Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9131
DC FieldValueLanguage
dc.contributor.authorallCannavò, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallScandura, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallPalano, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallMusumeci, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2014-10-22T12:19:21Zen
dc.date.available2014-10-22T12:19:21Zen
dc.date.issued2014-08-01en
dc.identifier.urihttp://hdl.handle.net/2122/9131en
dc.description.abstractThe paucity of geodetic data acquired on active volcanoes can make the understanding of modelling magmatic systems quite difficult. In this study, we propose a novel approach, which allows improving the parameter estimation of analytical models of magmatic sources (e.g., shape, depth, dimensions, volume change, etc.) by means of a joint inversion of surface ground deformation data and P-axes of focal plane solutions. The methodology is first verified against a synthetic dataset of surface deformation and strain within the medium, and then applied to real data from an unrest episode occurred before the May 13 2008 eruption at Mt. Etna (Italy). The main results clearly indicate the joint inversion improves the accuracy of the estimated source parameters by about 70 %. The statistical tests indicate that the source depth is the parameter with the highest increment of accuracy. In addition, a sensitivity analysis confirms that displacements data are more useful to constrain the pressure and the horizontal location of the source than its depth, while the P-axes better constrain the depth estimation.en
dc.language.isoEnglishen
dc.publisher.nameSpringer Baselen
dc.relation.ispartofPure and Applied Geophysicsen
dc.relation.ispartofseries8/117(2014)en
dc.subjectGPSen
dc.subjectMt. Etna volcanoen
dc.subjectpressure sourceen
dc.subjectmodellingen
dc.titleA Joint Inversion of Ground Deformation and Focal Mechanisms Data for Magmatic Source Modellingen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1695-1704en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.1007/s00024-013-0771-xen
dc.relation.referencesAloisi, M., Mattia, M., Ferlito, C., Palano, M., Bruno, V. and Cannavò, F. (2011). Imaging the multilevel magma reservoir at Mt. Etna volcano (Italy), Geophys. Res. Lett., 38, L16306, doi:10.1029/2011GL048488. Alparone, S., Barberi, G., Cocina, O., Giampiccolo, E., Musumeci, C. and Patanè, D. (2012). Intrusive mechanism of the 2008–2009 Mt. Etna eruption: Constraints by tomographic images and stress tensor analysis, J. Volc. Geotherm. Res., 229–230, 50–63, doi:10.1016/j.jvolgeores.2012.04.001. Atefi Monfared, K., and Rothenburg, L. (2011). Ground surface displacements and tilt monitoring for reconstruction of reservoir deformations, International Journal of Rock Mechanics and Mining Sciences, 48(7), 1113–1122. Battaglia, M. and Hill, D.P. (2009). Analytical modeling of gravity changes and crustal deformation at volcanoes: The Long Valley caldera, California, case study, Tectonophysics, 471 45–57. Battaglia M., Cervelli P.F. and Murray J.R. (2013), Modeling crustal deformation near active faults and volcanic centers—A catalog of deformation models: U.S. Geological Survey Techniques and Methods, book 13, chap. B1, 96 p., http://pubs.usgs.gov/tm/13/b1. Barberi, G., Cocina, O., Maiolino, V., Musumeci, C. and Privitera, E. (2004). Insight into Mt. Etna (Italy) kinematics during the 2002–2003 eruption as inferred from seismic stress and strain tensors, Geophys. Res. Lett., 31, L21614, doi:10.1029/2004GL020918. Bonanno, A., Palano, M., Privitera, E., Gresta, S. and Puglisi, G. (2011). Magma intrusion mechanisms and redistribution of seismogenic stress at Mt. Etna volcano (1997–1998), Terra Nova, 23, 339–348, doi:10.1111/j.1365-3121.2011.01019.x. Brandsdottir, B., and Einarsson, P. (1979). Seismic activity associated with the September 1977 deflation of the Krafla central volcano in northern Iceland, J. Volc. Geotherm. Res., 6, 197–212. Bruno, V., Mattia, M., Aloisi, M., Palano, M., Cannavò, F. and Holt, W.E.E. (2012). Ground deformations and volcanic processes as imaged by CGPS data at Mt. Etna (Italy) between 2003 and 2008, J. Geophys. Res., 117, B07208, doi:10.1029/2011JB009114. Cannavó, F. (2012). Sensitivity analysis for volcanic source modeling quality assessment and model selection, Computers & Geosciences, 44, 52–59, doi:10.1016/j.cageo.2012.03.008. Chiarabba, C., Amato, A., Boschi, E., and Barberi, F. (2000). Recent seismicity and tomographic modeling of the Mount Etna plumbing system, J. geophys. Res, 105 (B5), 10923–10938, doi:10.1029/1999JB900427. Dieterich, J. (1994). A constitutive law for rate of earthquake production and its application to earthquake clustering, J. geophys. Res, 99, 2601–2618. Efron, B. (1982). The Jackknife, bootstrap and other resampling