Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9258

Authors: Ebrahimian, H.*
Jalayer, F.*
Asprone, D.*
Lombardi, A. M.*
Marzocchi, W.*
Prota, A.*
Manfredi, G.*
Title: A performance-based framework for adaptive seismic aftershock risk assessment
Title of journal: Earthquake Engineering and Structural Dynamics
Series/Report no.: /43 (2014)
Publisher: Wiley-Blackwell
Issue Date: 2014
DOI: 10.1002/eqe.2444
Keywords: aftershock
time-dependent reliability
seismic risk
etas modeling
Abstract: Operative seismic aftershock risk forecasting can be particularly useful for rapid decision-making in the presence of an ongoing sequence. In such a context, limit state first-excursion probabilities (risk) for the forecasting interval (a day) can represent the potential for progressive state of damage in a structure. This work lays out a performance-based framework for adaptive aftershock risk assessment in the immediate post-mainshock environment. A time-dependent structural performance variable is adopted in order to measure the cumulative damage in a structure. A set of event-dependent fragility curves as a function of the first-mode spectral acceleration for a prescribed limit state is calculated by employing back-to-back non- linear dynamic analyses. An epidemic-type aftershock sequence model is employed for estimating the spatio-temporal evolution of aftershocks. The event-dependent fragility curves for a given limit state are then integrated together with the probability distribution of aftershock spectral acceleration based on the epidemic-type aftershock sequence aftershock hazard. The daily probability of limit state first-excursion is finally calculated as a weighted combination of the sequence of limit state probabilities conditioned on the num- ber of aftershocks. As a numerical example, daily aftershock risk is calculated for the L’Aquila 2009 aftershock sequence (central Italy). A representative three-story reinforced concrete frame with infill panels, which has cyclic strength and stiffness degradation, is used in order to evaluate the progressive damage. It is observed that the proposed framework leads to a sound forecasting of limit state first-excursion in the structure for two limit states of significant damage and near collapse. Copyright © 2014 John Wiley & Sons, Ltd.
Appears in Collections:04.06.11. Seismic risk
Papers Published / Papers in press

Files in This Item:

File SizeFormatVisibility
EESD_ebrahimian_etal_2014.pdf3.19 MBAdobe PDFNot available View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Share this record
Del.icio.us

Citeulike

Connotea

Facebook

Stumble it!

reddit


 

Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA