Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9139
DC FieldValueLanguage
dc.contributor.authorallSettimi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallBianchi, S.; Dipartimento di Fisica, Università “Sapienza”, p.le Aldo Moro 2, 00185 Roma, Italiaen
dc.date.accessioned2014-10-23T10:52:46Zen
dc.date.available2014-10-23T10:52:46Zen
dc.date.issued2014-10-23en
dc.identifier.urihttp://hdl.handle.net/2122/9139en
dc.description.abstractThis work will lead to ray theory and ray tracing formulation. To deal with this problem the theory of classical geometrical optics is presented, and applications to ionospheric propagation will be described. This provides useful theoretical basis for scientists involved in research on radio propagation in inhomogeneous anisotropic media, especially in a magneto-plasma. Application in high frequencies (HF) radio propagation, radio communication, over-the-horizon-radar (OTHR) coordinate registration and related homing techniques for direction finding of HF wave, all rely on ray tracing computational algorithm. In this theory the formulation of the canonical, or Hamiltonian, equations related to the ray, which allow calculating the wave direction of propagation in a continuous, inhomogeneous and anisotropic medium with minor gradient, will be dealt. At least six Hamilton’s equations will be written both in Cartesian and spherical coordinates in the simplest way. These will be achieved by introducing the refractive surface index equations and the ray surface equations in an appropriate free-dimensional space. By the combination of these equations even the Fermat’s principle will be derived to give more generality to the formulation of ray theory. It will be shown that the canonical equations are dependent on a constant quantity H and the Cartesian coordinates and components of wave vector along the ray path. These quantities respectively indicated as ri(τ), pi(τ) are dependent on the parameter τ, that must increase monotonically along the path. Effectively, the procedure described above is the ray tracing formulation. In ray tracing computational techniques, the most convenient Hamiltonian describing the medium can be adopted, and the simplest way to choose properly H will be discussed. Finally, a system of equations, which can be numerically solved, is generated.en
dc.description.sponsorshipIstituto Nazionale di Geofisica e Vulcanologia (INGV)en
dc.language.isoEnglishen
dc.relation.ispartofquaderni di geofisicaen
dc.relation.ispartofseries121/ (2014)en
dc.subjectPhase and ray velocityen
dc.subjectRefractive index surface equationen
dc.subjectRay surface equationen
dc.subjectPhase memory concepten
dc.subjectCanonical ray equationsen
dc.subjectApplication of Hamilton's equationsen
dc.subjectHamilton’s ray equations with spherical coordinatesen
dc.subjectFermat’s principleen
dc.subjectGeneral ray theory for a time-varying mediumen
dc.subjectRay tracing methoden
dc.titleRay theory formulation and ray tracing method. Application in ionospheric propagationen
dc.typereporten
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.identifier.URLhttp://istituto.ingv.it/l-ingv/produzione-scientifica/quaderni-di-geofisica/en
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physicsen
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagationen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementationen
dc.subject.INGV05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneousen
dc.subject.INGV05. General::05.06. Methods::05.06.99. General or miscellaneousen
dc.relation.referencesBianchi C., (1990). Note sulle interazioni delle onde elettromagnetiche con il plasma ionosferico. Istituto Nazionale di Geofisica, U. O. Aeronomia, Rome, Italy, 149 pages [in Italian]. Bianchi C. and Bianchi S., (2009). Problema generale del ray-tracing nella propagazione ionosferica - formulazione della “ray theory” e metodo del ray tracing. Rapporti Tecnici INGV, 104, 26 pages [in Italian]. Bianchi S., Sciacca U. and Settimi A., (2009). Teoria della propagazione radio nei mezzi disomogenei (Metodo dell’iconale). Quaderni di Geofisica, 75, 14 pages [in Italian]. Bianchi C., Settimi A. and Azzarone A., (2010). IONORT: IONOsphere Ray-Tracing. Programma di ray-tracing nel magnetoplasma ionosferico. Rapporti Tecnici INGV, 161, 20 pages [in Italian]. Budden K. G., (1961). Radio waves in the ionosphere. Cambridge University Press, Cambridge, 688 pages. Budden K. G. (1988). The Propagation of Radio Waves: The Theory of Radio Waves of Low Power in the Ionosphere and Magnetosphere. Cambridge University Press, Cambridge, UK, 688 pages. Davies K., (1990). Ionospheric Radio. Peter Peregrinus Ltd. (ed.) on behalf of the Institution of Electrical Engineers (IET), London, UK, 508 pages. Felsen L.B. and Marcuvitz N., (1994). Radiation and scattering of waves. IEEE Press Series on Electromagnetic Wave Theory (Book 31), John Wiley & Sons-IEEE Press, New York, USA, 924 pages. Fowles G. R., (1989). Introduction to modern optic. Dover Books on Physics Series, Dover classics of science and mathematics, Courier Dover Publications, Inc., II edition, New York, USA, 328 pages. Gorman A. D., (1985). Dispersive wave and caustics. Int. J. Math. & Math. Sci., 8 (1), 93-107, doi: 10.1155/S0161171285000084. Gorman A. D., (1986). Space-time caustics. Int. J. Math. & Math. Sci., 9 (3), pp. 531-540, doi: 10.1155/S0161171286000662. Haselgrove J., (1955). Ray theory and a new method of ray tracing. Conference on the Physics of the Ionosphere, Proc. Phys. Soc. London, 23, 355-364. Kelso J. M., (1964). Radio ray propagation in the ionosphere. McGraw-Hill electronic sciences series, McGraw Hill Book Company, Inc., New York, 408 pages. Kelso J. M., (1968). Ray tracing in the ionosphere. Radio Sci., 3 (1), 1-12, Accession Number: WOS:A1968A402200002. Jones R. M. and Stephenson J. J., (1975). A versatile three-dimensional ray tracing computer program for radio waves in the ionosphere. OT Report, 75-76, U. S. Department of Commerce, Office of Telecommunication, U. S. Government Printing Office, Washington, USA, 185 pages. Weinberg S., (1962). Eikonal Method in Magnetohydrodynamics. Phys. Rev., 126 (6), 1899-1909, doi: 0.1103/PhysRev.126.1899.en
dc.source.commentaryonC. Bianchi, S. Bianchi, “Problema generale del ray-tracing nella propagazione ionosferica - formulazione della “ray theory” e metodo del ray tracing”, Quaderni di Geofisica 104, pp. 21 (2009).en
dc.description.obiettivoSpecifico2A. Fisica dell'alta atmosferaen
dc.description.journalTypeN/A or not JCRen
dc.description.fulltextpartially_openen
dc.contributor.authorSettimi, A.en
dc.contributor.authorBianchi, S.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentDipartimento di Fisica, Università “Sapienza”, p.le Aldo Moro 2, 00185 Roma, Italiaen
item.openairetypereport-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_93fc-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Fisica, Università “Sapienza”, p.le Aldo Moro 2, 00185 Roma, Italia-
crisitem.author.orcid0000-0002-9487-2242-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
quaderno121.pdfMain article1.31 MBAdobe PDFView/Open
ACCEPTED Settimi A. and Bianchi S. (2014), Quaderni di Geofisica 121, pp. 21.docAccepted Manuscript (Word)8.8 MBMicrosoft Word
Show simple item record

Page view(s) 5

847
checked on Apr 24, 2024

Download(s) 10

794
checked on Apr 24, 2024

Google ScholarTM

Check