plans, Society for Industrial and Applied Mathematics, Philadelphia. Herring, T.A., King, R.W. and McClusky, S.C. (2010). Introduction to GAMIT/GLOBK, Release 10.4, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA. McTigue, D.F. (1987). Elastic stress and deformation near a finite spherical magma body: resolution of the point source paradox, J. Geophys. Res., 92(B12), 12931–12940, doi:10.1029/JB092iB12p12931. Musumeci, C., Malone, S.D., Giampiccolo, E. and Gresta, S. (2000). Stress tensor computations at Mount St. Helens (1995–1998), Ann. Geofis., 43(5), 889–904, doi:10.4401/ag-3681. Nakamura, K., Jacob, K. H. and Davies, J. N. (1977). Volcanoes as possible indicators of tectonic stress orientation: Aleutians and Alaska, Pure Appl. Geophys., 115, 87–112, doi:10.1007/BF01637099. Palano, M., Puglisi, G. and Gresta, S. (2008). Ground deformation patterns at Mt. Etna from 1993 to 2000 from joint use of InSAR and GPS techniques, J. Volc. Geotherm. Res., 169 (3–4), 99–120, doi:10.1016/j.jvolgeores.2007.08.014. Palano, M., Rossi, M., Cannavò, F., Bruno, V., Aloisi M., Pellegrino, D., Pulvirenti, M., Siligato, G. and Mattia, M. (2010). Etn@ref: a geodetic reference frame for Mt. Etna GPS networks. Ann. Geophys., 53(4), 49–57, doi:10.4401/ag-4879. Palano, M., Cannavò, F., Ferranti, L., Mattia, M. and Mazzella, M.E. (2011). Strain and stress fields in the Southern Apennines (Italy) constrained by geodetic, seismological and borehole data, Geophys. J. Int., 187, 1270–1282, doi:10.1111/j.1365-246X.2011.05234.x. Patanè, D., Privitera, E., Gresta, S., Akinci, A., Alparone, S., Barberi, G., Chiaraluce, L., Cocina, O., D’Amico, S., De Gori, P., Di Grazia, G., Falsaperla, S., Ferrari, F., Gambino, S., Giampiccolo, E., Langer, H., Maiolino, V., Moretti, M., Mostaccio, A., Musumeci, C., Piccinini, D., Reitano, D., Scarfì, L., Spampinato, S., Ursino, A., and Zuccarello, L. (2003). Seismological constraints for the dike emplacement of July–August 2001 lateral eruption at Mt. Etna volcano, Italy, Annals of geophysics, 46(4), 599–608. Pujol J. (2007). The solution of nonlinear inverse problems and the Levenberg–Marquardt method, Geophysics (SEG) 72 (4): W1–W16. doi:10.1190/1.2732552. Reasenberg, P.A. and Oppenheimer, D. (1985). FPFIT, FPPLOT and FPPAGE: fortran computer programs for calculating and displaying earthquake fault-plane solutions, Open File Rep. 85–379, 1–109, U. S. Geol. Surv., Washington. Roman, D. C. (2005). Numerical models of volcanotectonic earthquake triggering on non-ideally oriented faults, Geophys. Res. Lett., 32, L02304, doi:10.1029/2004GL021549. Roman, D. C., Moran, S. C., Power, J. A. and Cashman, K. V. (2004). Temporal and spatial variation of local stress fields during the 1992 eruptions of Crater Peak vent, Mount Spurr Volcano, Alaska, Bull. Seismol. Soc. Am., 94, 2366–2379, doi:10.1785/0120030259. Rubin, A.M., Gillard, D., and Got, J.L. (1998). A reinterpretation of seismicity associated with the January 1983 dike intrusion at Kilauea volcano, Hawaii, J. geophys. Res, 103, 10003–10015. Segall, P. (2010). Earthquake and volcano deformation, Princeton, N.J., Princeton University Press, 458 p. Segall, P. (2013). Volcano deformation and eruption forecasting, Geological Society, London, Special Publications, 380, doi:10.1144/SP380.4. Tikhonov, A.N. and Arsenin, V.Y. (1977). Solutions of Ill-Posed Problems. New York: Winston. ISBN 0-470-99124-0. Trasatti, E., Giunchi, C., and Bonafede, M. (2003). Effects of topography and rheological layering on ground deformation in volcanic regions, J. Volc. Geotherm. Res., 122, 89–110, doi:10.1016/S0377-0273(02)00473-0. Umakoshi, K., Shimizu, H. and Matsuwo, N. (2001). Volcano-tectonic seismicity at Unzen Volcano, Japan, 1985–1999, J. Volc. Geotherm. Res, 112, 117–131, doi:10.1016/S0377-0273(01)00238-4. Williams, C. A., and Wadge, G. (2000). An accurate and efficient method for including the effects of topography in three-dimensional elastic models of ground deformation with applications to radar interferometry, J. geophys. Res, 105 (B4), 8103–8120, doi:10.1029/1999JB900307.en
dc.description.obiettivoSpecifico2V. Dinamiche di unrest e scenari pre-eruttivien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0033-4553en
dc.relation.eissn1420-9136en
dc.contributor.authorCannavò, F.en
dc.contributor.authorScandura, D.en
dc.contributor.authorPalano, M.en
dc.contributor.authorMusumeci, C.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0001-7550-8579-
crisitem.author.orcid0000-0001-7254-7855-
crisitem.author.orcid0000-0002-0143-4594-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2014_Cannavo et al [FPs and GPS joint inversion] PAGEOPH.pdf1.08 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

3
checked on Feb 10, 2021

Page view(s) 50

344
checked on Apr 17, 2024

Download(s)

54
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric