, doi:10.1029/2003JB002550. Keiding, M., Lund, B., & Árnadóttir, T., 2009. Earthquakes, stress, and strain along an obliquely divergent plateboundary: Reykjanes Peninsula, southwest Iceland, J. geophys. Res., 114, B09306, doi:10.1029/2008JB006253. Kuhlemann. J., & Kempf, O., 2002. Post-Eocene evolution of the North Alpine Foreland Basin and its response Alpine tectonics. Sedimen. Geol. 152, 45-78, doi:10.1016/S0037-0738(01)00285-8. Lucente, F.P., Chiarabba, C., Cimini, G., & Giardini, D., 1999. Tomographic constraints on the geodynamic evolution of the Italian region, J. geophys. Res., 104, 20307-20327, doi:10.1029/1999JB900147. Lund, B., & Townend, J., 2007. Calculating horizontal stress orientations with full or partial knowledge of the tectonic stress tensor, Geophys. J. Int., 170(3), 1328-1335, doi:10.1111/j.1365-246X.2007.03468.x. Macchiavelli, C., Mazzoli, S., Megna, A., Saggese, F., Santini, S., & Vitale, S., 2012. Applying the multiple inverse method to the analysis of earthquake focal mechanism data: New insights into the active stress field of Italy and surrounding regions, Tectonophysics, 580, 124-149, doi:10.1016/j.tecto.2012.09.007. Maggi, C., Frepoli, A., Cimini, G.B., Console, R., & Chiappini, M., 2009. Recent seismicity and crustal stress field in the Lucanian Apennines and surrounding areas (Southern Italy): Seismotectonic implications, Tectonophysics, 463, 130-144, doi:10.1016/j.tecto.2008.09.032. Mainprice, D., Barruol, G., & Ben Ismail, W., 2000. The seismic anisotropy of the Earth’s mantle: from single crystal to polycrystal, in: Karato, S. et al. (eds.), Earth’s Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale. AGU, Washington, D. C., Geophys. Monogr. Ser., 117, pp. 237-264, doi:10.1029/GM117p0237. Malagnini, L., Herrmann, R. B., Munafò, I., Buttinelli, M., Anselmi, M., Akinci, A., & Boschi, E., 2012. The 2012 Ferrara seismic sequence: Regional crustal structure, earthquake sources, and seismic hazard. Geophys. Res. Lett., 39, L19302, doi:10.1029/2012GL053214. Malinverno, A., & Ryan, W.B.F., 1986. Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere, Tectonics, 5 (2), 227-245, doi:10.1029/TC005i002p00227. Mariucci M. T., & Müller, B., 2003. The tectonic regime in Italy inferred from borehole breakout data. Tectonophysics, 361, 21-35, doi:10.1016/S0040-1951(02)00536-X. McKenzie, D.P., 1969. The relation between fault plane solutions for earthquakes and the directions of the principal stresses. Bull. seism. Soc. Am., 59, 591-601. Meyer, B., Lacassin, R., Brulhet, J., & Mouroux, B., 1994. The Basel 1356 earthquake: Which fault produced it?, Terra Nova, 6, 54-63, doi:10.1111/j.1365-3121.1994.tb00633.x. Montone, P., Amato, A., Frepoli, A., Mariucci, M. T., & Cesaro, M., 1997. Crustal stress regime in Italy, Ann. Geofis., 40, 741-757. Montone, P., Mariucci, M. T., Pondrelli, S., & Amato, A., 2004. An improved stress map for Italy and surrounding regions (Central Mediterranean), J. geophys. Res., 109, B10410, doi:10.1029/2003JB002703. Montone, P., Mariucci, M. M., & Pierdominici, S., 2012. The Italian present-day stress map, Geophys. J. Int., 189, 705-716 doi:10.1111/j.1365-246X.2012.05391.x. Musumeci, C., Patanè, D., Scarfì, L., & Gresta, S., 2005. Stress directions and shear-wave anisotropy: observations from local earthquakes in Southeastern Sicily, Italy, Bull. seism. Soc. Am., 95, 1359-1374, doi:10.1785/0120040108. Neri, G., Barberi, G., Oliva, G., & Orecchio, B., 2005. Spatial variations of seismogenic stress orientations in Sicily, south Italy, Phys. Earth planet. Inter., 148, 175-191, doi:10.1016/j.pepi.2004.08.009. Neri, G., Marotta, A.M., Orecchio, B., Presti, D., Totaro, C., Barzaghi, R., & Borghi, A., 2012. How lithospheric subduction changes along the Calabrian Arc in southern Italy: geophysical evidences, Inter. J. Earth Sci., 101 (7), 1949-1969, doi:10.1007/s00531-012-0762-7. Nicolas, A., & Christensen, N. I. 1987. Formation of anisotropy in upper mantle peridotites - a review, in: Fuchs, K., Froidevaux, C. (eds.), Composition, Structure and Dynamics of the Lithosphere-Asthenosphere System. AGU, Washington, D. C., Geodynamics Series 16, pp. 111-123. Palano, M., Cannavò, F., Ferranti, L., Mattia, M., & Mazzella, E., 2011. Strain and stress fields in the Southern Apennines (Italy) constrained by geodetic, seismological and borehole data, Geophys. J. Int., 187 (3), 1270-1282, doi:10.1111/j.1365-246X.2011.05234.x. Palano, M., Ferranti, L., Monaco, C., Mattia, M., Aloisi, M., Bruno, V., Cannavò, F., & Siligato, G., 2012. GPS velocity and strain fields in Sicily and southern Calabria, Italy: Updated geodetic constraints on tectonic block interaction in the central Mediterranean, J. geophys. Res., 117, B07401, doi:10.1029/2012JB009254. Palano, M., González, P. J., & Fernández, J., 2013. Strain and stress fields along the Gibraltar Orogenic Arc: constraints on active geodynamics, Gondwana Res., 23 (3), 1071-1088, doi:10.1016/j.gr.2012.05.021. Patacca, E., Sartori, R., & Scandone, P., 1990. Tyrrhenian basin and Apenninic arcs. Kinematic relations since late Tortonian times. Mem. Soc. Geol. It., 45, 425-451. Peccerillo, A. 2005. Plio-Quaternary volcanism in Italy, Petr., Geochem., Geodyn., Springer, Heidelberg, pp 365. Pfiffner, O. A., Lehner, P., Heitzmann, P., Müller, S., & Steck, A., 1997. Deep Structure of the Alps, Results of NRP20. Birkhäuser Basel, Switzerland, pp 380. Pierdominici, S., Mariucci, M.T., Montone, P., & Cesaro, M., 2005. Comparison between active stress field and tectonic structures in Northern Italy, Lombardy Region, Ann. Geophys., 48(6), 867-881. Pierdominici S., & Heidbach O., 2012. Stress field of Italy - Mean stress orientation at different depths and wave-length of the stress pattern, Tectonophysics, 532-535, 301-311, doi:10.1016/j.tecto.2012.02.018 Piromallo, C., & Morelli, A., 2003. P wave tomography of the mantle under the Alpine-Mediterranean area, J. geophys. Res., 108 (B2), 2065, doi:10.1029/2002JB001757. Polino, R., Dal Piaz, G. V., & Gosso, G., 1990. The alpine cretaceous orogeny: an accretionary wedge model based on integred statigraphic, petrologic and radiometric data, in: Roure, F., Heitzmann, P., Polino, R. (eds.), Deep structure of the Alps., 1, 345-367. Polonia, A., Torelli, L., Mussoni, P., Gasperini, L., Artoni, A., & Klaeschen, D. 2011. The Calabrian Arc subduction complex in the Ionian Sea: Regional architecture, active deformation, and seismic hazard, Tectonics, 30, TC5018, doi:10.1029/2010TC002821. Presti, D., Billi, A., Orecchio, B., Totaro, C., Faccenna, C., & Neri, G., 2013. Earthquake focal mechanisms, seismogenic stress, and seismotectonics of the Calabrian Arc, Italy, Tectonophysics, 602, 153-175, doi:10.1016/j.tecto.2013.01.030. Rebaī, S., Philip, H., & Taboada, A., 1992. Modern tectonic stress field in the Mediterranean region: evidence for variation in stress directions at different scales, Geophys. J. Int., 110, 106-140. doi:10.1111/j.1365-246X.1992.tb00717.x Ribe, N.M., 1992. On the relation between seismic anisotropy and finite strain, J. geophys. Res., 97, 8737-8747, doi:10.1029/92JB00551. Saastamoinen, J., 1972. Contribution to the theory of atmospheric refraction. Bull.Géodésique, 105 (1), 279-298, doi:10.1007/BF02521844. Salimbeni, S., Pondrelli, S., Margheriti, L., Park, J., & Levin, V., 2008. SKS splitting measurements beneath Northern Apennines region: A case of oblique trench-retreat, Tectonophysics, 462, 68-82, doi:10.1016/j.tecto.2007.11.075. Salimbeni, S., Pondrelli, S., & Margheriti, L., 2013. Hints on the deformation penetration induced by subductions and collision processes: Seismic anisotropy beneath the Adria region (Central Mediterranean), J. geophys. Res., 118, 5814-5826, doi:10.1002/2013JB010253. Sartori, R., Colalongo, M.L., Gabbianelli, G., Bonazzi, C., Carbone, S., Curzi, P.V., Evangelisti, D., Grasso, M., Lentini, F., Rossi, S., & Selli, L., 1991. Note stratigrafiche e tettoniche sul rise di Messina (Ionio nord-occidentale), Giornale di Geologia, 53, 49-64. Schmid, S. M., Pfiffner, O. A., Froitzheim, N., Schoenborn, G., & Kissling, E., 1996. Geophysical-geological transect and tectonic evolution of the Swiss-Italian Alps, Tectonics, 15 (5), 1036-1064, doi:10.1029/96TC00433. Serpelloni, E., Anzidei, M., Baldi, P., Casula, G., & Galvani, A., 2005. Crustal velocity and strain-rate fields in Italy and surrounding regions: new results from the analysis of permanent and non permanent GPS networks, Geophys. J. Int., 161, 861-880, doi:10.1111/j.1365-246X.2005.02618.x. Özenen, M. S., 2012. Crust-mantle mechanical coupling in Eastern Mediterranean and Eastern Turkey. Proc. Natl. Acad. Sci., 109(22), 8429-8433, doi:10.1073/pnas.1201826109. Townend, J., & Zoback, M.D., 2006. Stress, strain, and mountain building in central Japan, J. geophys. Res., 111 (3), doi:10.1029/2005JB003759. Smith, W.H.F., & Wessel, P., 1990. Gridding with continuous curvature splines in tension, Geophysics, 55, 293-305. Vannucci, G., & Gasperini, P., 2004. The new release of the database of Earthquake Mechanisms of the Mediterranean Area (EMMA Version 2), Ann. Geofis., 47 (1S), 307-334. Viganò, A., Bressan, G., Ranalli, G., & Martin, S., 2008. Focal mechanism inversion in the Giudicarie-Lessini seismotectonic region (Southern Alps, Italy): Insights on tectonic stress and strain, Tectonophysics, 460, 106-115, doi:10.1016/j.tecto.2008.07.008. Wessel, P., & Bercovici, D., 1998. Interpolation with splines in tension: a Green’s function approach. Mathematical Geol., 30, 77-93. Westaway, R., 1990. Present-day kinematics of the plate boundary zone between Africa and Europe, from the Azores to Aegean, Earth planet. Sci. Lett., 96, 392-406, doi:10.1016/0012-821X(90)90015-P. Wüstefeld, A., Bokelmann, G. H. R., Barruol, G., & Montagner, J. P., 2009. Identifying global seismic anisotropy patterns by correlating shear-wave splitting and surface-wave data. Phys. Earth. planet. Inter., 176, 198-212, doi:10.1016/j.pepi.2009.05.006 Yang, W., & Hauksson, E., 2013. The tectonic crustal stress field and style of faulting along the Pacific North America Plate boundary in Southern California, Geophys. J. Int., 194, 100-117, doi:10.1093/gji/ggt113. Zhang, S., & Karato, S., 1995. Lattice preferred orientation of olivine aggregates deformed in simple shear, Nature, 375, 774-777, doi:10.1038/375774a0. Zoback, M.L., 1992. First- and second-order patterns of stress in the lithosphere: The World Stress Map Project, J. geophys. Res., 97 (B8), 11703-11728, doi:10.1029/92JB00132.en
dc.description.obiettivoSpecifico1T. Geodinamica e interno della Terraen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0956-540Xen
dc.relation.eissn1365-246Xen
dc.contributor.authorPalano, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0001-7254-7855-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2015_Palano [Strain Stress Seismic Anisotropy Italy] GJI.pdf24.32 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

46
checked on Feb 10, 2021

Page view(s) 50

175
checked on Mar 27, 2024

Download(s)

49
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric